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Two-dimensional quantum spin Hamiltonians: Spectral properties
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We report the comparative study of the energy-level properties of the Ising, the Heisenberg, and the

dipolar quantum Hamiltonians of —spins on a two-dimensional (2D) square lattice. We evaluate the

number of constants of motion by the dimension of the null space of the von Neumann operator. In this

way, we show that the three Hamiltonians are ordered according to: Ising & Heisenberg & dipolar, with

respect to their integrability properties. Extra dynamical symmetries persist beyond the geometric sym-

metries in the 2D Heisenberg Hamiltonian as evidenced by a Poisson statistics for the level spacings of
the Hamiltonian desymmetrized by the geometric symmetries. On the other hand, the dipolar Hamil-

tonian has no extra symmetries beyond the geometric ones because the desymmetrized Hamiltonian
shows Wigner spacing statistics characteristic of orthogonal ensembles of random matrices.

PACS number(s): 05.30.—d, 75.10.Jm, 05.45.+b

I. INTRODUCTION

In recent years, a lot of works have been devoted to
quantum systems with two degrees of freedom showing
dynamical chaos in the corresponding classical limit
[1—4]. Properties of energy spectra of such systems have
been studied in detail [5]. However, few works have been
devoted to many-body quantum systems [6,7]. In this re-
gard, we may wonder whether the thermodynamic limit
would not give a qualitatively new perspective to the gen-
eral question of chaos [8].

In the present work, we study quantum spin Hamil-
tonians on two-dimensional (2D) square lattices. These
systems are among the simplest many-body quantum sys-
tems which may be studied numerically because their
state space has a finite dimension if the number of spins is
limited. In particular, the dimension of the state space is
JV=2 if we consider a cluster with N spins S =

—,'. This
exponential growing of the state space with the number
of particles constitutes the main challenge in the study of
many-body quantum systems.

In order to develop an understanding of the properties
of quantum spin Hamiltonians, we shall compare three
different Hamiltonians, namely, the Ising, the Heisen-
berg, and the dipolar Hamiltoniaas. The first two Hamil-
tonians are considered in the study of electronic magne-
tism and, specially, of ferromagnetism and antifer-
romagnetism. On the other hand, the dipolar Hamiltoni-
an is at the basis of nuclear magnetism in insulators like
CaF2 [9].

The 2D Ising Hamiltonian is most famous for its exact
treatment by Onsager in the theory of phase transition
[10]. Exact results have also been obtained for the
Heisenberg Hamiltonian on 1D chains which were shown
to exhibit a hierarchy of constants of motion [11,12]. In
this sense, the 1D Heisenberg Hamiltonian turns out to
be completely integrable [11,12]. However, no exact
treatment is known for the 2D Heisenberg Hamiltonian

A. Hamiltonian

The Hamiltonians that we consider have the general
form

~(lattice)
m mn n~

m/nEZ
(2.1)

or the 1D and 2D dipolar Hamiltonians. By a compara-
tive numerical study of these 2D Hamiltonians, our pur-
pose is to obtain evidence on the existence or absence of
constants of motion beyond those given by the geometric
symmetries of the lattice. If the Hamiltonian admits spe-
cial dynamical symmetries, we may expect that they will
induce extra degeneracies in the energy levels. On the
other hand, we should expect a Wigner repulsion between
the energy levels in the absence of extra constant of
motion [2]. In this way, we can have evidence for the
nonseparability of the quantum Hamiltonian. We shall
therefore proceed by systematic numerical diagonaliza-
tion of Hamiltonians for clusters of spins of increasing
size.

The plan of the paper is the following. Section II is de-
voted to general properties such as the definitions of the
physical observables and of the general spin Hamiltoni-
ans on finite spin clusters. We observe in Sec. II that the
dimension of the Hamiltonians can be reduced using
different geometric symmetries and their associated uni-
tary operators. Moreover, a discussion is developed in
terms of the relationship between the existence of con-
stants of motion, the degeneracy of the energy spectrum,
the von Neumann equation of motion for the matrix den-
sities of statistical ensembles, and the Wigner repulsion
between the energy levels.

The Ising Hamiltonian is studied in Sec. III; the
Heisenberg Hamiltonian in Sec. IV; and the dipolar
Hamiltonian in Sec. V. Conclusions are drawn in Sec.
VI.

II. GENERAL PROPERTIES
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which is quadratic in the spin operators S and S„.
m=(m„, m ) and n=(n, , n ) are the coordinates of the
sites of the 2D square lattice with a unit cell whose side is
equal to one. Therefore, m, m, n, n belong to Z if the

system is infinite. In the following, we shall only consider
spins (S =- ). As a consequence, the spin operators

can be represented in terms of the Pauli matrices as
S =(8' /2, 8» /2, o' /2) where the Planck constant is
fixed to unity, A'= 1.

In the Hamiltonian (2. 1), J' „are tensors of c numbers
depending only on the distance (m —n) between the spins
because of translational invariance. These tensors satisfy
the relations Jm„=J„'m because the spins at the sites m
and n are identical and J' „=J„'* because the Hamiltoni-
an is Hermitian.

For the Ising and the Heisenberg Hamiltonians, the
coupling takes place between nearest-neighboring spins
so that only the tensors J' „where n=(m„+l„,m, +I„)
with I„,l„, =0, ~-1 are nonvanishing. On the other hand,
all the spins are mutually coupled and the interaction de-
creases like J~„-lm —n for the dipolar Hamiltonian.

We shall also consider the coupling of the spins to an
external magnetic field H so that the total Hamiltonian is

~g(lattice ) ~(lattice) + @(lattice) (2.2)tot Z 'p

TABLE I. List of spin clusters used in this work. The clus-
ters are defined by the giving of the fundamental translation
vectors a and b of the periodic boundary conditions. The num-

ber of spins in the cluster is given by a Xb.

Cluster

10bis

(2,0)
(2, —1)

(4,0)
(3,0)
(4,—1)

(1, --3)

(2, -- 3)

(4,0)

(0,2)

(2,2)

(2,2)

(0,3)

(2,2)

(3,1)

(2,3)

(0,4)

i)

10
10
12

16

C. State space and bases

Different bases may be chosen to represent the quan-
tum operators. If the z axis is adopted for the spin quant-
ization, the state space is spanned by the basis states

The spectral or thermodynamic properties may be calcu-
lated for each of these clusters. We expect that the study
of such sequences will provide the general properties of
the lattice Hamiltonian.

with the Zeeman Hamiltonian

c/f()at(Ice )—
IEZ

The constant y will also be taken as unity.

(2.3)

' ' e'~ ~
=

I
e'( ~(8)

I &p ) ' ' '
~)(t ~

where e E [ +, —
l is the spin orientation defined by

e I~ )=~ l~ &

(2.5)

(2.63

B. From finite clusters to the infinite lattice

The properties of a macroscopic sample are indepen-
dent of the precise number of particles in the sample, so
that adding or removing one particle should not change
its properties. Consequently, we are especially interested

by those properties which are independent of the size of
the system when studying many-body quantum systems.
From this point of view, we consider finite spin clusters
of increasing size.

The cluster is an ensemble of X neighboring spins on
Z . Periodic boundary conditions are imposed if opposite
sides of the cluster are identified and glued together to
form a torus. Each periodic boundary condition is given

by a pair of fundamental lattice vectors, a and b. The
vectorial product a Xb gives the number X of spins in the
cluster. The X linear combinations n+ ia+ jb with

(i„j)F Z and n in the cluster define X sublattices of spine
v hieh are identified together. The simplest clusters are
the square clusters with X=L spins constructed with
a=(L, O) and b=(O, L). It is also possible to construct
square clusters of intermediate sizes if the vectors a and b
are no longer parallel to the axes x and y (see Table I).

The spin clusters form a sequence which may be or-
dered according to the number of spins,

We have the choice of labeling the spins by an integer
running from 1 to X or by the pair of the integer coordi-
nates m. In the particular case of the square clusters
~Y =L XL, the spin states can be advantageously denoted
by an array like

L -L -~1

(2.7')

All these states are assumed to be mutually orthogonal so
that the dimension of the state space is 2 .

It is convenient to introduce the sectors formed by the
spin configurations or spin states with r up spins. The
number of states in the r sector is

Ã!
r!(W —r)!

Let us emphasize that r is not necessarily a good quan-
tum number of the Hamiltonian because S;„does not
commute in general with the Hamiltonian so that this
division into sectors r is only used because it provides a
further classification of the basis vectors.

Because of the periodic boundary conditions (a, b),
each spin of the lattice is identified to a spin of the cluster
according to

I '—I—ia —-„iba

where m is an arbitrary site of the lattice Z whereas
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m —ia —jb belongs to the cluster C. A new Hamiltonian
is now defined on the cluster,

and

(2.13)

with

SJ„S„—y+HS
m, nEC mEC

(2.10)

"', + +.b.
(i,j)EZ

(2.11)

Since a spin may be coupled to its images in the lattice
because of the identification (2.9), we may find terms with
m=n in the Hamiltonian (2.10). We shall see later that
those terms effectively disappear from the Hamiltonian
(2.10) in the examples studied in this paper. In the fol-
lowing, we shall drop the reference to the cluster,

We note that the Hamiltonian (2.10) is ex-
tensive with the size X of the cluster C. The cluster
Hamiltonian is represented by a 2 X2 Hermitian ma-
trix in the basis (2.5) of the state space. In the following,
we shall be mainly concerned with the eigenvalues of the
Hamiltonian, HIE~ &=EJ IE.J &. We use the diagonaliza-
tion routines TRED2 and TQLI of Ref. [13].

D. Geometric symmetries

The original Hamiltonian (2.1) admits several
geometric symmetries forming a space group generated
by the space translations and the point group of the
square lattice [14,15]. As a consequence, the cluster
Hamiltonian (2.10) has similar geometric symmetries al-

though they now depend on the periodic boundary condi-
tions. In the case of square clusters, a maximum of
geometric symmetries are inherited by the cluster Hamil-
tonian. In the following discussion of the symmetries, we
shall focus on the square clusters although several results
extend to the other more general clusters.

The main difficulty concerning space groups is the non-
commutativity of the translations with the elements of
the point group.

A general method consists in treating the translation
group in a first step. A new basis is introduced which is
formed by eigenstates of the translation operators so that
a quasimomentum is now assigned to each one of the new
states. The eigenspaces of the translation operators are
not necessarily invariant under every transformation of
the point group. As a consequence, each eigenspace is
only invariant under a subgroup of the point group called
the little group associated with the given quasimomen-
turn. In a second step, the irreducible representations of
the little group (and not of the whole point group) are
used to assign the eigenstates [14,15]. Following this pro-
cedure, we shall first treat the group of translations.

The translational invariance of the Hamiltonian can be
used to make a transformation to a new basis I I qq & I

where the states are eigenstates of the translation opera-
tors. The new basis states can be constructed by applying
the projection operators of the irreducible representations
of the translation group on the previously defined basis
vectors (2.5) that we denote here by [ Ig & I,

Igq&= „P,7)& . (2.14)

The projection operators are defined by

1
I'q =—g exp( —iq n) I ",

N„~G
(2.15)

where q is the quasimomentum taking on its values in the
finite set [(q„,q )=(2m k„ /L2m k/L)] with
k, k =0, 1,2, . . . , L —1, inside the Brillouin zone of the
square lattice [ n&q„&—+n, n&q~ —+nI [16]. In
Eq. (2.15), G denotes the group of translations represent-
ed here by the set of N=L values that the discrete
translation vector n is taking on in the group.

By this change of basis, the Hamiltonian matrix is
transformed into a block-diagonal matrix where the
different blocks correspond to the different values of the
quasimomentum q. The dimensions of these blocks are
determined as follows.

We first remark that we can classify the spin states

[ rl&I into the orbits under the group of translations.
The orbit associated with the state

I ri & is the set of states
f'"I ri& for n running in the group of translations G. Each
orbit is labeled by the initial condition g of the orbit.
Translation orbits may contain 1 v„L states where

v„ is a factor of L . Table II contains the number of
translation orbits in each sector with r up spins for the
4 X4 clusters.

Secondly, we remark that there is a subgroup I„of
translations which leave invariant the state Iri& =f'"Iri&
with nEI„. This subgroup contains L /v„elements of
the full translation group G. On the other hand, there is
another subgroup M„of G containing v„ translations
none of which leaves the state invariant except the identi-
ty. Accordingly, each orbit g factorizes the translation
group into the direct product: G =M„I„. Applying
the projection operator (2.15) on a state, we get

1. Translations

For the square cluster, the group of translations is a
direct product of two cyclic groups with L elements,
6 =CL (3) CL. We define the unitary operators of transla-
tions along the axes x and y by their action on the basis
states

(2.12)

g e ' ' g e 'q f™Iq&. (2.16)
leI

"I
mEM

7l

When the subgroup I„is nontrivial, the factor in front of
the second sum vanishes unless the quasimomentum q be-
longs to a subset L„of the Brillouin zone containing v
different values. Determining each of these subsets, we
can determine the dimensions of the blocks correspond-
ing to the different quasimomenta q, as given in Table III
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TABLE II. Orbits of the states of the 4X4 cluster under the translation group G =C4 C4.

X orbits Kith V states Number of states

0 or 16
1 or 15
2 or 14

3 or 13
4 or 12

5 or 11
6 or 10

7 or 9
8

6
109
273

')
1

4&0
7

2Xl
2X 16

2X120
2X560

2X1 820
2X4368

2X 8008
2 X 11440

Total number of orbits:

21

792
4156

1X12870
total: 65 536

for the 4X4 cluster.
%e are now in a position to normalize the basis states

(2.14j according to

gv„
!gq) = ' g e 'q "T"rj),

N n~G

which form an orthonormal basis.

(2.17)

2. The point group

The point group of the square lattice is D4&, which is

composed of 16 elements generated by a rotation of 90'
around the z axis, four reflections by the xz and yz planes
and the two planes bisecting the previous ones, together
with the reflection by the xy plane [14]. This group can
be decomposed into a direct product of two of its sub-

group like D4& =D4C, . The group D4 is composed of
eight elements which are the identity, the three rotations
by 90', 180', and 270' around the z axis, together with the
four rotations by 180' around the x axis, the y axis, and
the two diagonal axes d and d' of the xy plane. On the
other hand, the group C, contains the identity and the
three-dimensional inversion with respect to the origin.

In quantum mechanics, unitary operators acting on the
physical observables are associated to these transforma-

tions. These operators may permute or flip the spins on

the cluster. They can be written as the succession of two
unitary operators [17]

Pg
(sPlI1! U(sPBct." ~ (2.18I

(2.20)

so that

(2.21)

Finally, the complete unitary transformation will be

US U =(detoj g O,pS~ ~o.
/3=- x,y. z

(2.22)

The spin operator U "p'"' acts on the spin degrees of free-
dom to realize the eft'ect of the orthogonal transformation
0 on the pseudovectors of angular momentum that are
the spin operators:

0~'t"")S 0""")'=(d tO) g O. S~,
P=x,y, z

where 0
&

is the orthogonal matrix of the transforma-
tion. On the other hand, the space operator U' ""acts
on the spatial degrees of freedom according to

TABLE III. Dimensions of the subspaces with fixed quasimomentum q=(m. /2)k for the 4 X4 cluster.

0 or 16
1 or 15
2 or 14
3 ol 13
4 or 12
5 or 11
6 or 10
7or9
8
Total dimension:

k=(0,0)

9
35

122
273
511
715
822

4156

k=—(2,0),
(0,2),(2,2)

0

9
35

118
273
511
715
816

4140

12 other k's

0

35
112
273
497
715
800

4080

Number of states

2X1
2X16
2X 120
2X 560
2X1 820
2X4 368
2X 8008
2X11440
1 X12 870
total: 65 536



49 TWO-DIMENSIONAL QUANTUM SPIN HAMILTONIANS: 83

It is known that rotations by an angle 0 around the unit
vector e are realized by the unitary operator

OI',i'g)'=exp( —i Oe S„,)
.0= g exp t—(—e"t»" +e o» +e'am), (2.23)

mEC

where S„,is the total angular momentum of spin. On the
other hand, the spin unitary operator of the inversion
through the origin (x~—x,y~ —y, z —+ —z} is the iden-
tity O' '"'=I [17].

All these operators commute with the Hamiltonian if
there is no external magnetic field H:

[Op,&]=0, (2.24)

for the orthogonal transformatians 0 of the point group
D4I, . In the presence of an external magnetic field, the
point group may be reduced according to the direction of
the magnetic field.

3. Little group of q

As we mentioned earlier, the transformations of the
point group do not commute in general with the transla-
tion operators. Accordingly, these operators cannot be
diagonalized simultaneously.

In a preceding subsection, we carried out the diagonali-
zation of the translation operators by introducing the
orthonormal basis [ Irlq) ]. We observe that the giving of
a nonvanishing quasimomentum vector q breaks the rota-
tional invariance of the state which is no longer an eigen-
state of all the aperators of D4&, but anly of a subgroup
called the little group associated with q as discussed for
instance in Refs. [14,15].

Using the symmetry provided by the little group, a new
set of orthonormal vectors may be constructed by apply-
ing on the vectors (2.17) the projection operators on the
irreducible representations of the little group G [14,15]:

ff„,(H }8=8%„,( —H), (2.27)

p&» ff' p&»
m n

Using the Hermiticity of the Hamiltonian, we get

(ei ' ' '
e»t , r'I&l&'i ' ' eN, r )

A—
( 1)~+'(,—e ——e;N r IRI—

N —r gN~

(2.28)

(2.29)

where Ie, et', r) denotes the state (2.5) having r up
spins. Assuming that r and r' have the same parity,
r +r' is always even so that the Hamiltonian matrix
separates into two blocks —a first block with r even and a
second one with r odd —which are identical if an ap-
propriate permutation of the basis vectors is carried out.
Both blocks have the same eigenvalues sa that the multi-
plicity of the eigenvalues is at least double.

so that the invariance holds in the absence of an external
magnetic field (H=0).

Viewed with the help of the time-reversal operator, the
symmetry properties of the energy spectrum depend on
the number of spins [2].

If there is an even number N of spins, 9 =I and 8
does not modify the parity of r in the sense that the image
under 8 of a state with r even is also a state with r even
(and similarly with r odd}. In this case, 8 can help to find
a basis where & is real [2].

On the other hand, in the odd N case, the states Ig)
and 8IQ) turn out to be orthogonal [2]. The commuta-
tivity (2.27) when H=O implies that the so-called Kra-
mers degeneracy of the eigenvalues is a multiple of two
[2]. Indeed, the previous orthogonality corresponds to
the fact that 8 will here map the sector with r even onto
the sector with r odd. Both of these sectors have the
same dimension and appear symmetrical about each oth-
er. Equation (2.27) implies that

r

g Xz(g}~e
qI geG

(2.25)
E. Extra symmetries and Goldstone excitations

where y&(g) is the character of the group element g for
the irreducible representation % and 0 is the unitary
operator corresponding to the action of g as we defined
them here above [14,15].

4. Time reversal

Beyond the spatial symmetries, we find the time-
reversal symmetry of the Hamiltonian in the absence of
magnetic field (H=O). Time reversal is represented by
an antiunitary operator of the form [2]

(2.26)

where K is the operator which takes the complex conju-
gate and 0, is a unitary operator.

The total Hamiltonian (2.10) with the Zeeman interac-
tion obeys

J ~=J 5~mn mn (2.30)

so that the interaction is isotropic. As a corollary, the
Hamiltonian commutes separately with the unitary

Beyond the fundamental symmetries, the Hamiltonian
may present extra symmetries of intrinsic or dynamical
origin. Our aim in the present paper is to investigate the
presence or absence of these extra symmetries in different
spin Hamiltonians since our experience tells us that they
have crucial importance for the time evolution of the sys-
tem. In particular, they may affect the equilibrium as
well as the transport properties of the many-body system.

As an example, let us suppose that the Hamiltonian is
invariant under the continuous SO(3) Lie group, which is
equivalent to the requirement that the Hamiltonian com-
mutes with the total spin S„,=g S . This condition
implies that the tensors which define the interaction be-
tween the spins in (2.10) are diagonal,
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operators, C"'~'"' and U"~"", of the geometric sym-
metries of the point group [cf. (2.18)]. This is the case for
the Heisenberg Hamiltonian to be defined later.

The continuous symmetry can be broken by the classi-
cal ground state or by the quantum ground state in the
thermodynamic limit. This symmetry breaking has im-
portant consequences on the spectrum of the spin waves
which are the excitations resulting from linear perturba-
tions with respect to the classical ground state.

In the presence of the continuous rotational symmetry,
there is a continuum of classical ground states where all
the spins may point in the same but arbitrary direction of
the 3D space. Therefore the energy necessary to distort
the orientation of the spins does not depend on the abso-
lute orientation of the spins but only on their relative
orientation. As a consequence, the energy to produce a
distortion vanishes in the limit of long wavelengths. The
same result applies to the distortion produced by a spin
wave, a result known as the Goldstone theorem [10,18].
In this case, the spin waves are called Goldstone excita-
tions. It is well known that the presence of Goldstone ex-
citations has important consequences on the equilibrium
properties such as the specific heat at low temperature.

For other Hamiltonians which do not have such a con-
tinuous symmetry, the spin waves may also be construct-
ed around the classical ground state but their energy may
depend on the absolute orientation of the spins with
respect to the reference orientation given by the classical
ground state so that the energy does not vanish for long
wavelengths. The spin waves may then have a high ener-

gy rather than being close to the ground-state energy.
Consequently, the spin-wave excitations may be lost in

the more complex excitations at higher energy.
Let us also emphasize that the Hamiltonian may com-

mute with more complicated dynamica1 observables than

simply the total angular momentum. For 1D chains of
the Heisenberg Hamiltonian, there may exist a whole

hierarchy of constants of motion and the system would in

that case be completely integrable [11,12]. We may ex-

pect that the presence of extra constants of motion wi11

increase the number of degeneracies in the energy spec-
trum. We now pass on to the discussion of a method to
evaluate the number of constants of motion.

F. von Neumann equation, Liouvillian,

and constants of motion

If the state of the system is a statistical ensemble, the
state is described by a density matrix p which evolves in

time according to the von Neumann equation [19]

ikey, p=[&,p] or B,p=Xp,
where we introduced the Liouvillian quantum supero-
perator

[» ].
l fl

For a finite cluster, this superoperator admits pure imagi-

nary eigenvalues which are given in terms of Bohr's fre-

quencies

J
jA;

with the corresponding eigenvectors

~IE~&«, {=~~,~ E~&&E, ~
(2.34)

If there are JV eigenenergies, there are A' Bohr frequen-
cies. Of interest is the density n (co) of Bohr frequencies
defined by

n (6))= gl{co (cojk (co+Lcd: J, k —I, . . . , aV {
Aco

where % denotes "number, " for an adequate choice of
cell size Lm. We shall see that this density rapidly con-
verges to a smooth function in the thermodynamic limit
for typical systems.

A particular role is played by the subspace spanned by
the eigenvectors {~Ek &(E, ~] of zero Bohr frequency,
co &

=0. The null space of the Liouvi11ian contains all theJ
operators {AI{ which are constants of motion in the
sense that they commute with the Hamiltonian,

[ A&, A] =0. If gj is the degeneracy of the eigenenergy E;
the dimension of the null space of X is given by

(2.36)

n„(E)= %{E&E, &E+bE],l

the spacings are calculated according to

for a sorted energy spectrum. The spacing density and its
cumulative function are then obtained, respectively, by

where M is the number of different eigenenergies in the
whole spectrum. Counting the number of zero Bohr fre-
quencies will therefore provide us with an estimation of
the number of constants of motion. We must already ex-

pect a certain number of them from the geometric sym-
metries of the lattice. Nevertheless, the comparison of
the dimension of this null space between three different
Hamiltonians on the same lattice gives us a possibility of
comparing their intrinsic dynamical symmetries.

If all the symmetries of the Hamiltonian are found, the
Hamiltonian matrix can be completely desymmetrized in

terms of the irreducible representations of the symmetry

group [2,20,21]. If there is no complete hierarchy of con-
stants of motion, we may wonder if the desymmetrized
blocks of the Hamiltonian will present the phenomenon
of Wigner repulsion which is characteristic of random
matrices [5]. Evidence of this phenomenon may be
looked for in the distribution of the spacings between
next-neighboring energy levels of the desymmetrized
blocks.

The spacing distribution is obtained as follows. The
average level density being given by
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P(S)= %[S&S,&S+bS],1

sbs

I(S)= %[S,&S],1

(2.39)

(2.40)

where JV& is the total number of spacings.
If there are further constants of motion beyond the

geometric symmetries, we may expect the presence of de-
generacies in the energy spectrum of the blocks labeled
by the geometric quantum numbers. In this case, the
spectrum is the superposition of several independent
spectra so that the spacings follow a Poisson distribution

Ppo(», „(S)=exp( —S) . (2.41)

On the other hand, if Wigner repulsion arises the spacing
distribution is a Wigner-Mehta-Gaudin-Dyson distribu-
tion of one of the three Dyson universality classes defined
by the orthogonal (OE), the unitary (UE), and the sym-
plectic (SE) ensembles of random matrices. Surmises of
these spacing distributions are given by [2,5,20,21]

P (S)=—S exp ——S7r 2
OE 4

(2.42)

PUz(S)= z
S exp ——S32 2 4

(2.43)

Ps+(S}= S exp — S
2'

4 64
3'7l' 9m

(2.44}

The observation of Wigner repulsion is evidence for the
absence of any further constant of motion. We may con-
jecture that heat transport in the system —for instance,
by spin waves —may behave very differently due to extra
constants of motion. The classical 1D Toda lattice which
is completely integrable has provided an example where
heat conduction becomes anomalous because of the ex-
istence of a hierarchy of constants of motion [22]. In this
regard, the aforementioned question is important for the
issue of irreversibility in the system.

for an ¹pin cluster C and where the border sites are ap-
propriately identified according to the periodic boundary
conditions. We shall speak of ferromagnetism when J (0
and of antiferromagnetism when J)0. By taking liberty
with language, we shall say that a state is ferromagnetic if
all the spins are parallel and that it is antiferromagnetic if
a maximum number of spins are antiparallel, indepen-
dently of the sign of J. The Ising Hamiltonian is aniso-
tropic in the sense that the z axis is privileged so that the
system does not have Goldstone excitations.

B. Energy spectrum and its degeneracies

The Hamiltonian (3.1) is immediately diagonal in the
basis of states (2.7) for which S'„=e„j2with e„=+. For
our purposes, we shall assume that the Hamiltonian de-
scribes ferromagnetism so that the coupling constant is
negative: J=—~J~. For all the clusters, the ferromag-
netic ground states are the two states where all the spins
are either up or down, with the energy

Eferro =JN . (3.2)

Eantiferro (3.3)

However, for an odd number of spins, the energy is re-
duced with respect to —JN by border effects because the
neighboring spins of opposite sides cannot be antiparallel
as in the bulk. We get

If we reverse one spin of the state ~E(p p) ~ ~ ~ E(I. L, ) ), say
the spin (0,0), the energy changes by one of the five fol-
lowing values: bEE[4J,2J, O, 2J, —4J]. —As a first
consequence, we see that the eigenenergies can only take
on the values E =J(N —21) where (is an integer.

The maximum energy is reached for the antiferromag-
netic configurations where the spins are antiparallel. If
we restrict ourselves to square clusters, two cases arise
depending on whether the number of spins is even or odd.
Let us first consider a cluster with an even number of
spins. In this case, there are two antiferromagnetic states
with an energy

III. ISING HAMILTONIAN

A. Definition

E,„„f„„=J(N 2&N )
—. — (3.4)

(n„,n„) (n„,n +1)] & (3.1)

For this well-known model of magnetism, the interac-
tion occurs between the z components of next-
neighboring spins so that the Hamiltonian is [10]

ng=W g [S(n n )g(n +( n )
(n„,n )EC

The degeneracy is here higher than 2.
Moreover, if we flip one spin with respect to a fer-

romagnetic state, the energy increases by bE =4~ J~ be-
cause all the neighboring spins are parallel. Accordingly,
the ferromagnetic states are separated from the first ex-
cited states by a spacing 4~ J~ which is the double of the
other spacings 2~ J~. In summary, the eigenvalues of the
Ising Hamiltonian belong to the following set:

E E [JN, J(N 4),J(N —6),J(N ——8),J(N —10), . . . , E,„„f,„„]. (3.5)

The energy spectrum is therefore highly degenerate.
Figures 1 and 2 show the degeneracies for the 4 X4 and

the 5 X5 clusters over a total of 2' and 2 states, respec-
tively. We observe that the 4X4 cluster has a spectrum

I

which is symmetric with respect to E =0 although the
5 X 5 cluster does not, because of (3.3) and (3.4). We also
observe that the degeneracy is maximum at E =0 around
which the degeneracies seem to follow a Gaussian law
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spacing distribution has peaks at the values 5 =0,
S =2~J, and S =4~ J~ and diff'ers from either the Poisson
or the signer distributions,

IV. HEISENBERG HAMILTONIAN

A. Definition

We now turn to the Heisenberg Hamiltonian [16]
i
I
I

! i

-1 I)

'iV „„,=2J. [ Sin , n I S(n + l, n

I4. 1I

FIG. 1. Degeneracy g of the energy spectrum of the fer-
romagnetic Ising Hamiltonian on the 4X4 square cluster. Note
the symmetry around F. =0.

g, =c„exp( a~F. )
—.

More generally, the energy spectrum appears to be sym-
metric for E—+ —E if the periodic boundary conditions
defining the cluster are compatible with the existence of
complete antiferromagnetic Neel states [16].

The very high degeneracy implies that the number of
constants of motion, i.e., the dimension of the null space
of the Liouvillian superoperator, is very high. Indeed,
the Ising Hamiltonian has a lot of dynamical symmetries.
For instance, we have that

[Ht„„s,7( [S'„,(S„") +(S~),S'„S~—S~S„'I )]=0,
for such an arbitrary function 7 of these combinations of
spin operators. We understand that this high degeneracy
as well as the simplicity of the energy spectrum are
somehow related to the solvability of the equilibrium
thermodynamics of the Ising Hamiltonian obtained by
Onsager [10]. But we have not pursued our investigation
in that direction.

For various clusters, we plotted in Fig. 19 the dimen-
sion of the null space of the Liouvillian calculated with

Eq. (2.36) versus the number of spins in order to compare
the Ising Hamiltonian to the other Hamiltonians to be
treated in the following sections.

Because of the high regularity of the spectrum, the

with the appropriate identification of the border sites ac-
cording to the periodic boundary conditions. As for the
Ising model, J &0 refers to ferromagnetism and J)0 to
antiferromagnetism. A hierarchy of constants of motion
has been found for 1D chains of the Heisenberg Hamil-
tonian, which appears to be integrable in that sense.
However, the question arises of whether a similar proper-
ty holds for 20 lattices.

Contrary to the Ising Hamiltonian, (4. 1) cannot be sim-

ply diagonalized in the basis of vectors (2.7I. We shall
therefore make use of numerical methods for the diago-
nalizatiori.

8. Consequence of the isotropy

Because of the isotropy of the interaction between the
spins, the total spin angular momentum is a constant of
motion so that

[ &„„,, S,„,] =0 . {4.2)

As a consequence, the Hamiltonian is block diagonal in
the basis (2.5), each block being labeled by the number r
of spins which are up. The dimension of each block is

given by Eq. (2.8). If r =0 and X, we find two ferromag-
netic states that are eigenstates of the Hamiltonian with
the energy E„o=E„,~ =JN. They are not the only

eigenstates with the energy JN because the isotropy of
I4. 1j implies that there are as many ferromagnetic states
where all the spins are parallel, as there are projections of
a large spin 5 =N/2 on its quantization axis. As a
consequence, the degeneracy of Ef,„„=-Eo =JN is

g„-- N +1 and there is a ferromagnetic state in each r
sector.

On the other hand, the antiferromagnetic ground states
are found in the largest r sector at r =N/2. The same re-
mark as for the Ising model holds here concerning the
impossibility of having all the spins antiparallel in an odd
clUster.

Because of (4.2), the eigenvalues will simply be shifted
in the presence of a magnetic field H according to

E, (H) =E,(0)—
y I

HI
I

FIG. 2. Same as Fig. 1 for the ferromagnetic Ising 5 X 5 clus-
ter. Note that the square is no longer symmetric around E =-0.

whatever the orientation of the magnetic field is, since
4,
'4. l) is isotropic.

Another consequence of the isotropy is that the Harnil-
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tonian commutes not only with the full unitary operators
(2.18) of the geometric symmetries but also separately
with the unitary operators acting on either the spin or
spatial observables

[A„„„o]=[A„„„o'p'"i]

—[~ Q(space)] 0 (4.4)

A further effect of the isotropy is that the Heisenberg
Hamiltonian commutes with the unitary operator 0,
which appears in the definition of the time-reversal an-
tiunitary operator (2.37). As a consequence of the time-
reversal symmetry [&H„„e]=0holding in the absence

of a magnetic field, &H„+=kgfH„„where k is the
operator that takes the complex conjugacy. Therefore
the Hamiltonian matrix is real, which simplifies the treat-
ment: leis leis'

C. Spin waves

As we discussed in Sec. II E, the continuous rotational
symmetry of the Heisenberg Hamiltonian implies the ex-
istence of Goldstone excitations whose energy vanishes
with the quasimomentum [16,18]. These Goldstone exci-
tations are here the spin waves that we find in the sub-
space where one spin is reversed with respect to a fer-
romagnetic state, i.e., when r =1 and N —1. Those sec-
tors are of dimension N and are exactly solvable.

The eigenstates are labeled in terms of the quasi-
momentum q which takes on its values in the Brillouin
zone. The corresponding eigenvalues are given by

generate. The energies E = —6, —3, and 3 exhibit equal-

ly high degeneracies in the 3X3 cluster. A similar
phenomenon occurs at the energies E = —12, —10, —8,
—6, —4, and —2 in the 4X4 cluster. The spin-wave
spectrum contributes to the degeneracy of the lower
among those energies. In this regard, Eq. (4.5) explains
why the energy increases by integer values for the 3 X 3,
and 4 X4 clusters at the bottom of the spectrum. Howev-

er, that will not be the case for larger clusters like the
5 X 5 cluster.

The comparison with the Ising Hamiltonian reveals
that the Heisenberg Hamiltonian has much lower sym-

metries than the Ising one. Nevertheless, the remaining
degeneracies are pointing toward the possible existence of
extra dynamical symmetries and constants of motion.

In this regard, we have calculated the dimensions of
the null space of the Liouvillian with the formula (2.36)
for several clusters. These dimensions have been gath-
ered in Fig. 19 together with those of the Ising and dipo-
lar systems (see also Table VI). As a matter of fact, the
null space dimension proves to grow very fast but in a su-

bexponential way. The important remark is that the null

10

(a)-

10

E ( q„,q~ ) = N~ J
~

+2—
~
J

~
(2—cosq„—cosq~ ), (4.5)

10'

which goes to zero quadratically with q~0.
On the other hand, as far as the antiferromagnetic spin

waves are concerned, the fact that the antiferromagnetic
ground states belong to the largest sectors r =N/2 im-

plies that the antiferromagnetic ground states and the as-
sociated spin waves cannot be obtained by an exact calcu-
lation as in the ferromagnetic case. We refer the reader
to the extensive literature on this subject since 1952 [18].

10' .—

-10 0
E

600 I I I I I I

I
I

I I I I

5 10

D. Energy spectrum: numerical results

Numerical diagonalizations have been performed for
the clusters of Table I. We shall focus on the 3X3 and
the 4 X4 clusters in the following discussion.

The full classification of the eigenenergies of the 3X3
cluster has been performed in terms of the quantum num-
bers of the geometric and the rotational symmetries. We
observe that those symmetries are not instrumental in re-
rnoving all the degeneracies, so that some of them remain
for a number of eigenenergies. The degeneracies are plot-
ted versus the spectrum in Fig. 3(a): The staircase func-
tion, defined by

M
N(E) = gg 8(E E), — — (4.6)

is depicted in Fig. 3(b). The same plots are shown in Fig.
4 for the 4X4 cluster.

We observe that the energy E =0 is very strongly de-

200—

100—
r=3, 6

1=2, 7

-10 10

FIG. 3. Energy spectrum of the ferromagnetic Heisenberg
Hamiltonian on the 3X3 square cluster. (a) Degeneracies g of
the energy levels. Note the high degeneraciep for the levels
E = —9, —6, —3,0, +3. The degeneracy of the ferromagnetic
ground level is equal to g =N+1=10. On the other hand,

g =8 for the antiferromagnetic level because the Neel state is
not compatible with the 3X3 cluster. (b) Staircase function
(4.6) of the energy spectrum with its decomposition into the
different r sectors. The sectors r =4 and 5 to which the antifer-
romagnetic levels belong are the largest sectors.
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space has a lower dimensionality for the Heisenberg
Hamiltonian than for the Ising one, in agreement with
the aforementioned expectation.

If we divide the dimension of the Liouvillian null space
by the total dimension of the superspace, we see in Fig.
20 that the ratio rapidly goes to zero with the cluster size
N. In this way, the weight of the null space decreases in
the thermodynamic limit with respect to the vast majori-
ty of the other superstates.

This result is consistent with the following observation.
Indeed, we also calculated the densities of the Bohr fre-
quencies for the 3 X 3 and 4X4 clusters (see Figs. 5 and
6). These densities remarkably fit a Gaussian curve

~x~
n (co) Q~e

n6l~ - r « ~
~

r t r

10

10
-20

~ il i a a a I j a s a I a a s a I s a

-1S -10 -s 0 10 ] S 2()

except for residual peaks at the frequencies formed by the
difference between any two among the highly degenerate
energies mentioned earlier, i.e., at ~=+2, +4, . . . for the
4 X 4 clusters. Nevertheless, a comparison between the
densities for the 3 X 3 and 4 X 4 clusters in Figs. 5(a) and
6(a) shows that the residual peaks disappear in the mass
of Bohr frequencies when N ~ ~.

1x10

-15 -1()

1 0 z s» I

10

10

(a& =

FIG. 5. Spectrum of the Bohr frequencies for the ferromag-
netic Heisenberg Hamiltonian on the 3 X 3 cluster; (a) average
density n, „(co) with cells of size b,co=0. 1. We remark the peaks
at the integer values of co on top of the background. (b) Cumu-
lative distribution function, X(co)=I des'n(cu'), with the

corresponding stairs at the integer values of co.

10'

10' .

gx[0

6xl 0'
(b&

-10 10 '&0
~ 1 C

E. Spacing distribution

In order to get further evidence about the existence of
extra constants of motion, we have calculated the spacing
distribution for one large sector of the 4X4 cluster com-
pletely desymmetrized according to the known sym-
metries. We considered the sector with r =8 spins up, of
quasimomentum q=(m /2, 0), and of positive parity for
the rotation by 180' around the x axis:

4X10z

7x10

r= 7, 9

r = 6, 10
(4.8)

Ox10
)()

r=S, ll
s

f
s « I /» & '

f
& & ~ & I

0 10 0 3()
E

FIG. 4. Energy spectrum of the ferromagnetic Heisenberg
Hamiltonian on the 4 X4 square cluster. (a) Degeneracies g of
the energy levels. Note that the high degeneracies here occur
for the levels E = —16, —14, —12, , —2,0 on top of a quasicon-
tinuum of levels. The ferromagnetic ground level at E = —16
has the degeneracy g =X+1=17. On the other hand, the anti-
ferromagnetic level has here the degeneracy g = 1. (b) Staircase
function of the energy spectrum with its decomposition into the
different r sectors. We note that the high degeneracy of E =0
concerns the sectors from r =6 to 10.

This sector contains 384 states.
The average level density of this sector is given in Fig.

7. The cumulative function and the density of the level
spacings are plotted in Figs. 7(b) and 7(c) for a compar-
ison with the corresponding functions for the Poisson dis-
tribution (2.41) and the Wigner surmise given by Eq.
(2.42). We observe that the spacing distribution is follow-
ing the Poisson distribution, which suggests that the sec-
tor is not fully desymmetrized. The possibly remaining
constants of motion are unknown to us.

In conclusion, the 2D Heisenberg Hamiltonian appears
to have many fewer symmetries than the 2D Ising Hamil-
tonian but our results are pointing toward the existence
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of extra constants of motion beyond the known list. This
feature may be reminiscent of the complete integrability
of the 1D Heisenberg chains [11,12].

V. DIPOLAR HAMILTONIAN

A. Definition

Besides electronic magnetism, nuclear magnetism is a
subject of high current interest. Nuclear magnetism
arises through the interaction between the magnetic mo-
ments of the nuclei. In a solid, nuclei are bonded at the
lattice sites. In an insulator like CaF2, nuclear magne-
tism is well described by the dipolar Hamiltonian [9].

The interaction between two magnetic moments

p, =yAS, and pz=yAS, is given by the dipole-dipole cou-
pling so that the Hamiltonian is written

40

: (a)
400

the direction joining the spins m and n. The positive sign
of the coupling constant J shows that the spins will tend
to share an antiparallel con6guration as in antifer-
romagnetism. As before, we assume that the spins are
one-half, 5 =

—,', and identical.
A main difference with respect to the Ising and Heisen-

berg Hamiltonians is the long range of the dipolar in-
teraction. All the spins of the lattice are so mutually cou-
pled by the interaction which decreases like p, p being
the interspin distance. Although the decrease is more
rapid than for the Coulomb interaction, it is known to
cause summation problems in 3D lattices. However, no
such delicate problems of summation will be met for the

[S S,—3(e „S )(e, S„)],.~..z2 m —n' 20 200

(5.1)

with J =y fi &0. The sum extends over all the spins of
the lattice and e „=(m—n)/~m —

n~ is the unit vector in -20 -10 0
E
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FIG. 6. Spectrum of the Bohr frequencies for the ferromag-
netic Heisenberg Hamiltonian on the 4X4 cluster; (a) average
density n„(co) with cells of size hco=0. 01. The average density
appears to have a Gaussian shape with residual peaks at co=2n
with n EZ. (b) Cumulative distribution function, N(co). Note
that the stairs due to the residual peaks have now disappeared
in the quasicontinuum of Bohr frequencies although the stairs
were still visible for the 3X3 cluster because of its small size
[see Fig. 5(b)].

FIG. 7. Energy spectrum of the ferromagnetic Heisenberg
Hamiltonian on the 4X4 cluster in the sector with r =8, a
quasimomentum q=(~/2, 0), and a parity u =+1 for the rota-
tion by rr around the x axis [see Eq. (4.8)]. This sector contains
384 states. (a) Average level density n(E) with cells of size
AE =2 and staircase function N(E). (b) Cumulative distribu-
tion function I(S) of the spacings between next-neighboring lev-
els (solid line) compared with the Poisson distribution (short-
dashed line), and with the Wigner surmise distribution charac-
teristic of the orthogonal ensemble (OE) of random matrices
(long-dashed line). (c) Corresponding density P(S) for the level
spacings.
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2D lattice studied here as discussed below.
Another difference comes from the anisotropy of the

interaction, which is best described using the common
knowledge that two magnets tend to align themselves
parallel to the direction joining them. Because of its an-
isotropy, the dipolar Hamiltonian does not commute
with the total angular momentum S„,=g S or with
the Zeeman Hamiltonian. Accordingly, the Hamiltonian
has nonvanishing matrix elements between states with a
different number r of up spins. This property suggests

that the dipolar Hamiltonian has many fewer symmetries
than the Ising and Heisenberg Hamiltonians. We shall
see that this expectation is confirmed by the following de-
tailed analysis.

In the same way, the quantum number r =A'/2+9, „,
previously used is therefore not a good quantum number
for the dipolar Hamiltonian. Let us rewrite the Hamil-
tonian in terms of the spin-flip operators S„- =S"„+iS~.
Since e'„=0 for a 2D lattice, terms with a single spin-

flip operator disappear and we get

[4S'S'„—S+S„—S S„+—3[(e"„)—(e~ ) ](SIS„++SIS„).~..z2 '~ — '

+6ie" e~ (S+S„+—S S„)( . (5.2)

This Hamiltonian contains terms with no or two spin-flip
operators. The spin operators induce transitions of the
types r~r and r—+r+1. Hence the first three terms of

QZ s+
(5.2) preserve the quantum number r while the next two
terms do not. Whereupon, the Hamiltonian induces the
transitions r~r, r+2, i.e., (5.2) has nonvanishing matrix

'h'

elements between states r and r' satisfying the selection
rule r' —r =0,+2. As a direct consequence, the dipolar
Hamiltonian represented in the basis of vectors (2.5)

splits into two blocks: a first one with r even and a
second one with r odd.

As in the previous sections, we consider finite spin
clusters and we construct the cluster Hamiltonian ac-
cording to periodic boundary conditions. Using (2.10)
and (2.11), the cluster Hamiltonian becomes

&d; „„=2 g ( S"J""„S„+S'J"~„S~+S~J ~„S„'
(mn) E C

(5.3)

where the sum extends over all the N(N —1)/2 pairs of
distinct spins in the cluster. The coupling constants are
defined by (2.11) by

y ~mn~ij
mnjij

rmn, it

(5.10)

and

x „,, =m„—n„+ta„+gb„, (5.11)

y „,,- =m, ,
—n, -+ )a +g (5.12)

where a and b are the two vectors defining the periodic
boundary conditions of the cluster (see Secs. IIB and
II C). These sums converge slowly to their limiting
values as

f ~ pdp 1

3
(5.13)

because the lattice is two dimensional. The values of
these constants are given in Table IV for the 4 X 4 clus-
ters.

There remains the question of the coupling between a
spin and its images by the periodic boundary conditions.
Indeed, defining the cluster Hamiltonian by Eqs. (2.10)
and (2.11), there are extra terms with m =a which appear
beyond the terms given in (5.3). Each of them has the

form

JXg
mn

—3J y
mnlij mn~ij3

!i j)+Z- mn ij

[1—3(e

J'"„= g [1—3(e' „(,) )'],J
(; j)gz& mn~ijr

(5.4)

(5.5)

(5.6)

X
(i,j)W(0,0) r mm

~ ij
[ [1—3(e"

~,, ) ](S")'

+ [ I —3(e, , )'](S' )'

+(S') ] . (5.14)

JZZ

mn

with

(i,j ) &z~ mnlijr

r
(l,j}eZ' mnlij

(5.7)

Because we are considering one-half spins, the spin
operators are represented in terms of Pauli matrices, so
that

(S" ) =(S~ ) =(S' ) = 'I, —

~;, =[(x ~;,
. ) +(y ~,

. ) ]'

Xmn~iJXe rnniij
rmn, t,

(5.8)
S S~ +S"S =0,

together with

(5. 17)
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TABLE IV. Coupling constants of the dipolar Hamiltonian on the 4X4 cluster between the spins

m=(0, 0) and n. The other coupling constants are obtained by translational invariance and the period-

ic boundary conditions.

(0,0)
(1,0)
(3,0)
(0,1)
(0',3)
(2,0)
(0,2)
(1,1)

(3,3)
(1,3)
(3,1)

(2,1)

(2,3)
(1,2)

(3,2)

(2,2)

Co"

—0.007
—2.103 62
—2.103 62

0.949 02
0.949 02

—0.53041
0.165 42

—0.258 08
—0.258 08
—0.258 08
—0.258 08
—0.287 34
—0.287 34
—0.01800
—0.01800
—0.12904

&o"

0
0
0
0
0
0
0

—0.492 02
—0.492 02

0.492 02
0.492 02
0
0
0
0
0

—0.007
0.94902
0.949 02

—2.103 62
—2.103 62

0.165 42
—0.53041
—0.258 08
—0.258 08
—0.258 08
—0.258 08
—0.01800
—0.01800
—0.287 34
—0.287 34
—0.129 04

&o'

0.14
1.15461
1.15461
1.154 61
1.154 61
0.364 98
0.364 98
0.516 17
0.516 17
0.516 17
0.516 17
0.305 33
0.305 33
0.305 33
0.305 33
0.258 08

It follows that these self-interactions vanish: & =0.
Let us remark that this property would not hold for clas-
sical spins.

B. Symmetries

We have already discussed the geometric symmetries
of translation, rotations, rejections, and time reversal in
Sec. II D. Contrary to the Heisenberg Hamiltonian, the
dipolar Harniltonian does not commute separately with
the spin and space unitary operators because it is not iso-
tropic. As a consequence, we need to consider the full
unitary operators (2.18).

Because the total spin angular momentum is not a con-
stant of motion of the dipolar Harniltonian, the number r
of spins which are up is not a good quantum number as
for the Heisenberg Hamiltonian. However, the parity of
r remains a good quantum number as explained in Sec.
V A and the time-reversal operator (2.26) provides a first
classification of the energy levels. A very important
difference appears between clusters with an even or an
odd number of spins.

According to the Kramers degeneracy [2] described in
Sec. II D4, the spectrum is at least doubly degenerate if
the number of spins is odd. This result is in relation to
the fact that the dipolar Hamiltonian induces transitions
r' —r =0,+2 which preserve the parity of r. Indeed,
when N is odd, the Hamiltonian matrix separates into
two identical blocks according to the parity of r, as (2.29)
shows, so that the spectrum contains pairs of identical ei-
genvalues. The time-reversal operator (2.26) maps the
sector with r odd onto the r even sector and vice versa.

On the other hand, when r is even, this double degen-
eracy is not present and some eigenvalues may display no
degeneracy at all.

In the following, we shall give a special treatment for
one particular sector of the 4X4 cluster like we did for
the Heisenberg Hamiltonian in Sec. IV E in order to ob-
tain the spacing distribution. Let us summarize here the

symmetry transformations that we shall use. We consid-
er the sector where r is even and where the quasimomen-
tum is q=(n. /2, 0). The corresponding little group C2„ is
generated by the 180' rotation around the x axis and by
the reflection through the xy plane of the lattice. Ac-
cording to the discussion of Sec. II D2, the correspond-
ing unitary operators are given for N =16 spins, respec-
tively, by

~ ~ ~

4 13

(5.18)

and

13 616

E'4

(5.19)

C. Classical extremal states

Before proceeding to the presentation of our numerica1
results, we would like to give a classical analysis of the
lowest- and highest-energy states of the dipolar Hamil-
tonian if we consider that the magnetic dipoles are classi-
cal.

The first operator flips the spins and, therefore, (5.18) can
be used for a further desymrnetrization of the Hamiltoni-
an according to the parity v =+1 under a rotation by
180' around the x axis. However, the second operator
(5.19) is already diagonal with the eigenvalue +1 in the
sector with r even. Hence (5.19) does not lead to any fur-
ther desymrnetrization.
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1. Ciassical configurations of highest energy TABLE V. Energy per spin for the ground and highest, clas-
sical and quantum eigenstates of the dipolar Hamiltonian.

If we want to obtain the highest energy for the interac-
tion between two dipoles, Cluster Ground state Highest state

(S .S„—3e „.S e „.S„) (J)0),J
IllI1

I. 5.20)

we need to put them parallel to each other but perpendic-
ular to the bond unit vector e „. We still have the free-
dom for a global rotation of both spins around the axis of
the bond. However, if we add a third spin in the xy plane
we shall freeze the spins in the z direction, either up or
down. For a two-dimensional xy lattice of spins, the
highest energy is hence reached for the configuration
where all the spins are parallel to the z axis as in fer-
romagnetism. Contrary to the Heisenberg ferromagne-
tism, the configuration cannot be freely rotated because
the dipolar Hamiltonian is not isotropic. As a conse-
quence, the dipolar spin waves are not excitations of
Goldstone type. Indeed, a calculation of the frequency
spectrum of these dipolar spin waves confirms the non-

vanishing of the frequency when q~0. On the contrary„
there is a large gap which appears in the excitation spec-
trum. We attribute this peculiarity to the high rigidity of
this configuration with parallel spins.

Whether the gap between the highest quantum eigen-
state and the rest of the energy spectrum persists in the
limit N ~ ~ is an open question.

2. Classical configurations of lowest energy

Two magnetic dipoles minimize their interaction ener-

gy by their alignment parallel to the bond. When more
than two dipoles are considered the problem becomes
more complicated.

Simulations with the classical dipolar Hamiltonian
have shown that the classical ground configuration is de-

generate. The configuration repeats itself with a primi-
tive lattice cell containing four spins (contrary to the
Neel state with a two-spin cell). The ground classical
states are depicted in Fig. 8. The angle 0 can be modified

without changing the energy. When 0=0', we find rows
of parallel spins alternatively pointing toward positive
and negative x's. When 0=45', the spins are either face
or back to each other. We give in Table V the energies

per spin of the extreme eigenstates for the infinite lattice.

(a)

FIG. 8. Spin configurations of the classical ground states for
the dipolar Harniltonian on a two-dimensional square lattice.
(a) Primitive lattice cell showing how the orientations of the
four spins change with the angle 0. (b) The configuration when

0=0', (c) when 0=45.

classical
quantum 2X2

6

3X3
10
10bis

—1.274 72
—2.021 33
-- 1.696 42
—2.11624
—1.543 12
-- 1.518 93
—1.522 53
-- 2.3

2.258 41
3.190 24
2.61024
2 605 94
2.54/ 35

.559 94
2.525 2H

On the other hand, we see in Table V that the quantum
fluctuations have the virtue of lowering even further the
ground energy. The value we obtained for the infinite lat-
tice has been extrapolated from the ground-state energies
of the 2 X 2 and 8 clusters. Indeed, only these clusters are
compatible with the classical ground configuration, in

particular, because their number of spins is a multiple of
the number 4 of spins in the primitive lattice cell of Fig.
8. Because of the smallness of the clusters used for the
extrapolation, there is a large uncertainty on the corre-
sponding asymptotic value shown in Table V.

D. EA'ect of a magnetic field

The behavior of the energy levels under an external
magnetic field reveals the nature of the eigenstates of the
system. In this regard, we numerically studied the 2X2
and the 3 X 3 clusters.

In the absence of magnetic field, all the degeneracies
can be lifted in the spectrum of the 2X2 cluster with the
help of the quantum numbers of translation and of flip

parity. It turns out that all the eigenstates q=0 belong to
the completely symmetric irreducible representation 3,
of D~ [14]. Because the number of spins X =4 is even,
the sectors with r even (r =0,2, 4) and odd (r =1,3) can-
not be the image of each other. The ground state as well

as the highest-energy state belong to the sector with r
even.

The expectation that the ground state is of the antifer-
romagnetic type (while the highest state is ferromagnetic)
is confirmed by the behavior of the spectrum when an
external magnetic field is switched on. Figure 9 displays
the variations in the shape of the spectrum of the 2X2
cluster when the magnetic field is increased parallel to the
z axis. The ground state is insensitive to the magnetic
field in that case, as expected for an antiferrornagnetic
state. However, the highest energy undergoes a rapid
variation. At high values of the magnetic field, the Zee-
man interaction dominates the dipolar interaction.
Hence the spectrum splits into five groups of levels corre-
sponding to the five projections of a total spin S„,=2 on
the direction of the magnetic field 8 which is used as
quantization axis.

Figure 10 is the same as Fig. 9 for the 3X3 cluster.
The density of levels is now much higher than previously.
Here again, the ground state has a very weak sensitivity
to the external magnetic field contrary to the highest
state. At high magnetic fields, the spectrum starts to
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FIG. 11. Energy spectrum of the dipolar Hamiltonian on the
3 X 3 square cluster. Upper part: degeneracies g which take the
values g =2 and 8. Lower part: staircase function N(E). Note
the highest level which is separated from the rest of the spec-
trum.

yH

FIG. 9. Dipolar Hamiltonian for the 2X2 cluster with the
Zeeman interaction with an external magnetic field H=H, e':
dependency of the energy levels on H, . Note that the ground
level (of antiferromagnetic character) remains constant while
the highest level (of ferromagnetic character) is very sensitive.

We carried out a systematic numerical calculation of
the 6, 8, 3X3, 10, and 10bis spin clusters (see Table I).

40

30— s

s

20- '

split under the Zeeman interaction. Because the magnet-
ic field does not break the translational invariance,
several independent spectra are superposed in Fig. 10.
Therefore the observation of anticrossing is difficult.
Nevertheless, a closer inspection of this figure reveals
Wigner repulsions as observed in other contexts [4,23,24).

E. Energy spectrum

We present in Figs. 11-13the energy spectra of the 3 X 3,
10, and 10bis spin clusters.

As noted in Sec. V B, the degeneracies are affected by
the number of spins. If this phenomenon was hidden in
the Ising and Heisenberg systems because of the extra
dynamical symmetries, it becomes apparent in the dipolar
system. When the number of spins is odd as in the 3 X3
cluster, Kramers degeneracy applies and all the degenera-
cies are multiples of 2. It appears that the degeneracies
in each sector with fixed quasimomentum q are always
equal to 2. As a consequence of the fourfold symmetry of
the lattice, the eigenvalues in the sector q=0 have a de-
generacy 2 while the other sectors with q%0 combine to
give a degeneracy 8 to all the other eigenvalues. The
spectrum of the degeneracies is shown in the upper part
of Fig. 11 while the lower part shows the corresponding
staircase function.

On the contrary, some degeneracies may be equal to
one in the 10bis and 10 clusters, as seen in Figs. 12 and
13. We note that the degeneracies vary from one cluster
to the other according to the symmetries of the cluster
determined by the periodic boundary conditions. The en-

ergy spectrum of the 10bis cluster presents degeneracies

g =1, 2, and 4. On the other hand, the degeneracies only
take the values g =1, and 2 in the 10 cluster because this
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FICr. 10. Same as Fig. 9 for the dipolar 3 X 3 cluster.
FIG. 12. Same as Fig. 11 for the dipolar 10bis cluster. Here,

the degeneracies take the values g = 1, 2, and 4.
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FIG. 13. Same as Fig. 11 for the dipolar 10 cluster. Here, the
degeneracies take the values g = 1 and 2, which shows that the
10 cluster has the lowest geometric symmetry of the three clus-
ters of Figs. 11-13.

3~1()- --—

. (b)

latter is less symmetric than the 10bis cluster.
The fact that the degeneracies are small numbers

rejecting the geometric symmetries of the clusters al-
ready suggests that the dipolar Hamiltonian can be com-
pletely desymmetrized by those geometric symmetries
contrary to the Heisenberg Hamiltonian.

We also observe that the highest energy is we11 separat-
ed from the rest of the spectrum as discussed in Sec.
V C 1. In relation to this result, the energy spectrum ap-
pears to be more dispersed at high energy than near the
ground level. We see in Fig. 14 that the rescaled staircase
functions of different clusters converge to a limiting func-
tion characterizing the lattice so that the aforementioned
property appears to be general.

0
-30 -20 0 10 20 3()

FIG. 15. Spectrum of the Bohr frequencies for the dipolar
Hamiltonian on the 3 X 3 cluster; (a) average density n„(co) with

cells of size Ace=0. 1. We remark that there is only one residual

peak at co=0 on top of the background. (b) Cumulative distri-
bution function, X(co)= I dc''n (co'), with the (minute) cor-

responding stair at ~=0. Compare with Figs. 5 and 6.

F. Bohr frequencies

As for the Heisenberg Hamiltonian, we computed the
density of Bohr frequencies for the 3 X 3 cluster accord-
ing to Eq. (2.35). The density is shown in Fig. 15 and can
be approximated by the Gaussian as for the Heisenberg
Hamiltonian [see Eq. (4.7)]. The average density of Bohr
frequencies is therefore rather insensitive to the details of

1. I I I 1
]

1 I I I ~ I ~~
[ I I &

)
I t t

0.Y)

C).A

FIG. 14. Rescaled staircase functions for the dipolar 3 X 3,
10bis, and 10 clusters. The horizontal axis gives the energy per
spin, E/X (N is the number of spins), whereas the vertical axis
gives the staircase function divided by the total number 2 of
states. Convergence is observed as well as a larger dispersion at
high energy than near the ground level.

the system contrary to the dimension of the null space.
The null space is at the origin of the peak appearing in

Fig. 15(a) at co=0. Contrary to the Heisenberg Hainil-
tonian, there are no further residual peaks at other fre-
quencies as they appeared in Figs. 5(a) and 6(a).

G. Spacing distribution

In order to get further evidence about the absence of
extra constants of motion, we have calculated the spacing
distribution for several large sectors of the 4X4 cluster
completely desymmetrized according to the known syrn-
metries. We considered the sectors of quasimomentum
q=(m /2, 0), with an even or odd number r of up spins,
and of positive or negative parity U =+1 for the rotation
by 180' around the x axis:

T " iz)=. " iE),
U, „., IF., &=ulE, &

We have first computed the average level density
defined in Eq. (2.37). The spacings are then calculated
according to Eq. (2.38). The spacing cumulative function
and density are then obtained by Eqs. (2.40) and (2.39).
These functions are plotted in Figs. 16—18 in comparison
with the corresponding functions for the Poisson distri-
bution (2.41) and the surmises (2.42) —(2.44) of the spacing
distributions of the orthogonal, unitary, and symplectic
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H. Constants of motion

We mentioned that the geometric symmetries of the
lattice and of time reversal are fully desymmetrizing the
dipolar Hamiltonian. Furthermore, the observation of a

60 i i & I

(a)

I I I \
J

I 1 I
/

~ ~ ~ ~
/

I I ~ ~ 1200

40

ensembles [2,3]. As a matter of fact, the spacing distribu-
tion prove to follow the distribution of the orthogonal en-
semble. This result suggests that the sector is here fully
desymmetrized and that there are no further constants of
motion in the absence of an external magnetic field.

Wigner spacing distribution after the desymmetrization
suggests the absence of further constants of motion
beyond those that are coming from the geometry. In
Table VI, we give the dimensions of the null space of the
Liouvillian (2.36) for different clusters in order to have an
estimation of the constants of motion and to compare
with the preceding Hamiltonians. We see in Figs. 19 and
20 that the dipolar Hamiltonian has the lowest number of
symmetries of the three Hamiltonians. We think that it
is relevant to establish a parallelism between this observa-
tion and the experimental observation that the spin sys-
tems of nuclear magnetism have similarities with a liquid
[25]. It seems that this similarity not only concerns the
property of strong coupling between the spins but also a
type of static randomness that the observation of the
Wigner spacing suggests in nuclear magnetism.
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FIG. 16. Energy spectrum of the dipolar Hamiltonian on the
4X4 cluster in the sector with quasimomentum q=(n. /2, 0),r
even, and a parity U =+ 1 for the rotation by m around the x
axis [see Eq. (5.21)]. This sector contains 1000 states. (a) Aver-
age level density n(E) with cells of size hE =2 and staircase
function N(E). (b) Cumulative distribution function I(S) of the
spacings between next-neighboring levels (solid line) compared
with the Poisson distribution, and the Wigner surmise distribu-
tions characteristic of the orthogonal (OE), unitary (UE), and
symplectic (SE) ensembles of random matrices. (c) Correspond-
ing density P(S) for the level spacings (solid line) compared
with the Poisson density (long-dashed line), and the OE Wigner
surmise (short-dashed line).

0.5

0
0

FIG. 17. Same as Fig. 16 for the sector with quasimomentum
q=(~/2, 0),r odd, and a parity U =+1,containing 1024 states.
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TABLE VI. Dimensions of the null space of the Liouvillian for various clusters of the Ising, Heisen-
berg, and dipolar Hamiltonians [see Eq. l2.36)].

(number of
spins)

2X2
6
8

3X3
10bis
10
12
4X4

2N

(total number
of states)

(16)
(64)

(256)
(512)

(1 024)
(1 024)
(4 096)

(65 536)

{total number of
frequencies)

256
4 096

65 536
262 144

1 048 576
1 048 576

16 777 216
4 294 967 296

do(Ã
Ising

152
1 496

26 904
72 976

289 008
297 128

4033 440
885 216 280

do(X)
Heisenberg

84
900

12 228
14688
31 170
69 870
74 100

6 580000'

d()(X)
Dipolar

26
104
710

3 712
3 576
1 840

'There is an error of +7500 on this dimension for the 4X4 cluster because of the limited precision of
our numerical method of diagonalization. It turns out that the spacing between a small set of energy
levels is smaller than the truncation error —10 in simple precision, Therefore it was not possible to
know if an exact degeneracy occurs for this small set of levels.
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In this paper, we carried out a comparative study of
the spectral properties of three 2D quantum spin Hamil-
tonians. Results have been obtained about the number of
constants of motion of these systems as well as about the
statistics of the energy levels.

The number of possible constants of motion is evalu-
ated by the dimension of the null space of the von Neu-
mann superoperator ruling the time evolution of the den-

sity operator. The null space dimension is also equal to
the sum of the squares of the level degeneracies [see Eq.
(2.36)]. Among the constants of motion, we find the con-
stants induced by the geometric translational and rota-
tional symmetries of the square lattice. However, the
comparison of different Hamiltonians defined on the same
spin cluster allows us to draw definite conclusions on the
relative number of constants of motion.

Comparing the Ising, the Heisenberg, and the dipolar
Hamiltonians shows without ambiguity that they are or-

Heisenberg

10
4

I « i t i i & I i & l

10 12 14 16 !8
N

FIG. 18. Same as Fig. 16 for the sector with quasimomenturn

q = (n./2, 0), r even, and a parity U = —1, containing 1032 states.

FIG. 19. Dimension (2.36) of the null space of the Liouvillian
for the Ising (circles), the Heisenberg (triangles), and the dipolar
(squares) Hamiltonians versus the number of spins 2V in the clus-
ter. The solid line shows the total dimension of the Liouvillian
superspace 4 . The dashed lines are drawn to guide the eyes.
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dered according to

' ISing HeiSenberg diPolar &
~ jV (6.1)

10 ~
I

~

~ .
Ising

with respect to their integrability properties, as seen in
Figs. 19 and 20.

The first two systems present very high degeneracies
which persist even after a complete desymmetrization of
the Hamiltonian using the geometric symmetries. In the
case of the 2D Heisenberg Hamiltonian, the preceding
conclusion is supported by the Poisson distribution ob-
tained for the spacings between the next-neighboring en-

ergy levels in one of the desymmetrized sectors. This ob-
servation is pointing to the existence of extra dynamical
symmetries in the 2D spin- —,

' Heisenberg system. Such a
result would not be surprising for the 1D Heisenberg
chain, which is known to be completely integrable with
an infinite hierarchy of constants of motion [11,12]. This
regularity does not seem to be totally broken in the two-
dimensional Heisenberg system where a partial integra-
bility remains.

On the other hand, the dipolar Hamiltonian appears to
be a more complex system. Already, the dipolar interac-
tion marks the difference by decreasing like 1/p and by
coupling all the spins together with coefficients which are
not simple integers, contrary to the Ising and Heisenberg
Hamiltonians. Our numerical study shows that the dipo-
lar Hamiltonian does not have extra dynamical sym-
metries beyond the geometric symmetries of the lattice.
The degeneracies of the energy levels are solely deter-
mined by the translational and rotational symmetry
groups. In this way, the number of constants of motion
reaches a minimum which has a value much lower than
for the two other systems. Further evidence for the ab-
sence of extra dynamical symmetries is provided by our
observation of a statistics of energy levels which is
characteristic of orthogonal ensembles of random ma-
trices [2,5]. Indeed, we have observed a spacing distribu-
tion of Wigner type in a sector of the state space fully
desymmetrized by the geometric symmetries, as seen in
Figs. 16-18.

From a physical point of view, we think that this type
of static spectral randomness is related to the known
property of the dipolar system to behave like a liquid due
to its strong coupling between the spins [25]. Since the
dipolar Hamiltonian is the fundamental Hamiltonian of
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FIG. 20. Ratio of the null space dimension (2.36) of the
Liouvillian over the total dimension of the superspace for the Is-
ing (circles), the Heisenberg (triangles), and the dipolar (squares)
Hamiltonians versus the number of spins N in the cluster.
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nuclear magnetism in solid insulators [9], we believe that
our results are particularly relevant in this context where
it may provide a new perspective on several static or
dynamical properties. In particular, nuclear magnetic
susceptibility and higher moments may be affected by the
mechanism described by Nakamura and Thomas [26].
Indeed, the statistics of the second derivatives of the en-
ergy levels is modified in the presence of Wigner repul-
sion, as shown elsewhere [23,24].

We hope to report on further properties of these sys-
tems in the future.
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