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Quantum modifications of classical diffusion in coordinate space for chaotic systems
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The paper considers the dynamics of a particle in a periodically- space- and time-dependent potential
under the condition of chaos. In the classical approach the distribution function for the particle position
is shown to obey a diffusion law. We study the process of diffusion in the quantum case. It is found that

quantum interference effects cause an acceleration of diffusion. A charged particle in a standing-wave

field is shown to be a physical system where the discussed phenomenon might be observed.

PACS number(s): 05.45.+b, 03.65.Sq, 41.75.Fr, 73.50.Yg

I. INTRODUCTION

The phenomenon of diffusion is one of the most in-
teresting manifestations of the chaotic type of motion in
classical systems. The simplest physical example of this
type of diffusion is found in the model of the kicked rotor

H= + Vcos(8)+5(t —nT)
2

described by the standard map [1]. If the initial condi-
tion for the rotor p (0), 8(0) is defined with a finite accu-
racy bp(0), b8(0), the model (1.1) yields a diffusive
growth of the uncertainty of the angular momentum p (t);
t,p'(t) ) = V't r2.

Since the pioneering work of Chirikov and co-workers
[2] the phenomenon of diffusion for the model (1.1) has
been studied intensively in the quantum case, too [3]. It
was found that in the quantum case, due to interference
effects, the diffusion reaches saturation. It means that
after some time the uncertainty of the angular momen-
tum does not grow further. A similar modification of the
diffusion process was also found in many other quantum
systems like Rydberg atoms in microwave fields [4], mol-

ecules in IR fields [5], quantum Josephson junctions [6,7],
atomic particle beams deflected in a standing-wave field

[g], and so on. The feature common to all cited examples
is a diffusion of the momentum or the energy (for the
kicked rotor E =p /2). Thus the origin of all studied
quantum models is the quantum kicked rotor. However,
in classical mechanics there is another class of chaotic
systems, which show diffusion in configuration space, and
the study of these systems in the quantum case is at the
very beginning [9]. A modern example of diffusion in

coordinate space is ballistic electrons in a lateral superlat-
tice [10]. In a classical approach this problem is reduced
to the motion of a particle with some mass m in a period-
ic potential V(x,y)

+ V(x,y), V(x +a,y) = V(x,y +b) = V{x,y) .

The system (1.2) for a =b was studied in detail in Ref.
[11]. It was shown there that if the energy is less than

V,„=max[V(x,y) ] the motion of the particle is general-

ly chaotic and resembles the motion of a Brownian parti-
cle. The results of the analysis of classical systems of
type (1.2) are currently used for the interpretation of ex-

perimental data for the conductivity of system electrons
in a lateral superlattice in the presence of a magnetic field

[12]. We note, however, that the classical approach for
the system treated in Refs. [10,12] may be questioned. In

fact, the value of the superlattice period a used in the ex-

periment [10]corresponds to the scaled Planck's constant
A'=1)kFa-0. 1. (k~ is the Fermi wave vector of the
electrons). From previous studies of chaotic systems

[3,13] we know that for such values of fi' the quantum dy-
namics can differ considerably from the classical one.
This gives one more reason for studying the diffusion in

coordinate space in quantum mechanics.
In the present paper we propose a simple physical sys-

tern, which yields diffusion in coordinate space, and study
it quantum mechanically. The proposed system is a par-
ticle in the periodic potential

H = ——Vcos( kx )sin( cot ) .
2pl

In the classical approach this system has properties simi-

lar to those of the system (1.2) [14] but the quantum
analysis of (1.3) is easier. Besides the connection with the
problem of ballistic electrons in a superlattice, the study
of the system (1.3) is of interest in itself. It is shown in

Sec. V that a slight modification of the model (1.3) de-

scribes the behavior of a charged particle in a standing
electromagnetic plane wave. We stress that one can
reduce the latter three-dimensional problem to a one-

dimensional problem without approximation. From this

point of view the system (1.3) is an interesting object for
both theoretical and laboratory study of the process of
diffusion in the quantum case.

The structure of the paper is as follows. Section II is

devoted to the analysis of the classical diffusion in the
system (1.3). The quantum diffusion is determined by the
quasienergy spectrum (QS) and the quasienergy functions

(QF) of the system, and we discuss in detail the structure
of both in Sec. III. The results of the numerical simula-
tion of the quantum diffosion are presented in See. IV.
Section V considers the dynamics of a charged quantum
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shall further refer to it as an "elementary cell" or "cell")

and every particle randomly walks along the chain. The
particle moves some distance in either the positive or
negative direction and is then scattered by the external
alternating potential in the opposite direction. [By analo-

gy with the model (1.2) we shall call this distance a free
path. ] It is convenient to measure the time in units of the
period T =2m/co and distance in multiples of the spatial
period and, therefore, the random walk model with
discrete time and discrete x„=2~n is most appropriate
for the description of the classical diffusion.

The probability of the particle's jump from one cell to
another can be determined in the following way. We uni-

formly distribute the particles over one cell and then,
after one period T, count the number of the particles in
the nearest cells. For co=0.3 we find that the probability
to stay in the same cell is 0.418, the probability to jump
to the next cell is 0.240; then onto the next cell the proba-
bility is 0.025; then 0.026; then less than 0.0001; and final-

ly 0.
Figure 2 shows the evolution of the coarse-grained dis-

tribution function F(x„,t)

particle in a standing plane wave. A possible scheme of a
laboratory experiment is suggested and an estimate for
the required parameters of the wave is given.

II. CLASSICAL ANALYSIS

To simplify the formulas we introduce the scaled vari-
ables x'=kx, t'=tQ, Q=kv'V/m, co'=co/II,
p'=pk/ mII, H'=H/V, and a scaled Planck's constant
tri'=4k /mB=4k/v'm V. In the new variables the sys-
tem (1.3) takes the form (primes are omitted)

H = —cos(x) sin(cot) .
2

(2.1)

In the case of a cylindric phase space —~ &p & + ~,
~ &x & +m. the system (2.1) is known as the double res-

onance model and was studied in detail in Refs.
[13,15—17]. The system (2.1) shows chaotic dynamics un-

der the condition co & v'2. We note that the region of the
chaotic motion is bounded in momentum and the shape
of this region depends on time as shown in Fig. 1. If we
take an ensemble of particles with the initial condition
belonging to the chaotic region, then after some time and
independently of the concrete form of the initial ensemble
we find the particles to be uniformly distributed over the
chaotic region (the so called mixing property). The time
of the mixing depends on the value of the Lyapunov ex-
ponent, and for co-0.3 it corresponds to 2 —3 periods
T =2'/co of the external field.

In the case —(x) &x &+ ~ the chaotic region of the
system (2.1) is obviously a periodic chain constructed
from the "elementary" chaotic region shown in Fig. 1 (we

I

Z„+7P

F(x„,t)= f (x',p, t)dp dx', x„=2mn
277 Z 77

(2.2)

for the positions of the particles. The initial distribution
function f (x,p, 0) was chosen in the form of a Gaussian
packet with the center at x =0, p =0 and width
Ax=1/&2, bp=0. 1/v'2 (all particles belong to the
center cell). The dashed line shows the results for the
discrete random walk model with the transition probabil-
ity as indicated above:

+0.026[F(x„+3,t)+F(x„q,t)] . (2.3)

[The terms F(x„+4,t), which we omit, have a prefactor
smaller than 10 .] A nice agreement is seen and, there-
fore, in the classical case the random walk approximation
is quite good for the present problem.

We note, however, a systematic deviation from perfect
diffusion which can be seen in the tails of the distribution
function [the fluctuation of F(x„)is due to the statistical
error]. This deviation causes the growth of the mean
square (x (t) ) to be somewhat faster than (x ) -t. The
deviation is obviously connected with some correlations

in the motion of the particle on times scales larger than
one period T. The detailed study of this particular
feature is not our purpose here and would require a
separate paper [18).

III. STRUCTURE OF THE QUASIENERGY SPECTRUM

Now we proceed to the quantum analysis of the
behavior of the coordinate uncertainty. We will assume
for simplicity that the initial wave function f(x,0) is even

(a) (c)(b)
2

FIG. 1. The stroboscopic
map of p(t„),x(t„)for the sys-
tem (2.1) in the case of a cylin-
dric phase space: —m. &x &m,
co=0.3, T =2m. /co, (a) t„=Tn,
(b) t„=T/4+ Tn, (c) t„=T/2
+ Tn.-3
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F(x„,t + T) =0.418F(x„,t)+0 24[F(x„+),.t)+F(x„),t)]+0.025[F (x„+~,t)+F(x„~,t)]
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FIG. 2. Classical diffusion —the evolution of the distribution function (2.2): (a) F(x„,t), (b) ln[F(x„,t)]. The dashed lines show
the results for the discrete random-walk model (2.3).

(x'(t) ) = f x'~ g(x, t) ~'dx . (3.1}

in x. In this case (x (t) ) =0 and the uncertainty is given

by

$'"'(x, t) =gbt(k)exp[ —i el (k)t]yI"'(x, t),

b, (k)= ' f "y'"I(x,o)[gI"'(x,O)]'dx .
27T 0

I3.5)

Let us represent g(x, O) in the following form:

g(x, 0) = f a (k)exp(ikx)dk

= f P'"'(x, O)exp(ikx)dk,—J /'7

$' '(x, 0)= g a(k+n)exp(inx), (3.2)

Here yI '(x, t) are the quasienergy functions; E~(k) are the

quasienergies in the units of A and by definition
0 & e&(k) ~ co. Substituting (3.5) into (3.3) we finally have

g(x, t) =g f bI(k)y~~ '(x, t) e px[i [kx —E&(k)t] Idk .
—

]I /3

{'3 6}

a (k) = f P(x, 0)exp( ikx)dx . —
2m

Using (3.2) we can seek the solution of the problem as
1/2

g(x, t) = f $'"'(x, t)exp(ikx)dk, (3 3}
j/l

where P' '(x, t) now satisfies the Schrodinger equation
with periodic boundary condition

i% ' =H'"'(t)P'"'(x, t),Qk'"'(x, t)
at

To simplify the analysis we will consider the time t to
be an integer multiple of the period T of the external po-
tential. In this case there is no time dependence of the
QF, and all time dependence is carried by the phase fac-
tors exp[ i eI(k)t] T—herefore w. e should aim our eff'orts

at the analysis of the band structure of the QS and the
structure of the "static" QF which are the solution of the
eigenvalue problem

U' 'yI '(x) =exp[ —i E((k) T]y("'(x)

for the unitary operator
y'"'(x +2~, t) =y'"'(x, t), (3.4)

$20' '(t)=
2

a—i +k —cos(x) cos(cut} .
Bx

U'"'= Texp ——f H'"'(t)dt
fi o

The general solution of (3.4) is the sum over the quasien-
ergy functions

(T denotes the time-ordering operator).
The following symmetry properties of the QS and the

QF are useful to note:
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(n ) =gn ~cI")(n)~', (3.11)

where the cI")(n) are defined by

y(&")(x)=gc&(")(n)exp(inx) . (3.12)

Figure 3(a) shows the quasienergies e&(k} corresponding
to the first 21 QF's for co=0.5 [e&(k) in the interval
(
—

—,', 0) follows by the symmetry (3.9)]. It is seen that the
behavior of the quasienergy levels e&(k) as a function of
the parameter k is as expected for a nonintegrable system
and contains many avoided crossings.

To proceed further it is convenient to use the diabatic
representation [20]. In the diabatic representation all
avoided crossings with a gap less than some chosen 5,

„

(3.9)

[s)(k+ I)]= Is, (k)], [y,' +"(x)]= Iy()")(x)exp(ix)] .

(3.10)

From (3.9) and (3.10) we can conclude that at k =+—,
' the

QS is doubly degenerate [19].
Equation (3.7} was solved numerically for Pi=0 2 T. h.e

QF's were ordered according to the quantity

are replaced by real crossings [Fig. 3(b)]. In the vicinity
of a crossing the connection between quasienergies in
both representations is given by the formula

e (k) —eI)(k) E (k) —eI)(k)
eg(k) = + +

2 2 2

(3.13)

~(k)(x )

' 1/2 ' 1/2
1 —s (k) (k) 1+s (k)

Xc +(k)(x )

[e (k) —e&(k)]
s(k)=sgn(k —k')

[e (k) —e&(k)] +b,

1/2 (3.14)

Using the diabatic picture we can "sort" all bands in
two classes corresponding to states in the classically
chaotic and regular regions, respectively. The first class
consists of relatively narrow bands which are formed by
all states associated with the chaotic component of the

where e &(k} are the quasienergies in the diabatic repre-
sentation [e (k)=e&(k) at k =k'], e+ (k) are the
quasienergies in the adiabatic representation, and
denotes the value of the gap. For the eigenfunctions of
the problem the following relation is used in the diabatic
representation:

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 O. l

0.0
0.0 0.1 0.2 0.3 0.4 0.5

0.0
0.0 O. l 0.2 0.3 0.4

FIG. 3. (a) The band structure of the quasienergy spectrum of the quantum system (2.1) for co=0.3, 4=0.2, 0(k & —'. The
quasienergies are plotted in units of fi. (b) The diabatic representation of the quasienergy spectrum. The avoided crossings with the
gap 4 & 0.01 are replaced by real crossings.



74 A. R. KOI.OVSKY, S. MIYAZAKI, AND R. GRAHAM

classical counterpart (2.1) of the considered system. The
Fourier expansion (3.12) of these "chaotic" QF's contains
5n -5I/fi (5I is the size of the chaotic region in Fig. 1)
coefficients c&'"'(n) which essentially differ from zero, and
the quantity (3.11) is close to zero for all k. Obviously,
this is the reflection of the fact that for the chaotic com-
ponent the mean value of the momentum equals zero.
The total number of the "chaotic" bands is also given by
the parameter 5n =5I/fi and for the chosen parameter
we have 15 chaotic bands.

The states associated with the regular component of
the system (2.1) form the second class. They give rise to
wide bands with the dispersion law

Ei(k) = [irt(l +k) /2], dc@= [Silk +iill /2], des, (3.15)

where t is an integer and ~1 )5n/2. In Fig. 3 we plot six
bands of the discussed type with l =+8, I =+9, and
l =+10. The next QF's with l~ ) 10 will add to the
figure nearly straight lines according to the formula
(3.15). The Fourier expansions of the "regular" QF's
contain less than 5n/2 coefficients cl"'(n) which essen-
tially differ from zero, and "the center of gravity" (n ) is
placed at either negative or positive n. In the limit
~l~ ~ ~ the discussed QF's have the obvious asymptotic
form yI"'(x)exp(ikx) =exp[i (I +k)x], which corresponds
to the free motion of the particle with the momentum

p =A'(1 +k).
If we now come back from the diabatic picture to the

adiabatic one we should modify the QF's according to the
formula (3.14) for the particular values of k =k" where
the crossings take place. It means that for these particu-
lar values of k the "chaotic" states, which correspond to
the classical motion with a finite free path, and the "regu-
lar" states, which correspond to a motion with an infinite
free path, are coupled.

As an illustration of the properties of the QF's dis-
cussed above, Fig. 4 shows the absolute value of the ex-
pansion coefficients c~'"'(n) for the QF's corresponding to
one "chaotic" and one "regular" band marked by bold
lines in Fig. 3(b). The discontinuity of the coefficients
along the k axis is due to the avoided crossings. In the
diabatic picture all these discontinuities are removed and
the coefficients cI"'(n) are smooth functions of the pa-
rameter k.

In the numerical simulation we chose the initial wave
function in the form of a Gaussian packet

f(x,0)=it ' exp( —x /2) .

This initial state has the uncertainty ( b,x ) = 1/&2,
(bp) =IiI&2 Th. us, for 6=0.1, the wave packet (4.2)
exactly corresponds to the initial ensemble of the classical
particles used in the previous section.

Let us denote by Ac. the characteristic width of the
chaotic bands. We can consider two time limits:
t & 1/Ac, and t &&1/Ac. The dynamics of the coordinate
uncertainty (3.1) for these two limits is defined by
different physical processes. The nonzero width of the
zones is a consequence of tunneling: the quantum parti-
cle need not be scattered by the external potential even
when the classical particle is. Therefore the limit
Act &&1 corresponds to the case when we can neglect the

(a)

(k)( )
2

0. O, S

0.0

(b)

{k)
(n)

g(x, t)= g f b, (k)y'i"'(x, t)exp[i [kx —E,(k)t]]dk .
{($ )

I /2

(4. 1)

IV. DIFFUSION IN THE QUANTUM CASE 0.S

Now we proceed to the diffusion in the quantum case.
First we consider it in the diabatic picture (no avoided
crossings, no coupling between the regular and chaotic
states).

To consider the diffusion process we have to exclude
from consideration the states which correspond to the
classical motion with infinite free path. It means that the
initial wave function is chosen in such a form that the ex-
pansion (3.6) contains only chaotic states. In other
words, the sum over l in (3.6) is restricted to the sum over
the relative narrow chaotic bands

15 00

FIG. 4. The absolute values of the expansion coeKcients of
the quasienergy functions corresponding to the quasienergy
bands marked in Fig. 3(b): (a) solid line ("regular" band), (b)
dashed line ("chaotic" band). The quasienergy functions are
shown in the adiabatic representation.
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tunneling. In this regime the growth of the coordinate
uncertainty is due to the classical scattering mechanism
and the wave packet should spread as (x (t) ) =Dt where
D is the coefficient of the classical diffusion.

For EEt ))1 the major role in the behavior of (x (t))
is played by tunneling. In this case we can estimate every
term in the suin (4.1) with the help of the stationary
phase method. The equation for a stationary point has
the form: dEi(k)/dk xl—t =0. While e'((k)-2irb, E the
wave packet spreads as (x (t) ) -(2mb, e) t

Now we come back from the diabatic picture to the
adiabatic one and consider the effects of the coupling of
the "regular" and "chaotic" states near the avoided
crossings. We note that, because of the strong depen-
dence of the position of the avoided crossings on co, this
coupling is a resonant effect analogous to multiphoton
resonance in quantum optics.

We consider a particular crossing of some chaotic band
Es(k) with some regular band ei((k) with the dispersion
law (3.15). In the adiabatic representation in the vicinity
of the crossing k' we have to replace the integral of the
diabatic representation

bs kys xexpi kx cskt k (4.3}

in (4.1) by the integral

Thus, the coupling between the considered chaotic and
regular states modifies the integral (4.3) in the vicinity of
k * in the following way:

f dk g b~(k)y(+)(x)exp[i[kx —s+(k)t]] . (4.4)

Here E+(k) are given by (3.13), g'+'(x} by (3.14), and in

the vicinity of k *we have

e)t(k)= Eit(k*)+ si((k')(k —k'),
ss(k) =as(k" )+as(k*)(k —k*),
le' (k")l « le' (k")l =))il,

Es(k') =et((k'),
1/2

b+(k) =bs(k)

1 —s(k) t a+(t)t—'1+s(k) is (k)t—

+f b (k)y'„"'( x)e'~
1/2

1 —s ( k) i r+(k) t—

2
e (4.5)

(4.6)

[It is easy to see that outside the small vicinity b,k -b, /A'l of k* the formula (4.5) coincides with (4.3).] We now consid-
er in more detail the second term in (4.5). Using the stationary phase inethod we can estimate it for t ))1/))i'i as follows:

1/2
1 —s2(k)g bs(k)exp(ilx) exp [ i [kx E+( k—)t+m /4] ],

+) 2

x„+m
F(x„,t)= f lilt(»t)l dx, x„=2~n .

277 X 7T
(4.7)

The "fine" distribution function is given by the square of

where k =k+ is the stationary point: e+(k+) —x/t =0.
Because of the prefactor [ [1—s (k)]/2] '~ the function
(4.6) has a narrow maximum at k+ = k '. For k+ =k ' we
have e+(k' ) =const+6/2, e+(k ') =A'l l2, le+(k' ) l

= lail/5l. Thus, in the coordinate space the function(4. 6)
is a narrow peak of the height -v'b, /t which moves
with a speed equal to one-half of the speed of a particle in
the considered "regular" zone Eit(k). Every avoided
crossing gives one peak. These peaks contribute to the t
law for the behavior of the squared coordinate uncertain-
ty and because of Al &&Ac this contribution dominates
over the contribution from the tunneling.

The results of the numerical simulation of the diffusion
in the quantum case for co=0.3 are presented in Figs.
5 —7. Figure 5 shows the behavior of F(x, t) until t =32T
for t)i=0. 1. Figures 6(a) —6(c) shows F(x, t) for t =16T
and different values of R. These figures should be com-
pared with Fig. 6(d), where the results of the classical
diffusion are given. We note that Figs. 5 and 6 show the
coarse-grained distribution function

I

the wave function and it is a rapidly varying function of
x. (The smaller the scaled ))i, the larger the frequency of
the variation, see Fig. 7.) Figures 5 —7 allow us to see all
effects of quantum diffusion which have been discussed
above theoretically. We summarize them once more:

(a) The coupling between the "regular" and chaotic
states (avoided crossings) gives rise to small peaks of the
probability which propagates with constant velocity
-))il/2 (l is the index of the "regular" band, ill ) 5n /2).
These peaks contribute to the tail of the distribution
function clearly seen in Fig. 7 and Figs. 6(b) and 6(c).

(b) The tunneling in configuration space (finite width of
the "chaotic" bands) causes the broadening of F(x„)[see
Figs. 6(b) and 6(c)]. We note that for large values of fi it
is difficult to distinguish this effect from the effect of the
coupling with "regular" states [Figs. 6(a) and 6(b)]. This
fact is hardly surprising because the coupling between
regular and chaotic states is also caused by tunneling but
in phase space rather than in configuration space.

(c) Figure 5 confirms the (x2(t) ) —t2 law: it is seen
that the size of the domain of the support of the wave
packet grows linearly in time.

The numerical simulation also shows one more in-
teresting effect. It is clearly seen from Figs. 5 and 6 that
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FIG. 5. Quantum diffusion —the same as for Fig. 2 but for the quantum distribution function (4.7) for %=0.1.
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FIG. 6. The logarithm of the distribution function F(x„,t) for t = 16Tand difFerent values of A: (a) %=0.2, (b) Pi=0. 1, (c) Pi=0.04,
(d) %=0 (classical result).
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V. A CHARGED PARTICLE IN A STANDING-WAVE
FIELD

The present section discusses a possible scheme of a
laboratory experiment where one might be able to study
the diffusion of the coordinate in the quantum case.

We consider the following system: a charged particle
with the mass m and the charge q moves along the y axis
and crosses vertically a standing wave with wave vector k
parallel to the x axis and a polarization of the electric
component parallel to the y axis. In the Coulomb gauge
the vector potential A(r, t) =e (Ec/v)cos(kx)cos(vt )

corresponds to the given field. In the nonrelativistic case
the Hamiltonian of the particle has the form

'2

H= 1

2m
P ——A(r, t)q

c
(5.1)

the coarse-grained distribution function F(x„,t) still

shows an interference pattern. This quantum interfer-
ence is very strong in the distribution function without
coarse graining (see Fig. 7). However, it is quite surpris-
ing that in our case the interference pattern can "sur-
vive" after the coarse-graining procedure (4.7) even for
fi-0.01. E2 2

+ cos (kx) cos (vt) .
2mv

(5.2)

From the viewpoint of nonlinear dynamics the system
(5.2) is a system of three nonlinear resonances centered at
P„=+mc and P„=O. We consider the nonrelativistic
case P„&(mc,P„((mcand assume that the additional
condition

P «qE/v«mc (5.3)

is satisfied. The condition (5.3) means that the widths of
the resonances are much smaller than the distance be-

tween them and, therefore, we can consider the resonance
at P„=Oas isolated. In other words, with high accuracy
the dynamics of the particle is described by the Hamil-
tonian

P =mv +(qE/v)cos(kx)cos(vt) is an integral of the

motion and, therefore, our problem reduces to the one-

dimensional problem

P„qEP„
H, = — cos(kx) cos(vt)

2m mv

Since A is parallel to e the canonical momentum

P E2 2

H„= + cos (kx) .
2m 4m v2

(5.4)

(a)

To make the motion of the particle chaotic we modu-
late the amplitude of the field: E(t)=Esin(cot) [21].
Now the system (5.4) is again a systein of three nonlinear
resonances and, according to Chirikov s criterion, chaos
occurs for

co((2+&2)qE/mc . (5.5)

0.25

(b)

120

We note that the condition (5.5) is a condition for the
modulation frequency co of the field amplitude (not the
frequency v of the field), and it can be easily satisfied for a
particle of arbitrary mass.

For the purpose of comparison we introduce the di-
mensionless variables: x'= 2kx t'= t Q, Q =qE/2mc,
p'=2P„k/Qm, co'=2co/Q, and fi'=4A'k /Qm
=8cfik /qE. (We note that fi' does not depend on the
mass of the particle. ) In these variables the Hamiltonian
(5.4) takes the form (primes are omitted)

0.2
H =p /2+[1+cos(x)][1—cos(cot)] . (5.6)

0.15

0.1

0.05

120

FIG. 7. Dynamics of the wave function. The figure shows
~1P(x, t)~ for x)0, t =4T: (a) A=O 2, (b) 8=0..04. Initial wave
function f(x,0)=m '~4exp( —x 2/2).

Now it is seen that the system (5.6) is very similar to our
model (2.1) and one can expect for it essentially the same
dynamics [22].

Let us estimate the characteristic parameters of the
standing wave. For electrons and an amplitude of the
electric field of E=1000 V/cm the typical values of
co=0.5 and %=0.2 used in the numerical simulation in
the previous sections correspond to a modulation fre-
quency 2X 10 s ' and a wavelength of about 0.1 mm.

A wave guide with a hole for the incoming particle and
the opposite wall covered by a sensitive substance (a pho-
topaper) may be a suitable setup. Developing the photo-
paper we can read the information about the coarse-
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grained distribution function F(x, t). The scale of the
coarse graining is obviously defined by the resolution of
the photopaper and it will not be a problem to reach the
resolution of the order of a wavelength. (In the numeri-
ca1 simulation we took the resolution equal to the wave-
length. ) Varying the speed of the incoming particles one
can vary the time t in (4.7) and, therefore, one can study
"the quantum diffusion" in its dynamics.
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