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Electron trajectories in a helical free-electron laser with an axial guide field
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Electronic trajectories in a free-electron laser consisting of a helical wiggler magnetic field and a uni-

form guide field are studied using a three-dimensional approach. It is well known that, to any orbit,
there corresponds two conserved quantities. One is the energy, while the second, which we call P„ is a

consequence of the screw-displacement symmetry of the wiggler field. Depending on the value of P„ the
Hamiltonian, after a canonical transformation, may be shown to have a fixed point which represents
steady motion on an axially centered helical path of the same pitch as the wiggler. Expanding the Ham-

iltonian about the fixed point and retaining only quadratic terms, we obtain an approximate description
of the motion in terms of two harmonic oscillators whose characteristic frequencies and normal modes
are determined by the value of P, . Despite the simplicity of the dynamics, the nonlinear relations which
link our oscillator variables to the Cartesian coordinates and velocities provide a detailed description of
the complex behavior of the latter. Provided that the magnitudes of the oscillator amplitudes are not too
large, our method yields trajectories in close agreement with those computed numerically. Among the
features encountered is that in both group I, and with reversed-field operation, one of the frequencies is

negative, while in group-II operation a repulsion of the frequencies at a pseudocrossing leads to highly

perturbed trajectories when the wiggler frequency is approximately half the cyclotron frequency. In

favorable circumstances, which we specify, the transverse motion is accurately described by a superposi-
tion of three circular motions; one corresponds to the fixed point, the second to the cyclotronic motion,
while the third is a very slow motion of the center of gyration. The axial velocity then shows ripple at
approximately the difference of cyclotron and wiggler frequencies. The spontaneous-forward-emission

spectrum peaks at the Lorentz-boosted wiggler and cyclotron frequencies. Under less favorable cir-
cumstances, the motion we predict is more complicated, and the resulting forward-emission spectrum
rather complex.

PACS number(s): 41.60.Cr

I. INTRODUCTION

A commonly used configuration for a free-electron
laser (FEL) consists of a helicoidally wound bifilar coil,
which provides an on-axis wiggler magnetic field of a
given handedness or chirality, and whose step size we
denote by I, . A solenoid, which coaxially encloses the
wiggler coil, provides, in addition, a uniform axial guide

magnetic field Bo in the z direction. In the limit in which
the magnets are infinitely long, the trajectory of an elec-
tron in the resulting field is described by two conserved
quantities. One is the energy, due to the static nature of
the magnetic field, while the second, which we call P, (it
is not simply the z component of momentum), is related
to the invariance under a combined rotation of angle b,P
about the axis of symmetry and a translation of length
Az =A.„AQ/2~ along the axis of symmetry. To the best
of our knowledge, no third conserved quantity has been
found; hence the problem is not exactly integrable. Con-
siderable numerical and analytic effort has been devoted
to the study of the trajectories, and a large amount of ex-
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perimental results on such FEL's has been accumulated
[1—5].

A simplified treatment exists in which the inevitable
dependence of the wiggler field on the transverse spatial
variables is neglected [the one-dimensional (1D) approxi-
mation]. In this approximation the problem becomes ex-

actly integrable in terms of elliptic functions, but interest
has mainly centered on the particular case of steady
motion, where the electron's orbit is a helix whose pitch
is the same as that of the wiggler field, and for which the
longitudinal and transverse velocities v, and v~ are con-
stant. These velocities are constrained by the relation

yU, fL„

fyv, k, —n, f

'

where y is the electron's energy in units of mc, where m

is the mass of the electroxi, k =2m/X is the wiggler
wave number, and Q„and Oo denote the nonrelativistic
cyclotron frequencies eB /mc and eBo/mc, respective1y.
If the longitudinal velocity could be made to approach
the value Qo/(yk ), then the transverse velocity would

be very large, a favorable situation called the gyroreso-
nance. The radius p of the helical orbit is related to the
velocities by k p=U&/v, .

Although the 1D approximation provides insight, a 3D
treatment is required to investigate the nature of the
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gyroresonance. In contrast to the 1D approximation, the
system is not exactly integrable, but again a particular
case of steady helical motion does exist. However, the
symmetry axis of these helical orbits, which may be freely
chosen in the 1D approximation, must now coincide with
the axis of the wiggler field. In Ref. [1], Freund and
Ganguly have presented a thorough description of these
orbits, and of the perturbed trajectories which remain in
their vicinities. They establish the essential relation be-
tween the longitudinal and transverse velocities which re-
places Eq. (1). Writing ~A,

~
=vi/v„ they find

yv, k =00—20~(1+1, )I&(A,),
where II denotes the modified Bessel function of order 1.
Positive A, corresponds to trajectories of group II, with
v, (Qo/(yk ), whereas negative 1, corresponds to trajec-
tories of group I, with v, )Qv/(yk ). If one expands the
right-hand side to lowest order in A, , Eq. (1) is recovered.
One notes also that if A, is sufficiently small and positive,
v, becomes negative, or antiparallel to the axial field.
This is the reversed-field configuration, which has been
studied both theoretically and experimentally.

Our interest in this problem was kindled by some unex-
pected results found in a numerical study of the electron
trajectories in such a magnetic field. The study con-
cerned the propagation of electrons of kinetic energy 1.5
MeV in a wiggler of step size 12 cm, with axial fields in
the range 0.5—1.2 T, and wiggler fields typically an order
of magnitude smaller [6]. For some values of the magnet-
ic fields, the numerically generated trajectories resembled
the sought-for-helical orbits, with the longitudinal veloci-
ty showing only a small (1%) ripple and the transverse
Cartesian velocities oscillating regularly with the wiggler
frequency k v, . However, for other choices of the fields,
trajectories which displayed significant (10%) fluctua-
tions in the longitudinal velocity as well as irregular oscil-
lations in the transverse velocities were observed. Be-
cause the successful generation of radiation requires
coherence between the electron's orbit and a circularly
polarized electromagnetic wave, such large fluctuations
in longitudinal velocity are highly undesirable. In order
to understand their origin, we have recast the problem in
a Hamiltonian formalism, with the double aim of elim-
inating the degree of freedom corresponding to the con-
served quantity P, related to the screw-displacement
symmetry, and of utilizing the freedom to make canoni-
cal transformations which simplify the Hamiltonian. The
resulting Hamiltonian, which we call H, obtained after
some manipulations, has the remarkable property of pos-
sessing a fixed point. By this, we mean a point in phase
space where the four derivatives of H with respect to the
generalized momenta and coordinates are zero. If the
electron were exactly at the fixed point, it would stay
there indefinitely, but this fixed point in phase space does
not correspond to an immobile electron in real space. In-
stead, it is just the ideal helical motion that all experi-
ments aim to realize. %'e then perform a Taylor-series
expansion of the Hamiltonian around the fixed point,
keeping only second-order terms. The resulting truncat-
ed Hamiltonian is then diagonalized by a final canonical

transformation, yielding two uncoupled harmonic oscilla-
tors. The resulting system, although not exact, is integra-
ble, and does provide a satisfactory description of those
trajectories that are not too far away from the ideal or-
bits.

Since our approach essentially involves perturbing the
ideal helical motion, it is appropriate to compare our re-
sults to those presented by Freund and Ganguly in Ref.
[1]. First we note that our expression for the squares of
the frequencies of the oscillators agrees precisely with
their s, thereby confirming their results. In addition, we
determine the signs of the frequencies, one of which is
negative in group-I and group-II reversed-field operation.
Negative frequencies mean that increasing the corre-
sponding amplitude lowers the energy, a rather counter-
intuitive result. In our approach, it is clear that the key
role in calculating the orbit is played by the conserved
quantity we call P, . Given the five independent initial
conditions (e.g., the values of x, y, and the three com-
ponents of velocity at z =0), we extract the value of I',
that characterizes the true trajectory throughout its
length. Using only this quantity, the appropriate fixed
point is determined, and the corresponding eigenfrequen-
cies and eigenvectors of the oscillators are computed.
The four remaining initial conditions then provide the in-
itial magnitudes and phases of our oscillator amplitudes.
The magnitudes are conserved quantities along our ap-
proximate trajectories, the phases are linear functions of
time, and the position and velocity of the electron may be
computed easily at any time. The price we must pay is
that the true electron energy, as calculated from the ini-
tial velocity, does not precisely agree with that of the
truncated Hamiltonian. If the discrepancy between the
true energy and our approximate energy is small, and it is
easily computed, our calculated trajectories remain quite
close to those generated numerically. The motion we
compute is somewhat more complicated than that pre-
dicted in the approach of Ref. [1],essentially because we

keep track of terms which are second order in the pertur-
bation. After transforming back to ordinary position and
velocity, we find second-order corrections that behave as
sums and differences of our oscillator frequencies. Such
behavior is often clearly visible in the numerically calcu-
lated trajectories.

Using the trajectories we compute in our model, it is
straightforward to calculate the spontaneous-emission
spectrum (in the z direction) for a given electron, exactly
in the case of free space (see the Appendix), and approxi-
mately for the case of emission in a cylindrical wave
guide [7]. According to Madey's theorem [8], the small-
signal gain is related to the derivative of the
spontaneous-emission spectrum. In contrast to the quasi-
monochromatic spectrum of the ideal helical motion, our
model predicts in general a rather complex-spectrum,
caused by the presence of the oscillations in the trans-
verse variables as well as by the nonuniform longitudinal
velocity.

Finally, our approach provides a simple explanation
for the irregular motion occasionally seen in the numeri-
cal trajectories, and which motivated our investigation.
The phenomenon occurs when the two eigenfrequencies
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attempt to "cross" one another as some parameter, e.g.,
the axial field, is varied. As is well known from quantum
mechanics, the frequencies "repel" each other, and the
eigenvectors display rapid variation when this occurs. A
certain number of quantities which elsewhere behave
quite smoothly exhibit violent variations, which consider-
ably perturb the trajectories. This only occurs for the
group-II trajectories in the terminology of Ref. [1],but it
does occur in a region sufficiently far away from the
well-known instabilities to be of interest for FEL opera-
tion. The existence of this perturbed region, and the cor-
responding interdiction to operate the FEL nearby, is the
principal result of this investigation.

The approximation we present is applicable to both the
group-I and group-II modes discussed in Ref. [1], and
also to the reversed-field mode of operation that has re-
cently been studied experimentally [4] and theoretically
[9]. We have not considered the eff'ects of keeping cubic
terms in the expansion of the Hamiltonian. Such terms
will be important whenever the oscillator amplitudes are
large, and their presence would produce such effects as
amplitude-dependent frequency shifts, mode locking, and
other such complications displayed by nonlinear coupled
oscillators.

Even when the amplitudes are not large, the cubic and
higher-order terms may become troublesome if the ratio
of the frequencies approaches a rational fraction of
"small integers" [10]. Our method does allow us to lo-
cate these potentially dangerous situations, in particular,
the ratio 2:1. When the frequencies are approximately in
this ratio, some neglected cubic terms will be almost con-
stant in time, and these may cause the oscillator ampli-
tudes to vary with time. If this occurs, our simple picture
of fixed amplitude oscillation is not valid.

The paper is organized as follows. The Hamiltonian
formalism and our dynamical variables are introduced in
Sec. II. The conditions under which fixed points exist
and their relation to the conserved quantity I', are dis-
cussed in Sec. III. In Sec. IV we present the truncated
quadratic Hamiltonian, illustrate the behavior of the am-
plitudes and frequencies, and give explicit expressions for
the position and velocity as functions of time. In Sec. V
we show how our results, when some approximations are
valid, provide a simple description of the electronic or-
bits. Section VI presents our conclusions. Details of the
computation of the oscillator amplitudes and the spec-
trum of spontaneous-forward-direction emission are
given in the Appendix. Preliminary results of this inves-
tigation may be found in the dissertation of one of us
(J.L.R.), together with a detailed comparison of orbits
computed using our method and standard numerical in-
tegration [11].

II. HAMILTONIAN FORMALISM FOR THE HELICAL
WIGGLER WITH AN AXIAL MAGNETIC FIELD

A. Magnetic Seld and vector potential

where the components are given by [12]

8 =28 I I(k„,p)sin(P —k„,z),
8& =28 [I,(k„,p)/k„, p]cos(P —k z ),
B,=BO —28 I, (k p)cos(P —k z) .

In these expressions I& denotes the modified Bessel func-
tion of order 1, I', its derivative, Bo is the constant axial
guide field, B is the on-axis wiggler magnetic field, and

k„, is related to the wiggler period A, by k„, =2m/k . By
choosing appropriately the origin and the direction of the
z axis, one ~ay, without loss of generality, choose B„and
Bo to be positive. The chirality or handedness of the
wiggler field is determined by the sign of k„, which we

suppose positive. The magnetic field may be written as
the curl of the vector potential as follows:

B(x)=VX A(x),

and one may verify that the following vector potential
yields the correct magnetic field:

(6a)

A, ,
= —2(8 /k )[I,(k„p)/k„p]sin(P —k„,z), (6b)

3&=Bop/2 2(B„/k —)I', (k p)cos(P —k z) . (6c)

Because the vector potential has z component zero, one

may succinctly represent it in terms of the complex quan-

tity

A, +i A =i[8&(x+iy )/2 —(8 /k„)e "' J],
where the function of p, P, z we call J is specified by

J=Io(k„p)+I2(k,„p)e

where Io and I2 denote modified Bessel functions of order
0 and 2, respectively. Note that if the quantity (P —k z)
has the value 0 (modulo vr), then J is real and has the pos-
itive value 2II (k p).

B. Hamiltonian description

The Hamiltonian for a particle of charge —e is ob-
tained from the free-particle Hamiltonian by the usual
substitution [13]

p~p+e A(x)/c,

where c is the speed of light. One obtains the Hamiltoni-

H(p, x)=[m c +[cp+e A(x)] ]'

where p is the canonical momentum, and m is the mass
of the charged particle. The standard equations then ap-

ply:

The magnetic field may be written as (in cylindrical
coordinates p, P,z)

8(x)=B,e, +B e +B&ez,
where x, , U,-, and p; denote the Cartesian coordinates of
position, velocity, and canonical momentum, respective-
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ly, and t denotes time. Explicitly, one finds for the veloci-
ties

The usual variables are then related to a and b as fol-
lows:

dz dH c P
dt Bp, H (1 la)

x+iy =(2/Qo)'~ (a+ib*)e Ik

p„+ip =imc(QO/2)'~ (a i—b')e

(18a)

(18b)
d(x+iy )

dt
+' H

Bp» Bpy

=—[c(p„+ip~ )+e ( A„+iA )], (1 lb)

where the dimensionless nonrelativistic cyclotron fre-
quency

Qo=eBO/mc k

which may also be written in terms of P; as

cpz

H (12a)

has been introduced. Given the values of the transverse
position and momenta at a fixed value of z, one may use
these expressions to obtain initial values of a and b
From Eq. (18a) it follows that

P„+iI3~=[c(p„+ip )+e(A„+iA )]/H,
where P; =v, /c.

(12b) P
—z =arg(a+ib'),

k p=p=(QO/2) '~ mod(a+ib'),

(20a)

(20b)

C. Dimensionless variables and a canonical transformation

If we introduce dimensionless variables as follows:

B=H/mc, P;=p;Imc, x, =k x;, t=ck t,

k

2eBom

eBO
p~ ip„+ — (x +iy ) e

then Hamilton's equations remain valid for the careted
variables. We then introduce two new dimensionless
complex dynamical variables a and b, defined in terms of
the canonical momenta and position variables by [14]

1/2

J=ID(p)+I2(p) a' ib— (21)

and notice that it depends only on a and b. We may also
write

p„+ip~+ —(A„+iA~)=i cm[(2Q )0'~ a QJ—]e~,
c

(22)

where arg and mod denote the argument and the
modulus of a complex number, and p is the dimensionless
radial coordinate. Using these relations one may write
the complex quantity J as

k

2eBom

1/2
eBOp„ip +i —(x iy) e-
2c

(13a)
where Q =eB /(rnc k ).

Hamilton's equations of motion for the dimensionless
variables may now be written as

The Poisson brackets of these variables are given by

(13b) aP
dt Bz

(23a)

(23b)[a,a'] =[b,b'] =ik /mc,

[a,b] = [a,b*]=0,
[a,P, }= ik alrnc- ,

Ib,P, ]=ik blmc,

(14a)

(14b) where the dimensionless Hamiltonian is

(14c)

(14d)
+2Qo~a —Q~ J/(2QO)' (24)

which shows that they are not dynamically independent
of the z component of momentum. However, one may
define a new momentum

such that

[a,P, ] = [b,P. ] =0, (&6)

while

[z,P, ] =k /mc .

The new variables are thus obtained by a canonical trans-
formation from the original Cartesian position and
momentum variables.

The function J depends only on the complex variables a
and b, which means that the Hamiltonian is independent
of the variable z~ hence P, is a conserved quantity. It is
identical, except for a factor mc, to the conserved quanti-
ty introduced by Freund and Ganguly in Ref. [1]. The
origin of this conserved quantity is the screw-
displacement symmetry of the helical magnetic field. A
rotation about the z axis combined with a translation
along the axis such that P —k„z is unchanged is clearly a
symmetry of the Hamiltonian. As we shall show, in our
approach this conserved quantity plays a crucial role in
the calculation of the trajectories.

The quantity dz!dt, which is simply P„may be then
written as
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=(P.—l~ I'+ Ib I')/&, (25)
aH aB
af

'
Bbf

(29)

which illustrates how the longitudinal velocity depends
on the moduli of the dynamical variables a and b.

D. Integrability of the one-dimensional approximation

It is worth noting that the 1D approximation can easi-
ly be obtained in the present treatment. If, in the Hamil-
tonian, the function J is replaced by the first term in its
Taylor-series expansion, J= 1, one finds

A»(a, b) = [1+[P,—)a)'+ [b(']'

+2II ~g
—II /(2g )'~

~

]'~ (26)

(27)

which is independent of the phase of the complex dynam-
ical variable b. Consequently, the magnitude of b is con-
served, and one can even show that be ' is a conserved
complex quantity. Writing the variable a in the form
~a ~e'", one may solve for the phase il as a function of the
modulus, obtaining

1+(P,—I~ I'+ Ib I')'+2IIOI~ I'+&'. —&1D

One way to solve the problem is to notice that the condi-
tion

aA aII
Oaf Bbf

(30)

and then to verify that Eq. (30) is satisfied if

bf =Q„(800) '~
pf [3I,(pf }+I3(pf)], (32)

where I, and I3 denote modified Bessel functions. Note
that bf is an even function of pf. The quantity ~pf ~

is the
scaled radius, i.e., k p, of the ideal helical trajectory.

The next step is to determine the value of the parame-
ter pf. To accomplish this, one replaces af and bf using

Eqs. (31) and (32), and imposes

does not depend on the value of the conserved quantity
P„and thus defines a curve in the (af, bf ) plane which

depends only on the magnetic-field parameters. The sim-

plest way to describe this curve is to specify af and bf in

terms of a real parameter pf, as follows from Eq. (20b},

af +bf =(Qo/2)' pf, (31)

and then insert this into Hamilton's equation

d ~a
2 ahiD —[0 la l(2IIO)' sing]

dt (}'9
(28)

(33}

which yields, after using some identities among Bessel
functions, the relation

It follows from Eq. (27) that the right-hand side of Eq.
(28) is the square root of a quartic polynomial in the vari-
able ~a . A discussion of the explicit integration of this
equation in terms of the Weierstrassian elliptic functions
is given, for example, by Whittaker and Watson [15].
The 1D approximation is thus exactly integrable, in con-
trast to the full 3D Hamiltonian. This fact has been
known for some time [16],but we find the derivation us-

ing our formalism rather simple.

III. FIXED POINT OF THE HAMEI. TONIAN

The task of determining the fixed point for a given
value of P, is simplified by the fact that our Hamiltonian
is invariant under the discrete transformation

a~a*, b~ —b' .

From this, it follows that the quantities (a —a *
) and

(b+b*) can occur in the Taylor-series expansion of the
Hamiltonian only in the combinations (a —a ),
(b+b },and [(a —a )(b+b*)]. If a is real and b is
imaginary, the first derivatives with respect to (a —a )

and (b+b') are therefore necessarily zero. This leaves
us with the much simpler problem of finding two real
quantities af and bf, where a =af and b =Ebf, such that
the first derivatives of 8 with respect to (a+a*) and
(b b*) vanish. We thu—s consider the Hamiltonian to be
a function of these two real variables af and bf, and im-

pose the vanishing of both derivatives

P, —af+bf =00 2Q (1+—pf )I, (pf) . (34)

The left-hand side of this equation is the scaled z corn-

ponent of linear momentum at the fixed point, which may
also be written as (yp, )f. If we allow for the fact that

the variable pf may have either sign, we recognize our

Eq. (2), which was established in Ref. [1]. They divided

the steady motion trajectories into two groups: group I,
containing those with p, )Qo/y, and group II, contain-

ing those with p, & Qo/y. Since the modified Bessel func-

tion I, is positive for positive arguments and negative for

negative arguments, we see that the groups I and II cor-
respond to negative and positive values of pf, respective-

ly. In addition, we note that for suSciently small positive
values of p&, the right-hand side becomes negative, which

means that the longitudinal velocity is opposite to the
direction of the axial guide field.

In preference to Eq. (34) we shall use

P, =GO(1+pf /2)

—0 [(4pf +4+3pf )I, (pf )+pfIi(pf )]/2, (35)

which relates the conserved quantity P, to the parameter

pf. This relation is obtained from Eq. (34) simply by add-

ing the quantity (af —bf ) both sides, and using Eqs. (31)
and (32) to express af and bf in terms of pf. Our reason

for using Eq. (35) instead of (34} is that an arbitrary tra-

jectory has a conserved momentum P„whereas only the

ideal helical trajectories have a constant p, . Therefore,
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although the two equations contain the same information
relating the scaled radius ip& i of the ideal helical trajecto-
ry to yP„Eq. (35) allows one to associate a fixed point
(provided certain conditions are met) with a completely
arbitrary trajectory. Given the fixed point, the Hamil-
tonian may be expanded in a power series in the variables
(a —af ) and (b ib—f ) and their complex conjugates. If
we keep only quadratic terms, the resulting approximate
Hamiltonian may be diagonalized by a subsequent linear
canonical transformation, yielding two uncoupled har-
monic oscillators. The frequencies and coeScients of the
normal modes of vibration depend only on the value of
the quantity pf at the fixed point. Provided that the am-
plitudes of the oscillation are suSciently small, a quanti-
tative description of the trajectory is obtained.

The relation between the conserved momentum P, and
the parameter p& is illustrated in Figs. 1(a) and 1(b), for
two different values of the ratio B /BQ, 0.1 and 0.2, re-
spectively. We plot P, /QQ, which depends only on pf
and the ratio B /BQ, as a function of p& for —2 &p& & 2.
For negative values of pf, the curve has a roughly U-

shaped form, which corresponds to the group-I trajec-
tories. For positive pf the curve has an inverted U shape
and the trajectories belong to group II. Note that if p& is
sufficiently small and positive, P, /QQ becomes negative,
which corresponds to the reversed-field configuration in
which the directions of the beam and axial magnetic field

are antiparallel. It is apparent from these curves that for
a given value of P, /QQ, the fixed points occur in pairs.
Both fixed points correspond to uniform helical motion,
but subsequent analysis will show that the fixed point
with the larger value of ipf i is, in fact, unstable, while
that of smaller ipfi is stable. The points labeled S,
represent the minimum allowed values of P, /QQ for
group-I trajectories, while those labeled S&& correspond to
the maximum allowed values of P, /QQ for group-II tra-
jectories. These points, as we shall show, separate the
stable from the unstable fixed points. The limiting situa-
tion, in which the pairs coalesce (at the maximum or the
minimum) corresponds to a zero frequency and hence to
the limit of stable motion. Inspection of Fig. 1(a) reveals
that the value of P, /QQ at S, is less than that at S»,

hence there is a range of P, /QQ for which two stable fixed

points exist, one in group I and the other in group II. In
contrast, one sees in Fig. 1(b) that P, /QQ at S, is greater
than that at S«, hence there is a range of P, /QQ for
which no fixed point exists. Electrons having values of
P, /QQ in this forbidden gap cannot propagate in the
magnetic field. Inevitably they spiral out in the trans-
verse directions, converting longitudinal into transverse
energy, until they encounter the confining transverse
structure.

In Fig. 2 we show the values of P, /QQ at the extremal
points S, and S„as a function of the ratio B /BQ
Points in the (B /BQ, P, /QQ) plane that lie above the
curve labeled I min correspond to fixed points of group I
and therefore the curve corresponds to minimal values of
P, /QQ. Similarly, points situated below the curve labeled
II max correspond to fixed points of group II, and the
curve to maximal values of P, /QQ. These limiting curves
intersect at the approximate point B /Bp =0.118,
P, /QQ = 1.433, where the forbidden gap (horizontal
hatching) starts. If B /BQ&0. 118 then there exists a
forbidden range of P, /QQ values, whereas if
B /BQ &0.118 then there exists at least one stable fixed

point for any value of P, /QQ. In the overlap region (vert-
ical hatching) which lies above I min and below II max,
there are two stable fixed points for a given value of
P, /QQ. In this situation, knowledge of P, alone does not
determine the stable ideal helical trajectory, since there
are two of them. The Hamiltonian may be expanded
about either stable fixed point, but only for one (at best) is
the energy of the particle approximately equal to the
value of the Hamiltonian at the fixed point. It should be
noted that for values of B /BQ &0.45, the only allowed
fixed point in group II is of the reversed-field type.

Although it is easy to evaluate P, once p& is given, the
inverse problem, finding p& when P, is known, can only
be solved numerically. However, provided the value of
P, is not in the gap, one may use Newton's method to
find the appropriate value (or values) of p&. In what fol-

lows, we shall present our results in terms of functions of
pf but it should be understood that pf is determined by
the conserved quantity P„which is an observable proper-

P,

Qo 2—

S

I I I I
)

I I I I
f

I I I I
)

I I I I
)

I I I I
i

I I I I-2
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S„
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I
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i

I I I I

0,5 1.0 1.5 2.0

FIG. 1. (a) The quantity

P, /Qo as a function of pf, with
the ratio B /B0=0. 1. Negative
values ofpf correspond to group
I, positive to group II, while the
reversed-field configuration cor-
responds to negative values of
P, . The limits of the stability re-
gion, between which the slope is
positive, are indicated by SI and
S». For any value of I', /Qo at
least one stable fixed point ex-
ists. (b) Same as in (a) but with
the ratio B /B0=0. 2. There
exist values of P, /Qo for which
no stable fixed point exists.
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3/3,

ty of the real trajectory.
Once the fixed point has been determined, the corre-

sponding longitudinal momentum (yp, )& at the fixed
point is given by Eq. (34), while the corresponding trans-
verse momentum (yp~)& is given by

(ypg)/ = Ip/l(yp, )/, (36a)

FIG. 2. Regions of stability in the plane (B /Bp P /Qp).
For group-I operation the point must lie above the curve labeled
I min, whereas for group-II operation the point must lie below
the curve labeled II max. The horizontally-cross-hatched area
is forbidden, while at any point in the vertically-cross-hatched
area two distinct stable fixed points exist.

llllllllz!
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iB /IB,

IV. QUADRATIC APPROXIMATION
TO THE HAMILTONIAN

A. Characteristic frequencies

If the value of the conserved quantity P, is such that a
fixed point of the Hamiltonian exists, a natural next step
is to expand the Hamiltonian in a Taylor series about the
fixed point. By definition, the first-order terms vanish,
and one may write

FIG. 3. Regions of stability in the plane (B /Bp, p&). The
cross-hatched areas are forbidden, while the allowed regions for

group-I, group-II normal, and reversed-field operation are indi-

cated.

and the energy y& at the fixed point is specified by H(P„a, b) =H(P„a&,ib&)+8&+ (38)

y/'= I+(1+p/)(yP, )/ . (36b)

=1—2(B /Bo)(1+p/ )I, (p/) . (37)

This quantity is &1 for group-I and (1 for group-II
fixed points. It will prove useful in the next section,
where we examine the behavior of trajectories that are in
the neighborhood of the ideal helical trajectories.

In Fig. 3 we show the regions of the (8 /Bo, p&) plane
for which stable fixed points exist. The cross-hatched re-
gions are forbidden, while group-II and group-I fixed
points correspond to positive and negative values of p&,
respectively. The thin line separates the group-II normal
and reversed-field fixed points. We point out that only
for group-II normal fixed points can large values of lp&l
be obtained, and this only when the ratio B /Bo is small,
which implies either large axial or small wiggler fields.

We also introduce, for future use, the ratio (yp, )&/flo,
which we call r&. It is a function only of the ratio 8 /80
and p&, namely,

rf —(yp )f/Qo

where a and ib& are the values of a and b at the fixed

points, &
is the quadratic part of the Hamiltonian, and

higher terms start with expressions cubic in the deviation
from the fixed point. We define explicitly

j' =Re(a ) —a&,

( =Im(a),

( =Re(b),

Q= Im(b ) b/—

(39a)

(39b)

(39d)

(here Re and Im denote real and imaginary parts, respec-
tively). If we then call

a'0
ggkggl

(40)

where the second derivatives of the Hamiltonian are eval-

uated at the fixed point, we may write the quadratic
Hamiltonian as
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g]
g4

—u, 4

u,4— (44a)

92

n3 n4
(44b)

which may be combined to yield the simple result

u1 1 u22 u]4u23 4Q u23u44 u]4u22

u]]up3 u]4u33 u33u44 u]4u23 4Q
r

X =0.'92 =
7/3

(45)

The characteristic equation of this 2 X 2 matrix is then

16Q —4TQ +b, ]4523=0,

where we have used the substitutions

(46)

T=H
) )H22+H33H44 —2H )4H23,

~23 22u33 (u23 )

(47a)

(47b)

(47c)

The squared characteristic frequencies are then given by

Q2y ——[T+(T —4g g )
~ ]/8, (48)

while the positivity conditions which ensure the existence
of real frequencies are

0& (46]4b,p3)' & T .

Provided these inequalities are satisfied, the squared fre-

Although one would normally expect to find ten terms in
the quadratic approximation, the discrete symmetry of
the Hamiltonian allows one to reduce the number of
terms to six, which facilitates the subsequent analysis.
Taking into account the discrete symmetry, we obtain the
matrix

I], 0 0 u]4
0 H22 H23 0

o u„ u„ 0

o o u„
Explicit expressions for the six quantities uk] are given in
the Appendix.

We next look for a new dynamical variable A, which is
linear in the variables g", and has the following simple
Poisson bracket with the quadratic Hamiltonian:

{A, ug] =i(k /mc)QA, (42)

where 0 is a dimensionless frequency to be determined.
This is simply a linear eigenvalue problem, whose solu-
tion is easily found. If we write

A =ri]g' ri4g
—+i(ri2$ +rig ),

where the gk are unknown coefBcients, we obtain the ma-
trix equations

A. 2quencies 0+ may be determined, and one may solve for
the quantities g&, g3, and g4 in terms of g2. Given the
form of the equations, one may choose all the gk to be
real. It follows that if the variable A satisfies Eq. (42}
with a given value of 0, then its complex conjugate A*
satisfies it with —Q. The normalization of the variable A
is then obtained by requiring that the Poisson bracket of
A with its complex conjugate A ' be the same as that of a
with a*, namely,

{A, A'] =ik /mc,

which is equivalent to imposing

nin2+ n3n4= l

(49)

(50)

This normalization not only fixes the coefficients haik (to
within an overall sign), but it also determines the sign of
the frequency Q. Working out the details, we find that
the signs of the frequencies are given by

sgnQ+ =sgn(4Q+u~ 6]4u22—),
sgnQ =sgn(b, ]4u22 —4Q u44) .

(Sla)

(51b)

The roduct of the factors on the right-hand sides is
A]4( 23u44 u4]8/2 },which implies that the product
of the frequencies Q+Q has the same sign as b, ]~. If
b]~&0, the sum of the factors is 4(Q+ —Q )u44. It
turns out that this quantity is positive whenever h&4) 0,
and one finds that both 0+ and 0 are positive. In con-
trast, if b, ]4 & 0, the two frequencies necessarily are of op-
posite sign, and it is essential to know which one is posi-
tive. To find out we form the difference of the
factors on the right-hand side of Eqs. (51). We find
4(Q++Q )u44 —26]4u22, which turns out to be posi-
tive when h]z &0. It follows that the frequency Q+ is al-
ways positive, whereas Q has the sign of h]4. The oc-
currence of a negative frequency is an important aspect
of our work, since it means that a fixed point, which is
certainly an extremum of the Hamiltonian, is not neces-
sarily a minimum. Only for the group-II normal fixed
points are both frequencies positive, and the correspond-
ing Hamiltonian a local minimum.

The quantities T, h]4, and b,23 may be evaluated anal t-
ically. Using the formula for the matrix elements
given in the Appendix, we find

Q~+Q = T/4

(Qo/yf ) [rf +(rf 1) /( 1+pf}]—
i]]23=8(QOQ /yf )rfI'](pf )/pf,

d(P, /Qo}
b, ]4=4(QO/yf ) rfpf

dPf

(52a)

(52b)

(52c)

where the quantity d(P, /Qo)/dpf may be written, calcu-
lating the derivative of Eq. (35},in the form

d(P, /Qo) B~ ~ (2pf —1)IO(pf )+3I~(pf )
Pf Pf

dPf P pf
(53}
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These expressions, which yield analytic results for the
sum and product of the squared frequencies, agree with
those derived by Freund and Ganguly in Ref. [1].

The positivity condition that A&4623 0, given our ex-
plicit expressions, reduces simply to requiring that
d(P, /Qo)/dpf 0. This justifies our assertion, made in

the preceding section, that the extrema of the graph of P,
vs pf were the limits of stable oscillations. We note also
that, in the region of stability, the sign of hj4 is given by
the product rfpf. Group-I motion has rf )0 and p& «0,
while group II has pf 0, with rf +0 for normal motion
and r&

~ 0 for the reversed-field (antiparallel)
configuration. Consequently, the frequency 0 is posi-
tive for group-II normal, and negative in the other two
configurations. A simple way of seeing this is to observe
that the product b, ,4b, 23 has a double zero at rf =0, which
corresponds to a simple zero, or change of sign of 0 . .

The expressions we have found show that the frequen-
cies 0+ may be written in the form

-2—

3

-0
~ 5 0.0

B„/BQ = 0.2

0.5 1.0

0+ (Qo/1 f )F+ (pf, B„,/Bo ) (54)

where the dimensionless functions F+ depend only on the
ratio of the wiggler to the axial field and the value of pf
at the fixed point. The overall normalization is then pro-
vided by the dimensionless relativistic cyclotron frequen-
cy Qo/yf. In Fig. 4 we show the quantities F+ as func-
tions of )of for B /Bo =0. l and in Fig. 5 for
B„/Bo=0.2. In each figure the range of pf has been lim-

ited to values such that the frequency 0 is real. In ad-
dition, we show also the quantity rf defined in Eq. (37).

B„ls,=O.g

~ ~~ ~

FIG. 5. Same as in Fig. 4, but with the ratio B„/BO=0.2.
The repulsion of the frequencies is more clearly apparent.

The quantity (rfQo/yf) is the axial velocity P, at the
fixed point. We see that in group I ()of (0), the quanti-

ties rf and F+ are approximately equal. This implies
that the frequency 0+ is nearly equal to (P, )f. Similarly
for positive pf (group II), we see that rf is approximately
equal to F for small pf and roughly equal to F+ for
larger values of pf. Thus we find that one of the charac-
teristic frequencies is always approximately equal to the
axial velocity, although a crossover takes place when r&

has the approximate value of —,'. In Fig. 4, the inset shows

how the two frequencies repel each other, a well-known

phenomenon in quantum mechanics. The quantities F+
diverge as pf for small pf, but this is compensated by
the factor Qo/yf, which behaves like !pf!. Consequent-

ly, the frequencies 0+ approach the values +1 as pf ap-

proaches zero.

B. The Jacobi identity and the normal modes

.3

L21

Pt

Given any three dynamical variables A, 8, and C, the
Jacobi identity for the Poisson brackets imposes

{A,{B,CI j+{B,{C,A } J+{C,{A,BI]=0. (55)

If we choose A +, A, and H&, the quadratic Hamiltoni-
an, as the three variables, we And the relation

(n +n ){A,A !=0,
-0.5 0.0 0.5 1.0 1.5 2.0

FIG. 4. The quantities F+ =yf 0+ IQO as functions of
pf over the domain for which F is real, when the
ratio B /Bo =0.1. The crosses represent the quantity
rf =(yP, )f /Ao The inset shows the detail of the repulsion of
the frequencies.

which follows from the fact that the Poisson bracket

{A+, A {,being only a number, has itself a zero Pois-
son bracket with H&. Similarly, we obtain

(0+—0 ){A+,A* I=0. (57)

Provided that the frequencies are different, the Poisson
brackets {A+,A ) and {A+,A ) are zero, which im-

plies that the transformation from the dynamical vari-
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ables (a —af } and (b —ibf) to A+ and A is canonical .
The quadratic piece of the Hamiltonian thus may be writ-
ten as

1.5

-a

8~=n /A+]'+n )A

The solution to Hamilton's equations are simply
A

A~(t)=A~(0)e

(58)

(59)

p5 — B„(B(} = O.i

-b'

O.O—
where the complex numbers A +(0}are the initial values
of the new dynamical variables. Thus there exist two
constants of motion, ~A+(0)~ and ~A (0)~. The com-
plete solution to the problem, in the quadratic approxi-
mation, has thus been found.

The new variables A+ and A and the quantities
(a —af) and (b ib—f) are related in Eq. (43) through the
quantities we called gk. In preference to these, we use
the real coefficients C+„C +, C+b, and C +, which

relate the old and new variables as follows:

-0.5—

-1.5 I
I

I

I
I

I
I

I
I

a a s e s

A+=C+, (a —af}+C+ ~(a —af)'

+i[Cpb(b tbf)+—C „,(b ibf)'—],
C+ ~+ —C+ ~ ~++C

(60a)

(60b)

FIG. 7. The coeScients of the normal mode A as functions
of pf in the stability region for group I, with B„/Bo=0.1. C
and C b are shown as thick lines, C + and C + as thin lines.

b ibf= i[—C—+b A++C+~g A++C bA

+C ~A ]. (60c)

Detailed formulas for these coefficients, which depend
only on the ratio B /Bo and pf, are given in the Appen-
dix. We show the general behavior of the coefficients as
functions of p& in Figs. 6-13. In particular, in Fig. 6 we

show the four coefficients C+„C ~, C+b, and C as

functions of pf over the domain of negative values for
which the frequency 0 is real and negative (group I),
withtheratioB /BO=0. 1. Figure7showsC „C
C b, and C

b + over the same domain, while the

behavior of the coefficients for positive allowed values of
pf (group II) is illustrated in Figs. 8 and 9. In Figs.
1O-13 we show the same quantities as in Figs. 6-9 but
with the ratio B /BO=0. 2. In all figures, the coeScients

1.0— G+b

B„/BQ = O.i

C,b0.0—
:c„

-0.5—
C„.

O.o

-1.0—
-0.5—

B„/BQ = O. i

1e5 I
I

I
I

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 I I I I
I

I I I I
I

I I I I
I

I I I I

O.Q Q.5 1.0 1.5 2.O

FIG. 6. The coefBcients of the normal mode A+ as functions
of pf in the stability region for group I, with B /Bo =0.1 ~ C+,
and C+b are shown as thick lines, C ~ and C + as thin lines.+a +b

FIG. 8. The coefficients of the normal mode A+ as functions
ofpf in the stability region for group II, with B /Bp =0.1.
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1.5

0.0

-0.5—

- I.o—
C)

C

0.5, B /B - 0.2
C b.

0.0 —'

C

C
-05 —, j

l

f

-1.5

Q. Q 0.5 1.0 1.5 2.0

1.5

-0 5 -0 4 -0 3 -0 2 -0.1 0 0

FIG. 9. The coefficients of the normal mode A as functions
ofpf in the stability region for group II, with B /Bp =0.1.

FIG. 11. The coefficients of the normal mode A as func-

tions of pf in the stability region for group I, with B„,/Bo =0.2.

C+„C+&, C „and C
&

are represented by thick lines,
while the coefficients C+, C+~, C, and C

&
are

shown as thin lines.
The behavior of the coefficients as functions of pf is

one of the most important aspects of our work, and we
describe the key features in some detail. First we see in
both Figs. 6 and 10 that for group I the coefficient
C+&=1, while C+„C , and C + are much smaller

in magnitude. This implies that the variable A+ is
quasi-identical with (i b +b f ). One then expects that the

variable A should mainly involve (a —af ) and

(a —af)'. Inspection of Figs. 7 and 11 shows that the
coefficients C & and C are indeed small, while near the

stability limits (where the frequency 0 becomes imagi-

nary), both coeScients C, and C, diverge. This

divergence is accompanied by a vanishing of the frequen-

cy, so that the quadratic Hamiltonian remains finite. For
smaller values of [Pf[, we observe that C, =1 with

C + =0, which means that A =(a —af ). This favor-

1.0—

0.5—
Bw BQ

= 02

C+~
f.0—

05—
a'

-0.5

-1.0 -,'

c+,
C„.

0.0 —,=

-0.5 -.
1

-f.0—
8/8 = 02

[
i i

-0 5 -0 4 -0 3 -0 2 -0.1 0 0

-f.5

0.0 0.5 1.0

) ) I
f

i I I I

[
I

I

FICr. 10. The coefFicients of the normal mode A+ as func-
tions of pf in the stability region for group I, with B /Bo =0.2.

FICs. 12. The coefficients of the normal mode A+ as func-

tions of pf in the stability region for group II, with

8 /Bo=0. 2.
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where the frequencies repel each other (this happens
when rI=0. 5). It is clear in Figs. 8 and 9 that an ex-

tremely brusque exchange of roles between a and b takes
place. In a small interval in p&, near p& =0.21, the mag-
nitudes of the coefficient C+, and C b plunge rapidly by
an order of magnitude while C+b and C, rise from =0
to = 1. This corresponds to the well-known phenomenon
in quantum mechanics where the repulsion of energy lev-
els is accompanied by exchange of the wave functions.
Here this means that for pI &0. 19, the variable (b

ib&
}—

traces out a circle at frequency Q =(p, }/, while for

pI )0.23 (but not too much greater}, it traces out a circle
at frequency Q+ which is again =(p, )/. Thus on either
side of the transition one finds that (b ib&—)e is an ap-
proximate constant of the motion, just as in the 1D case.
The variable a does essentially the opposite, but for

pf & 0.5 we observe in Fig. 9 that C becomes non-

negligible, which will lead to complicated trajectories. At
still larger p&, all coefficients become significant, and the
simple behavior of the amplitudes A+ and A is no
longer reflected in the trajectories of the variables a and
b. Near the limits of stability the divergence of the
coefficients C is again apparent in Fig. 9.

For the larger value of B /Bo =0.2, the transition re-
gion, as may be seen in Figs. 12 and 13, is much broader
in the variable p&, and the transition itself is not com-
plete. The coefficients C b and C+, do not fall to =0,
nor do C, and C+b rise to =1. This means that for no
values of pg &0.4 may one expect simple trajectories for
the variables a and b. This tendency obviously worsens
with increasing B„/Bo. We thus conclude that the suc-
cessful operation of a FEL at values of p&=1, although
allowed in principle, is probably unlikely.

= 0.2B„/B
1.0—

0.5—

0.0

-0.5—

I I I I

f

I I I I

J

I I I I

0.5 1.00.0 1.5

FIG. 13. The coefficients of the normal mode A as func-
tions of p~ in the stability region for group II, with
B /Bp =0.2.

C. Calculation of the orbits

The explicit calculation of the motion of an electron
for which the quadratic approximation to the Hamiltoni-
an is adequate proceeds as follows. The initial data may
be taken to consist of the Cartesian position and velocity
coordinates at the instant t=0. Following the chain of
canonical transformations presented in Sec. II, one com-
putes the initial values of the dynamical variables a and b
together with the value of the conserved quantity P, .
Provided that the values of the ratios P, /Qo and B„/Bo
are such that a stable fixed point exists, one may then cal-
culate the relevant associated quantities p&, af bf 1 f,
(p, )I, the characteristic frequencies Q+, and the
coefficients C+„etc. From the initial values of a and b,
using a&, b&, and the coefficients C+„the initial values of
the harmonic oscillator amplitudes A+ may be deter-
mined. We write them in the form

A+«}= I A, Ie'*, (61)

where the magnitudes
~
A+

~
are constants of the motion

and g+ are the initial phases. In this way we obtain six
independent initial values,

~
A + ~, f+, P„and z(0), from

the six initial position and velocity coordinates. At this
point, one should compare the numerical value of the en-
ergy y, as computed directly from the initial velocities,

able situation is obtained, however, only for relatively
large values of the ratio P, /Qo, which requires either
high energy or small axial fields. The admixture of
(a —a&)' increases with increasing ~pI ~, making the tra-
jectory of the variable a elliptic rather than circular.
Quasicircular motion is preferable, since the axial veloci-
ty has less ripple. On the basis of these figures, we infer
that group-I motion presents no particular difficulties,
provided a safety margin from the stability limit is main-
tained.

The situation for group-II motion is much more com-
plex, as is apparent in Figs. 8, 9, 12, and 13. First we
note that, in the reversed-field configuration, with beam
and axial fields antiparallel, and which is characterized
by small positive values of p& ( &B /Bo), the behavior is
exceedingly simple. The coefficients C+, and C b are
very close to 1 and —1, respectively, and all others are
quite small. The variable A+ may thus be identified with
(a —a&), while A is quite accurately ( ib b/). —The-
trajectories of the variables a and b in the complex plane
are thus circles centered at a& and ib&, swept out with
frequencies Q+ and Q, respectively [here (p, )& is nega-
tive and roughly equal to the frequency Q ]. The situa-
tion is quite similar to the one-dimensional treatment, for
which the quantity be ' is a constant of the motion. We
thus expect the trajectories in the reversed-field mode to
be quite well behaved. However, two important caveats
concern the neighborhood of the antiresonance, where
r&= —1. First, the ratio of the frequencies there is ap-
proximately —2, which may lead to "small-denominator"
efFects, particularly in the cubic terms we neglect. The
second is discussed below, where the trajectories in the
Cartesian coordinate variables are examined.

This simple and favorable situation persists into the
normal group-II region [(p, }I)0] up to the value of pI
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with the corresponding value for the quadratic Hamil-
tonian, yI +Q+ l A + l

+Q
l
A

l . Our experience is
that when these numbers differ by & 0. 1%, our simulated
trajectories agree closely with those calculated numerical-
ly. Although the time evolution of the variables 3+ is
quite simple, the consequences for the orbital motion of
the electron can be quite complicated, as we shall now

show.
In order to find the instantaneous position of the elec-

tron, it is first necessary to compute its axial position
z(t) B. y inserting into Eq. (25) the explicit time depen-
dence of the variables a and b, and neglecting terms of or-
der higher than quadratic in the amplitudes l A+ l, we
find P, (t ), which is given by

(t)=(P, )&+5P, +E,cos(Q+t+P+)+Ezcos(Q t+g )+E,cos[2(Q+t+g+)]

+E4cos[2(Q t+p ))+E5cos[(Q++Q )t+g++g ]+Ebcos[(Q+ —Q )t+p+ —
l( ] .

In this expression, (P, )& is the value at the fixed point, and the quantities 5P, and Ek may be written as follows:

5p, =[lA l (C b+C —C, —C, —(p, )IQ )+lA l (C b+C —C, —C —(p, )/Q )]/y/,

(63a)

E, = —2l A+ I [af(c+ c )+bf(c+b+c * )]/y f
1 [a/(C , C,—,)+b/(C b+C b)]/y/,

E, =2l A+ l (C+,C, +C+bC b )«/y/,

E4=2 A
l (c,c «+c bc b«)/y/,

E5 =2 A+ A —
1 (c+bC b+C,—c,—C+,C, —C,C, )/y&,

E&=2l A+ A-l(c+,c,.+c,„.c,+c .c .+C...C .)ly-I

(63b)

(63c)

(63d)

(63e)

(63fl

(63g)

We thus see that the axial velocity is perturbed from its ideal fixed-point value (P, )I by a time-independent correction
5P, which is quadratic in the amplitudes l

A + l, as well as six oscillatory terms, of which two are linear in
l
A ~ l

and
have the characteristic frequencies 0+, and four others which are quadratic in

l A+ l, and which oscillate at the sum

and difference frequencies. These ripple effects in the longitudinal velocity can give rise to emission of radiation at side-
bands of the principal frequency. Subsequent integration yields the axial position as a function of time,

z(t ) =z(0)+ [(p, )&+5p, ]t +(E, lQ+)[sin(Q+t+i(t+) —sinl(t+ ]+(E2lQ )[sin(Q t+p )
—sing

+[E&/(2Q+)][sin[2(Q+t+g+)] —sin2$+}+[E4/(2Q )][sin[2(Q t+P )]—sin2$ I

+ [E5/(Q++0 ) ][sin[(0++ Q )t +++++ ]
—sin(@++ P ) }

+ [E&l(Q+ —Q ) ] [sin[(Q+ —Q )t +g+ —g ]
—sin(g+ —P ) } . (64)

This expression shows that if any of the three quantities 0, 0+ 0 are very small, the deviation from the ideal posi-
tion coordinate may become appreciable even if the amplitudes l A& l

are acceptably small. Consequently, the operating
conditions should be chosen so as to avoid this difhculty. Since 0 vanishes at the limits of stability, it is clear that
operation too close to the limits is likely to be unsuccessful. The difference 0+ —0 becomes small in the region where
the frequencies attempt to cross, hence this is also an unsuitable operating region.

Once the longitudinal coordinate z(t ) has been computed, Eq. (18a) provides us with an explicit expression for the
transverse position

x(t )+Py(t ) =PIe' ' +(2/Qo) [(C+ C+b ) A+ (C+ +C+b ) A +

+(C, —C, )A —(C, +C b)A* ]e'"', (65)

i(P++Q+t )

where by A z we mean the time-dependent values
l A+ le

— — . We observe that the transverse motion consists of a
linear superposition of five circular motions, one that corresponds to the ideal axially centered helical motion of scaled
radius pI, and four that are linear in the oscillator amplitudes. The phase of the principal circular motion is z(t ), while

the four parasitic amplitudes have phases z(t)+(g++Q+t). Since z(t) has oscillatory pieces in addition to the term
linear in time, the true time dependence of x+sy is quite complex, and the Fourier spectrum involves several frequen-
cies.

The transverse velocity of the electron may be evaluated in two different ways. One is simply to compute the time
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derivative of the transverse position coordinate, which yields the following expression:

P„(t)+iP„(t)=ie "'(P,(t)pf+(2/Qo)' I[P,(t)+0+](C+,—C, )A+ —[P,(t)—0+](C,+C+~)A+

+[p,(r)+0 ](C,—C )A —[p, (r) —Q ](C +C b)A j),
(66)

where again the time-dependent A+ are understood. In
this expression, the time-dependent pieces of P, (t ), which
are of first and second order in the amplitudes

~ A+ ~, in-
duce an even more complex time dependence. However,
one may also use Eqs. (12b) and (22), which through
Hamilton's equations, yields directly

P (t)+i'(t)=ie [(2Qo) ~ a —Q J]/y (67)

where the expression on the right-hand side is to be eval-
uated by expanding the complex quantity J about the
fixed point. The result of doing so agrees with the
preceding expression for the transverse velocity in terms
which are of zero and first orders in the amplitudes

~
A + ~,

but not at the level of quadratic terms. This is a regrett-
able but unavoidable consequence of our quadratic ap-
proximation to the Harniltonian. Our neglect of cubic
terms in the Hamiltonian means that our velocities are
not consistent at the quadratic approximation. In princi-
ple, if the amplitudes are small, the discrepancy between
our two transverse velocities is not significant. However,
there is a possibility that in the expansion of the right-
hand side of Eq. (67) a second-order term may appear
with an extremely weak time dependence, essentially the
difference of two nearby frequencies. Such a term pro-
duces a slow transverse drift, which could lead to some
electrons entering into collision with the transverse
confining structure. Our calculation of the transverse po-
sition via Eq. (65) does not allow for such a possibility,
but it remains a potential difficulty, especially when fre-
quency differences are extremely small.

The behavior of the position and velocities as a func-
tion of time, even when our quadratic approximation is
valid, is rather complicated. We have compared our re-
sults with numerical calculation of the trajectories in the
various regimes, and we find that our description is quite
good when the oscillator amplitudes are of magnitude
0.1. In a large number of situations we found that fair
quantitative agreement could be obtained with a
simplified approach, which we outline below.

by a very slow rotation of the instantaneous center of
gyration as well as a parasitic cyclotronic motion. The
axial velocity of an electron oscillates about its ideal
value at a single frequency, giving rise to a fairly simple
Fourier spectrum for the transverse motion. Consequent-
ly, the calculation of the spontaneous emission spectrum
is relatively simple compared to the general case. In the
Appendix this spectrum is calculated for the case of free
space, assuming only one axial velocity ripple frequency
and one cyclotronic transverse motion.

Although the motion we predict in general may be
quite complex, inspection of our Figs. 6-13 shows that
for certain ranges of the scaled radius ~pf ~, all but two of
the coefficients C+„etc., are quite small. Next, we note
that in general bf «af, and it might be reasonable to
neglect it. If we also take into account the fact that one
of the frequencies 0+ is almost equal to the axial velocity
at the fixed point, we obtain a greatly simplified descrip-
tion of the motion. In fact, we find two distinct simplified
descriptions, depending on whether the quantity
7 f(p )f /Qo is )—,

' or (—,'. In what follows we discuss in
detail these two situations. It must be noted that when
we write equations, they should be interpreted as valid
only to the neglect of certain small quantities, and not as
exact expressions.

If yf(P, )f/Qp& —,
' [but largely excluding the unstable

band near yf (P, }f/Qo= 1], we may use

Q+=(p, )f, C, =1, C+b =1,

and all others zero. For the shift in mean longitudinal
velocity we find

(6g)

which implies that increasing the oscillator amplitude
A+ produces a small increase in speed, while increasing
A has the opposite effect.

All the quantities Ek are zero except

V. SIMPLE APPROXIMATE DESCRIPTION
OF TRAJECTORIES

l~f/7 f (69}

The preceding treatment has considered in great detail
the most general motion which our model can predict. In
this section we present a simplified approximate descrip-
tion of the trajectories. We obtain this by setting equal to
zero a certain number of quantities which are numerical-
ly quite small over a certain domain of parameters. What
emerges, at least in the favorable situations, is a quantita-
tively correct but quite simple description of the trajec-
tories in terms of the ideal helical motion accompanied

which implies that the ripple in longitudinal speed is
caused mainly by the A amplitude, and has the fre-
quency 0 . The transverse position is then given by

x(t}+Py(t)=pfe "'+(2/Q )'~ [—A' +A ]e

(70)

which corresponds to a superposition of three circular
motions, one of which is the projected ideal helical
motion of scaled radius ~pf ~, while the other two have
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scaled radii of (2/Qo)'
~ A+ ~

and (2/00)'
~
3 ~, respec-

tively. If we neglect the ripple and shift of P„ then the
three circles are swept out uniformly in time at the
respective frequencies (P, )&, (P, )/

—0+, and (P, )/+ &
Taking into account the near equality of (P, )& and 0+,
we see that the amplitude 3+ corresponds to an ex-
tremely slow rotation. This has been described in the
literature as the guide center motion, about which the
more rapid circular motions occur. The radius of the cir-
cle described by the guide center is determined by A+ ~,

which is essentially the modulus of the initial value of our
dynamical variable b —ib&. The desired FEL motion
then occurs about this displaced guide center, and is ac-
companied by the additional circular motion at the fre-
quency (P, )I+0 . If one excludes the regions near the
limits of stability, this frequency is to within a few per-
cent of the relativistic cyclotron frequency 00/y&. The
radius of this cyclotronic motion is thus determined by

, which is essentially given by the modulus of the in-
itial value of (a —a&). Thus our simple description leads
to an interpretation of the transverse motion as a super-
position of three circular movements: first the ideal heli-
cal motion; second, a very slow motion of the guide
center; and third, a cyclotron motion, this being also the
cause of the ripple in the longitudinal velocity. This
description applies to both group I and that part of group
II above the transition region, the only difference being
that 0 . is negative in the former and positive in the
latter.

l f (p )//Qp (—,', which occurs typically for small

positive values of p&, we have

and all others zero. Now the shift in mean longitudinal
velocity is given by

which shows that the oscillator amplitude 3 always
contributes a positive shift, whereas the contribution of
the amplitude A+ produces a negative shift when

(P, )/) 0, but can have either sign when (P, )I (0. The
efFect on the mean longitudinal speed of increasing

~
A

is thus an increase in normal group-II operation and a de-
crease in the antiparallel configuration. Increasing

~ A+ ~

always reduces mean speed in normal group-II operation.
In the reversed-field configuration an increase in

~ A+ l

reduces the mean speed if the quantity (P, )&Q+ ~ —I

and increases it otherwise.
All Ek are zero except

F. ,
= —

2~ 3+ ~a//y/, (72)

which means that the ripple in P, is caused mainly by the
A+ amplitude, and has the frequency Q+. The trans-
verse position is given by

x(t)+iy(t)=p e' "'+(2/0 )' [3 + 3* ]
' "' (73)

which again corresponds to a superposition of three cir-

cular motions, just as in the previous case. If we again
neglect the ripple and shift of P„ then the three circles
are traced out at the respective frequencies (P, )&,

(P, )&+0+. and (P, )&
—0 . Taking into account the

near equality of (P, )& and 0, we see that now the am-

plitude 3 corresponds to the slow rotation of the guide
center. Here

~
A

~
is essentially the modulus of the ini-

tial value of our dynamical variable b —ib&. To a good
approximation, the frequency (P, )&+6+ is equal to the
relativistic cyclotron frequency. The radius of the cyclo-
tronic motion is now determined by ~ 3+, which is again
given by the modulus of the initial value of (a —a&). We
thus find essentially the same description as in the previ-
ous case, except that here (P, )& can be negative. The va-

lidity of this description, which applies to group-II
motion below the transition region, is somewhat greater
than in the preceding case, since here the stability limits
are not approached. However, the helical orbits have
rather small radii, which means that the transverse
motion caused by the parasitic cyclotron and guide
center amplitudes may be of the same order of magnitude
as the desirable FEL motion.

In particular, if the operating conditions in the
reversed-field configuration were chosen such that
fl+=——2(P, )&, then the cyclotronic and ideal helical
motions would have the same frequency but opposite
senses —one clockwise, the other anticlockwise. When
this occurs, the transverse motion of the electrons does
not at all resemble our Ptolemaic picture of epicycles, but
looks rather like Lissajous figures. To complicate things
still further, this also corresponds to a 2:( —I) ratio for
the frequencies 0+ and 0 . This implies that neglected
cubic terms of the form 3+ A . will be constant in time
and may cause the moduli of the amplitudes

~ 3+ ~
and

, to vary with time, which would destroy our simple
picture. It is interesting to note that Conde and Bekefi

[4] have observed a significant loss of gain in this region.
A possible explanation might be related to the fact that a
given electron can exchange energy with a linearly polar-
ized beam in both of the circular polarizations. The
necessary bunching required for Madey's theorem to ap-

ply may be prevented from occurring by the interference
from the opposite chirality, although detailed calculation
would be required to verify this conjecture.

In the transition region, where y&(P, )&/Qo= —,', and

near the limits of stability, where 0 vanishes, this sim-

ple approach is not even approximately valid. Indeed, in-

spection of Figs. 8, 9, 12, and 13 shows that in these re-
gions our simplifying approximations are wholly inade-
quate. Under these circumstances the full complexity of
our general treatment is needed to describe the trajec-
tories. Even in the group-II region between the transi-
tion and the stability limit, one observes in Fig. 9 a rather
significant increase of the coefFicient C, . This is

sufFicient to strongly perturb our simple picture, since the
ripple in axial speed becomes more complex, while an ad-
ditional circular motion complicates the transverse
motion. Furthermore, the rough equality between (P, )&

and Q, + weakens in this region, which means that the
guide center motion becomes more rapid.
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VI. CONCLUSIONS

In this work we have presented a detailed analysis of
the motion of electrons in the magnetic field of a helical
wiggler together with a uniform axial guide field. The
principal feature of our approach is the recognition that
an arbitrary trajectory is characterized by the two con-
served quantities, one being the energy and the other a
combination of angular and linear momentum, which we
call P, . It is the latter quantity that plays the primordial
role in determining the electron's trajectory. Although
the existence of this second conservation law has been
known for some time, our analysis uses it to associate an
ideal helical trajectory with an arbitrary trajectory. The
value of P„as determined by the initial conditions, en-
ables us to compute the fixed point, as well as the fre-
quencies and coefficients of the normal modes for our two
oscillators. The remaining initial conditions provide the
conserved magnitudes and initial phases of the oscilla-
tors, and the analytic approximation to the true orbit
may be computed. Since the initial energy is not used ex-
plicitly in calculating the oscillator amplitudes, a check
of the consistency of our approach is provided by a com-
parison of the true energy with the sum of the fixed-point
and oscillator energies. When the two agree closely, nu-
merically calculated orbits agree quite well with those
computed using our procedure.

Various pathological aspects of the orbits that have
been encountered in numerical investigations may be elu-
cidated using our approach. For some values of P„no
fixed points exist, while for others there are two distinct
stable fixed points. As the limits of stability are ap-
proached, where one of our oscillator frequencies vanish,
certain normal-mode coefficients become large, and the
corresponding movement erratic. Very small values of
the frequency imply that the spontaneous radiation spec-
trum, given in the Appendix, will become extremely com-
plex, with a large number of closely spaced peaks. Yet
another difficulty occurs in the group-II mode of opera-
tion, where it may happen that our two oscillator fre-
quencies are approximately equal. Under these cir-
cumstances, the simple picture of the transverse motion
as a superposition of the ideal helical motion and the
parasitic cyclotron motion is invalid. This occurs when-
ever yv, =Qo/2k, and the FEL must be operated so as
to avoid this condition. Finally, the existence of negative
frequencies in the group-I and reversed-field modes of
operation is a new result, which is rather surprising.
Concretely it means that differences between the true en-
ergy and the energy of the ideal helical orbit can have ei-
ther sign. An electron might have precisely the energy
corresponding to the fixed point (which is determined by
P, ) and still have appreciable oscillator amplitudes.

The limitation to small oscillator amplitudes is an una-
voidable part of our treatment. There is one situation,
namely, when the two oscillator frequencies are in the ra-
tio +2:1, where we expect our approach to break down,
even for small amplitudes. Since the frequencies are
readily calculated, it is straightforward to identify these
problematic operating conditions. Finally, we remark
that since the ideal helical orbit is determined by the con-

served quantity P„ it is essential that a beam of electrons,
which necessarily has finite emittance, have as small
dispersion in P, as possible. In contrast to the electron's

energy, which is conserved in any static magnetic field, P,
varies when the electron passes through magnetic fields
which do not have the ideal screw-displacement symme-

try. The effect of an adiabatic wiggler entry on the
dispersion of P, for an electron beam should therefore be
an essential part of the design of an experiment.
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a44=a33=2,

a22 14 a23

(A2)

In the following expressions for Pi,i, and yi, &, the argu-
ment of the modified Bessel functions I, and I3 is under-

stood to be p&. We find

pii =(4pf 5 7pf )Ii+(1—p—f)I3-
p44= (4pf +7+p—f )Ii+(3+pf )I3

pi4= (6+4pf )I,+2I3—
(A3)

pq2
= (4Pf + 1)Ii I3, —

p33 (4pf + 5 )I, —3I—
3

p23
= —2I i

—2I3,
and

1'ii=)'44=)'i4=(1+pf)[(13+12pf ')(Ii)'
+(2—12pf )IiI3+(I3 )~]/2,

(A4)

Y$2 V33 Y23 [(5+4Pf )(Ii ) +(10+12Pf i 3

+(I3) ]/2 .

APPENDIX

Elements of the quadratic Hamiltonian 8&

The matrix elements Pi,&
may be written in the form

~kl (f)o/rf )[aai+l id(&. /&o )+rai(& /&o )']

where the coefficients ai,i, Pi,&, and yi, &
are functions only

ofpf. The ai, &
are given by

a)) =2p
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Using these expressions, one may verify that

H»+H44 2—H, 4 =2(A, /y&)(1+p&),

H22+H33 —2H23 =20O/y/,

from which it follows that the characteristic frequencies
0+ and 0 cannot both be negative.

C. , =cosO coshv+, C + =cosO sinhv+,

C+b =sinO coshp+, C =sinO sinhp+,

C. „=sinOcoshv, C + =sinO sinhv—a

C. q
= —cosOcoshp, C ~ = —cosOsinhp

(A14)

Expansion of the amplitudes A ~ in terms
of a —aI and b —ibI

In Eq. (43) we have written the amplitudes A+ as

~+ 9+1k +1(9+24 + 9+3( ) 9k4e '

It is more convenient to use the expression

3+ =C~, (a —a&)+C, (a —u&)*

+i [C,b(b ib/—)+C ~(b ib/)*—],

(A6)

(A7)

The inequalities IC+, I) IC, I
and Icqbj) IC „,I

are

satisfied by these expressions. This may be interpreted as
saying that the amplitudes A+ contain more of (a —

a& }

than (a —a&)' and more of (b ibI
—

) than (b ib&—)*.
If the product RS & 0, then there are two distinct sub-

cases: (1) If

I H „u22 H23H—14
—4n+ )

I H1, H22+ H23u, 4
—4n

I 1

we define the quantities g, v+, and p+ by the expressions

tanhg =e(S)(4Q —H11822 823H,—4 ) /( RS )
'—

where the real coefficients C are related to g as follows:
v, =

—,
' ln[(40+H14 —H23614)/(+2A+S)], (A15)

C „=(2)+,+it+2)/2,

C, =(rl
1

—
2) 2)/2,

C+b =(2)+3+21+4)/2,

C ~ =(2)+3—2)+q)/2 .

p+ =
—,
' ln( —R /S )

—v, .

(Ag) The coefficients are given by

C. , = —sinhgsinhv~, C, = —sinhgcoshv+,

Conversely, one may write a —
a& and b —ibI in terms of

A~ and A+,

C+& =cosh( cosh'+, C „,=cosh( sinhp+,

C, =coshgcoshv, C, =cosh(sinhv
Q

C b
= sinhg sinhp, C „+= sinhg cosh'

(A16)

b ib/= i[—C+b A—++C, A++C b A

+C, A* ].

(A9) The inequalities C, I

~ IC, *I, IC+bl —Ic+1,*1

c .I) Ic ~l, and lc.-bl ~jc „„Ihold.

(2) If, however,

In contrast to the frequencies, which depend on 80, 8„„
and pI, the coefficients C depend only on pI and the ratio
Bo/B„. Explicit expressions for them follow, which take
different forms, depending on the signs of the two quanti-
ties

A A A A A2 A A A A A2
IH11H22 H23H14 4II+ & IH„H22 H2, H, 4

—4&—

then we define the quantities g, v+, and p+ by the expres-
sions

tanhg= e(S )(40+ —H»H22+H23H, 4)/( RS )
'—

and

R =H))Hq3 —m33H)4

S =H44H~3 —
H22H)4 .

(A 1 1)

(A12)

v = —,
' 1n[(H23b, ,4

—40+H, 4 )/(+2Q+S ) ],
p = —,

' ln( —R/S) —v

In this case the coefficients may be written as

(A17}

If the product RS &0, we define the quantities 0, v+,
and p+ as follows [where we use e(x) =x /Ix I, and
~ 14

=H11H4~ —H i4]:

tan0=&(S)(40+ H11H22+H23H14)/(RS )

C+, =coshgcoshv+, C, =cosh( sinhv+,

C+„=sinh(sinhp+, C, =sinh(coshp~,

C, = —sinhg sinhv, C, = —sinhg coshv
(A18)

v =
—,
' ln[(H23b, 14

—4Q+H14)/(2Q S)],
p, += —,

' ln(R /S) —v+ .

(A13)

The coefficients C may then be written in terms of 0, v+,
and p+ as

C b =cosh/ coshp, C, =cosh(sinhp

Here the inequalities
I C+, I

)
I
C, I, I C+ b I

~
I
C

1,
1) IC „e I

hold, which are

just the opposite of the preceding subcase.
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Spontaneous-fonvard-direction-emission spectrum

A (co)={A+(—co)}* . (A19)

The intensities of definite helicity (energy per unit dimen-
sionless frequency to in solid angle d Q) are given by

d I~
dco dQ

Following Jackson's Eq. (14.64) [7], we write
' 1/2

2

A+ (co)=ice
16m c

(A20)

The forward (and backward) spontaneous emission for
an electron whose trajectory is similar to that predicted
by our model may be calculated as follows. We consider
only free-space emission and we simplify the electron's
motion in the interest of transparency. The amplitude
for the emission of positive (negative) helicity radiation of
frequency co in the direction ge„where g=+1, is denot-
ed by A +(t0) and we have the relation

In order to evaluate A+(co) we assume that the trans-
verse position as a function of time is given by the expres-
sion

x(t )+ty(t ) = (pf +5e'='+r')e (A22)

P, (t ) =P+ e cos(Qt +P), (A23)

where P is the mean axial velocity, e is the ripple ampli-
tude whose frequency is Q, and f is a phase. In most
cases of interest the frequencies = and 0 will be equal,
but we allow them to be distinct here. The axial position
as a function of time is then

z(t ) =z(0)+Pt+(e/Q)[sin(Qt+g} —sing] .

Using the identity

i''(t ) ia[2'(0)+Pt —(e/0)sing]

(A24)

where pf is the scaled radius at the fixed point, 5 is real,

y is a phase, and = is a frequency. For the axial velocity
we use

(A21)

im (
0"+g) (A25)

where f'denotes the time spent in the wiggler.
where J denotes a Bessel function and a a real number,
we find

~ 2 2

2+(Q)=
Q)+ 1 1677 C

1/2

e
—i g(&+ 1)[2(0)—(e/Q)sing]

sina f'
X g J [rl(to+1)e/Q]e' ~ pfe

am

e, ,~r f vr ~
siny

+5(1+rl= )e
Vm

(A26)

In this expression we have used the following substitu-
tions:

~ 2 2

lim A+(co}=
co+1 16&c

' 1/2

e
i [a 1'—g( &+ 1)2(0)]

a =(1—rlP)(co —co )/2,

y =(1—rip)(a) —to' )/2,

(A27)

(A28) Xpy
sina0

a0
(A31)

where the peak frequencies 9 and co' are defined by

co =(rlP —mQ)/(1 —rtP),

co' =[rt{P+=)—mQ]/(1 —gP) .

(A29)

(A30)

We have also neglected terms which remain finite when
1, which is approximately 2m.N/P, where N is the num-
ber of periods, becomes large. In this limit, the ampli-
tude A+(co) is well represented by a sum of peaks at
co=co and co=co', whose relative sizes are determined
mainly by the value of the Bessel function. The width of
all peaks is approximately 13/[N(1 —r}P)], while the spac-
ing between adjacent peaks in either series is Q/(1 —rIP).
If the value of 9 or co' is negative, the radiation occurs
at the positive frequency (~co

~
or ~co .~), but with nega

tive helicity.
If the ripple e and the quantity 6 are set equal to zero,

we recover

which corresponds to emission at the usual FEL frequen-
cy

coo= rtP/( I —rIP), (A32)

provided that rlP) 0. This condition simply means that
the beam and radiation propagate in the same direction.
If rtP & 0, then there is negative helicity radiation emitted
in the direction opposite to the beam. However, its fre-
quency is not increased by the Lorentz factor, and the in-
tensity is necessarily sma11 because of the explicit factor
of co . Henceforth we shall limit our attention to the case
where rIP) 0.

If the velocity ripple e is assumed to be small, but not
zero, a reasonable approximation is to retain in Eq. (A26)
only the m =0 and m =+1 contributions. For m =0, the
relevant term is ~ Jo{e/[Q(1—gP)J}, which is =1, for
very small e, but which is =0 if e/[Q(1 —gP) ]=2.4. We
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thus see that emission at the FEL frequency coo can be
quenched unless e & 2.4Q(1 —riP). For highly relativistic
electrons or small 0, this suppression might occur.

The m = 1 contribution peaks at frequency
co, =(riP —Q)/( I —riit3), and it is governed by
J~(e(1—Q)/[Q(1 —riP)]). Similarly, the m = —1 contri-

bution occurs at frequency co &=(riP+0)/(I —r)P), and

it is proportional to J, (e(1+Q)/[Q(1 —r)P)]). In the

group I mode of operation, the ripple frequency
Q =g—Qo/y, whereas for group II one has

Q=Qo/y —P. Frotn this we deduce the following ap-

proximate results:

group I: Jtl & Qo/y, co, =(Qo/y)/( I —P), co, =(2P—Qo/y)/( I —P),
group II: 0&P&Qo/y, co, =(2P—Qo/y)/{ I —P), co, ={QO/y)/(1 —P),
reversed field: P & 0, to, =( —Q, /y )/( I+)t3), co, = (Q, /y —2P)/( I+13) .

In each case one of the satellite frequencies is approxi-
mately equal to the boosted cyclotron frequency
Qo/[y(1 —

~P~ )], but for the reversed field, the frequency
co& is negative, which implies that the helicity is negative.
If the FEL is operated at "antiresonance, "

Qo/y = —P,
then 9,= —

coo, which means that the spontaneous emis-
sion peak at the frequency coo contains both helicities.
We also note that when the pseudocrossing takes place
(Group II), the frequency co, vanishes.

To complete our discussion of the spontaneous-
emission spectrum, we consider the contribution propor-
tional to 5 in Eq. (A26). Since 5 is supposed to be small,
keeping only the m =0 term in the sum is presumably a

good approximation. Typically the frequency = satisfies
the approximate relation P+ = =Qo/y, which implies

that the spontaneous-emission frequency coo is given by

(Qo/y)/(1 —P) (groups I and II),

(
—Q„/y)/(1+P) (reversed field) .

Thus the principal contribution of the 6 term occurs at
the boosted cyclotron frequency, just as did one of the sa-

tellite terms caused by the ripple frequency. For
reversed-field operation the negative frequency implies
negatiue helicity.
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