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The expression for the free energy of arbitrary perturbations of general Vlasov-Maxwell equilibria de-
rived by Morrison and Pfirsch [Phys. Rev. A 40, 3898 (1989); Phys. Fluids B 2, 1105 (1990)] is
transformed and put in a concise form, which is subsequently evaluated for arbitrary, double-symmetric
equilibria in the case of internal perturbations, i.e., perturbations which vanish outside the plasma, and
on its boundary. With the single exception of the configurations in which the equilibrium distribution
functions are everywhere isotropic and monotonically decreasing functions of the particle energy, these
equilibria always allow negative-energy perturbations, without requiring a large spatial variation of the
perturbation across the equilibrium magnetic field

PACS number(s): 52.35.Mw

I. INTRODUCTION

Considering arbitrary perturbations of general Vlasov-
Maxwell equilibria, Morrison and Pfirsch [1,2] derived
expressions for the second variation of the free energy
and concluded that negative-energy modes (which are po-
tentially dangerous because they may become nonlinearly
unstable and cause anomalous transport [3—5]} exist in
any Vlasov-Maxwell equilibrium whenever the unper-
turbed distribution function f'„' of any particle species v
deviates from monotonicity and/or isotropy in the vicini-

ty of a single point, i.e., whenever the condition

(0~

(v k) k.
Bv

&0

holds (in the frame of reference of minimum equilibrium
energy} for any particle species v for some position vector
x and velocity v and for some local wave vector k. The
proof of this result obtained by Morrison and Pfirsch was
based on infinitely strongly localized perturbations,
which correspond to ~k ~ ~. This raises the question of
the degree of localization actually required for negative-
energy modes to exist in a certain equilibrium. Studying
a homogeneous Vlasov-Maxwell plasma with constant
magnetic field, Correa-Restrepo and Pfirsh [6] showed
that negative-energy modes exist for any deviation of the
equilibrium distribution function of any of the species
from monotonicity and/or isotropy, without having to
impose any restricting conditions on the perpendicular
wave number k~, i.e., without requiring large k~. These
results were later extended to the more interesting case of
an inhomogeneous, force-free equilibrium with a sheared
magnetic field [7]. In the present paper, the investiga-
tions are carried out for a whole class of equilibria (which
includes the previous configurations as particular cases),
in that the general expression for the perturbation energy
is evaluated for arbitrary double-symmetric, i.e., one-
dimensional, equilibria. In generalized coordinates
q, , qz q3, such equilibria depend only on q, , the equilibri-

um magnetic field B' ' is perpendicular to Vq ~,
B' 'Vq

&
=0, and the equilibrium distribution function of

each particle species v has the general form
f'„'=f'„'(A„,p„2,p,3), where % is the (conserved) par-
ticle energy and p„z,p, 3 are the (conserved) canonical
momenta corresponding to the two, ignorable coordinates

q2, q3, respectively. This class of configurations investi-

gated here includes, for instance, all cylindrical axisym-
metric (dependent only on the radius r } and all plane
symmetric (dependent only on one Cartesian coordinate
x ) equilibria.

For double-symmetric equilibria, one obtains a

sufhcient (but not necessary) condition for the existence
of negative-energy perturbations which is somewhat simi-

lar to inequality (1), namely,

gf (0)

(kz, v)(k~, &0,
Bv

where the angles are mean values along the unperturbed
particle orbits and the wave vector k23 is given by

k23=kzVq2+k3Vq3. Unlike the case of inequality (1),
k23= ~k23~ does not have to be large, the only condition

imposed on k23 being k/3%0.
Negative-energy waves are also possible even if in-

equality (2) is not satisfied, namely, if the equilibrium dis-

tribution function of any of the particle species is non-

monotonic (t}f'„~ /c}&,&0) and/or locally anisotropic in

phase space. (c}f,' ' /t}p, 2 and cjf,' ' /t}p 3 are not both

identically zero. This does not exclude isotropic pressure
tensors. } Large spatial variation of the perturbations
across the equilibrium magnetic field is not required in

these cases either. If there is only anisotropy, however,

k23 is not completely arbitrary because, at given k z /k 3,
the quotient n /k3, where n is an arbitrary integer (pos-

itive or negative), can assume values only in a certain
range. The result then is that it is only configurations for
which the equilibrium distribution functions of all species
are everywhere isotropic and monotonically decreasing
functions of the particle energy that do not allow the
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kind of negative-energy perturbations studied here.
In Sec. II, the expression for the free energy 5 H avail-

able upon arbitrary perturbations of general Vlasov-
Maxwell equilibria derived by Morrison and Pfirsch [1] is
transformed and put in a clear and concise form, which is
then evaluated in Sec. III for arbitrary, double-symmetric
equilibria. For these equilibria, a convenient representa-
tion of the generating function of the perturbations fur-

ther simplifies the expression for 5 H. Considering inter-
nal perturbations, i.e., those which vanish outside the
plasma, and on its boundary, the minimizing perturba-
tions are obtained in Sec. IV, where the expression for the
minimized energy is also obtained. In deriving this ex-
pression, the difference between particles with periodic
motion (PPM) and particles with nonperiodic motion
(PNPM) plays a major role. Section V is devoted to an
extensive discussion of the energy expression. This dis-
cussion leads to the main results, which are then summa-
rized in Sec. VI.

A considerable part of the calculations is done in the
appendixes. The relations that are necessary to trans-
form the general expression for the perturbation energy

I

are derived in Appendix A. A convenient representation
of derivatives in x-v space is introduced in Appendix B.
The motion of the charged particles is treated in Appen-
dix C, and the two different groups of particles, namely,
the particles with periodic motion and the particles with
nonperiodic motion, are introduced.

In Appendix D, the constant of the motion C, which
plays a crucial role in the expression for the minimized
perturbation energy, is determined. Appendix E intro-
duces coordinates in x-v space which are particularly
suited to treating the expression for the perturbation en-
ergy. Finally, in Appendix F, an expression is derived for
the perturbed electric charge density, and it is shown that
this can be made to vanish by an appropriate nontrivial
choice of the perturbations.

II. PERTURBATION ENERGY
FOR GENERAL EQUILIBRIA

The expressions for the free energy 5 H available upon
arbitrary perturbations of general Vlasov-Maxwell equi-
libria derived by Morrison and Pfirsch [1,2] can be writ-
ten as [6]

P

X V v

2m„Bv
ag, ag„

~ vo
()x Bx

„, ag„
()V

e„, , ()G„BG„" B")X "+2
m c ()v Bx

e, BG„+ ' gvx B("
m c "

Bv Bx

e, g BG„' g„x " xE"'m„" ()v Bv

gf (0)

+
Bx

ag„ ag„
Bx ()v
2

ag„
v+(d„G„)

v

e e a (0'

+f',"' "5A -2 "
c c ()v

d„(6„5A)—6„(v 5A) + fd x(5E +5B ) . (3)

Here, the species v with equilibrium distribution function f, (x, v) consists of particles of electric charge e, and
mass m„(c is the velocity of light). E' ' and B' ' are the equilibrium electric and magnetic fields, respectively. 6„(x,v)
is a generating function for the perturbations 5x and 5v of the particle position and velocity, as given explicitly by Eqs.
(F8) and (F9). 5A is the perturbation of the vector potential and 5E /8n. and 5B /8m. are the perturbations in the
electric- and magnetic-field energy densities. The operator d„ is the equilibrium Vlasov operator, i.e.,

(0)d, —v +a, .

where

(p) v E(p) v XBe (0)

Cm„

Taking into account the relations derived in Appendix A, Eqs. (Al) —(A4), Eq. (3) can easily be transformed to yield

I ()6
5 H= g f '(d„g, ) F', '

2m Bv

@","' ag„
Bv Bx

'2
e. e„a („o'

+f' ' 5A —2
c c Bv

d„(G 5A) —6 (v 5A) + f d x(5E +5B ),Bx 8m
(6)

where

g p(0) e g p(0)
F(0) + B(0)X

Bx m c Bv
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so that the equilibrium Vlasov's equation is

d f (0) F(0) v+ " E(0) '
()

e„()f',,
')

rn, Bv

Equation (6) becomes particularly simple if one evaluates 5 H in terms of electrostatic initial perturbations, which
have 5A=O, 5B=VX5A=0. This yields

x d v ao.5H=y f" " ' (dG) F',".
2' Bv

af(," aG.
Bv Bx

'+ fd x5E1

Sw

For time-independent equilibrium fields E' '= —V4( ' and B' ' =V X A' ', the particle energy &„,

v+e 4''
2

is a constant of the motion. The equilibrium distribution functions f', ,
' can be written as

f„"'(x,v) =f', )(%„(x,v),R„(x,v)),

(10)

where v runs over as many indices as there are other constants of the motion R„,in the problem under consideration.
If one introduces generalized coordinates q;(x), i =1,. . .3, with the corresponding covariant velocity components

U;(x, v) and takes into account the relations derived in Appendix B, in particular Eq. (B10), the perturbation energy
5 H, Eq. (9), can be expressed as

d X d U
(O)

5 H= g f —m„(d, G„)
V, K 1~ 1'K

Bf(,')
)

()W„. aG,
'

—(d„G„)
()% jf Bv „(3x

aG„
+(d,G, )

vv s v

BJV„„' e, ,
c}A„

+ S~P]X
()x U, m c Bv

-+ ' fd" 5E'.
8m

(12)

Note that, in Eq. (12), the derivatives with respect to x
are now performed at constant U;(x, v) =v (Bx/()q; ), and
not at constant v. It is evident from Eq. (12) that there
cannot be negative-energy perturbations if all

f,', '=f,' '(&„) and if df„' '/B&, (0, a result already
proved in Ref. [8].

III. PERTURBATION ENERGY
FOR ARBITRARY, ONE-DIMENSIONAL

EQUILIBRIA

B' '=VX A' )=VXI A' '(q )Vq ]

dW'"
3

da"'
2

Tq3 X Vq ) + Vq ) X 7'q2
dq, dq,

where

1

J(q, )

dA' '
g dA2+

Bq2 dq) Bqg
(13)

Double-symmetric equilibria are now considered, i.e.,
configurations in which the equilibrium scalar quantities
depend only on one of the three spatial coordinates
q„q2, q3. Let q& be the generalized coordinate on which
the equilibrium depends. Since q2 and q3 are ignorable,
the corresponding canonical momenta are constants of
the motion.

The equilibrium magnetic field B' ' has the following
general form:

I
J(q )=

Oq,

Bx Bx

()qp ()q3

( 3 I
' =0 without loss of generality).

The Lagrangian L of a particle of species v is

m e,
L,,

= -v + A( )(x) v —e„4' )(x)
2 c

(15)

from which the momentum canonically conjugated to x
follows:

BL e,,

p„= —=m.v+ '
A."',

Bv c

with covariant components

p„;=m v, (x,v)+ A,( '(q, )

Bx v ~p]=m v + 3('(q ),
Bq, c

which are the momenta canonically conjugated to the

q; s.
Besides the particle energy &, also the canonical mo-

menta p 2 and p 3 are constants of the motion. In the
four dimensional spac-e (U, ,q, ), i =1, . . . , -3, the general
equilibrium solution of Vlasov s equation is

(18)
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ap

a
e. dw.(0)

Vq) =
c dq,

e
VA (P)

C
(19)

Then, in Eq. (12), R„„=p„„,a=2, 3. From Eq. (17) one
has

and

pv~ =m
Bv,„Qq„

and therefore

(20)

a% e aA' ap evK + v B(P)X
vK PvK + v B(P)X

~vK

ax m, c av ax &, m c
X

+ " [va,(0)xvq, ]xax ., mc ' " av

ev a~,'"
(„0) —{3,„V.4 (0)+ V'q,. =0, (21)

because A ' does not depend on q„ for ~=2, 3.
Hence, for equilibria which depend only on one spatial

coordinate q„Eq. (12}reduces to

(0)

H=x J *, ' (d„G„F—
V v

K=2, 3

aG„a („')—(d„G„)
aq ax v, ap

conjugate of g„.
The constants k3 and k3 are the covariant components

of a wave vector k23, given by

k33 —k2vq2+ k3vq3 (24)

Derivation of the expressions in the exponents of Eq. (23)
along the unperturbed orbits yields

dv(kzq2+ k3q3 ) =k3q3+ k3q3

=kzu +k303

+ 3~ E2
8m

(22) =k23 V (25)

Note that, in this representation, derivatives of 6, in v

space appear only in d„G„the derivative of 6, along the
unperturbed particle orbits.

Since the equilibrium is independent of q3 and q3, an
approximate ansatz for the generating function 6„is

(v', i =1, . . . , 3 are the contravariant components of the
velocity}.

Inserting Eq. (23) in Eq. (22), integrating with respect
to q2 between q30 and q30+21Tlk2 and with respect to q3
between q30 and q30+2mlk3, taking into account that

6„(x,v)=6„{x,v;(x, v)}
i[kq+kq]

~([g (q v )e 2 2 3 3

( )
t[k2q2+k3q3 ]

g q„v, e (23)

d x =J(q, )dq) dq2dq3

and defining s(q l ) by the relation

q20+27T/k2 q3p+ 277/k3
s(ql}=J(ql} dq2dq3

q2o q3o

(26)

(27)

G is obviously a real function since g„ is the complex yields

s(ql)5'H= g f dq d'v
4

K—2, 3

af (0) . af (0)

~[d,g i(v k23)g„]~ —— k„[g,d„g„* g'd„g 2i(—v k23)g„g„—] .
v 2 aPv~

+ dx6E1

2' (28)

The complex functions g are conveniently represented as
iI „(q&,v,. )g„(q„u;)=)Ii (q„v;)e

where 0' and I are real functions and are such that the g 's are single-valued functions of q& and v;.
Inserting Eq. (29) in Eq. (28}yields

(29)
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5 H= g f dq)d u ' — [(d,% ) +%,[d,,I,, +(v.k23)] ]
— k, 4 [d, l „+(v.kz3)]

I
. (30)

K —2, 3

Here, the electrostatic energy term (1/8m. ) f d x 5E has been dropped since the perturbed charge density can be

made zero by an appropriate choice of the signs of 4„,which do not influence Eq. (30). This is explicitly shown in Ap-

pendix F. Note that 5 H is a functional of 4„,which appears as 4,, and d, %„and of I „which appears only through its

deriuative d I, along the unperturbed orbits.

IV. EXTREMIZATION OF THE SECOND-ORDER PERTURBATION ENERGY

Complete minimization of the expression for the perturbation energy, Eq. (30), with respect to I „is now possible. In
order to do this, we first consider the variation of 5 H brought about by a variation 5I of I,. This quantity can easily

be calculated and is

5, (5'H ) =5'H(r, +5r, )
—5'H( r„)

f —,'s(q) )dq) d u [d„5I „] —2 %„[d,l, , +v k2, ]
— k,%, .

V V 'P ~v

K—2, 3

f —,'s(q) )dqtd u d, 5I „—2 %„[d,,I,, +v k23] — k,4,
V V BP VK

K—2, 3

+[5I „]d„2 %„[d,,l,+v k ]+ k, 4„ (31)

Taking 5I „ to vanish outside the plasma, and on its boundary, as is appropriate for the internal perturbations con-
sidered here, Eq. (31) reduces to

(0! (Ol

5r (5'H)= g f ,' (sq, )—qd)d' u[
15.,]d„2 ' +',[d,l,+v k2, ]+ '

k,+2
V V P VK

K —2, 3

and, since 5I, is arbitrary in the internal region, the condition for the vanishing of 5„(5H) is
1'

(32)

d, 2 %„[d,l,+v k&3]+ k,%, =0 .
8 BP VK

(33)

Since d, is the rate of change seen by the moving particles along the unperturbed orbits, the general solution of Eq. (33),
in the four-dimensional space q, , U, , i = 1, . . . , 3, is given by

()f(0) gf (0) 5f (0!

2, %„[d,l,+v k»]+ k& +k, V,=C,(&„p„~,p,3),
V BP CIP V

(34)

where C, is a single-valued function of the constants of the motion. C„(&„p„2,p„3 ) is explicitly determined in Appen-
dix D by using the fact that 1 „must be such that the generating function g, for the perturbations, Eq. (29), must be sin-

gle valued. Inserting Eq. (34) in Eq. (30) yields the minimized perturbation energy in the form

(0)

5 H= g f —,)s(q, )dq, d3u
a

—[d„%.].+ —,'~ '„

gf {0! Qf (0)

k2 +k3
Bp 2 Bp 3

gf (0)

C

gf (0) A(2

A&V

According to Appendixes C and D, the particles of each species v can be divided into two classes, namely, the parti-
cles with periodic motion (PPM), for which q, (t) is a periodic function of time, and the particles with nonperiodic

motion (PNPM). This is utilized to split the perturbation energy into two parts:

5 H =(5 H )PPM+(5 H )PNPM,
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where (5 H )ppM is the contribution of the particles with periodic motion, and (5 H )PNPM that of the particles with non-
periodic motion. According to Appendixes C and D, these contributions are, explicitly,

(0)

(~ H)pNpM g f ds(q( )dq)d v ' [d Pv] +
d Pv

V v

~f (0) ~f (0)

k2 +k3
()P v2 dP v3

gf (0) (37)

where C„(&„,p„2,p„3) is a completely arbitrary function, and

2 gf (0)

(5 H }ppM= g ,'s(q, )d—q)d v

V v

gf (0) gf (0)

k2 "+k,
[d gl ]2+ 1 @f2

V

1 1

v 4 (0) ~gf (k23 V)+k2 +k3
v v pv2 dpv3

(38)

where n„ is any integer number, i.e., n„=0,+l, . . . . This integer n„appears upon integration of d„l, along unper-
turbed orbits as a consequence of the fact that the perturbations are single valued in x-v space, and that, for PPM, the
coordinates q&, v;, i =1, . . . , 3, are periodic along the unperturbed orbits. This is discussed in more detail in Appendix
D.

By employing the coordinate system t,XF„,p,2,p„3 introduced in Appendix E the contribution of the particles with
periodic motion to the perturbation energy can be expressed as

So gf (0)

(5'Id)ppM= XJ,dpdpp ,dp ,dt„„
gf (0) gf (0)

k2 +k3
~P ~P

df,

1 1
2 gf (0) gf (0) gf (0)

(39)

vghere

s 4~So=
J(q, ) k2k3

(40)

Performing the integration over t in Eq. (39) yields
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So
(0)

(& H)PPM= g f 3 d%gp 2dpy37
4m, ,

as, '
gf (0) gf (0)

k2 +k3

( ~) (
P~Z Pv32a

+-,' %.
)

2
(3f(0) gf (0) gf (0)

n, + „, 2 '-(k„v)+k, ' +k,
4rr ()f'0) (1 . " ' ()p, ' (3p,

ae,

(41)

I af(„') af(„') a af(„0) a af(,0)

=v + +
m„Bv „B&„Bq Bp,2 ()q3 (3p„3

gf (0) gf (0) gf (0) gf (0)

k23 k23 v +k2 +k3

(42)

(43)

Note that the only derivative of 4' which appears in
the expressions for 5 H, Eqs. (37)—(41), is

where the term (Bf(„)/B&,)(k» v) could also be ex-

pressed in a different way according to the relations

to localize sII, (d„q(, is then also localized) to the region
around &~,p„20,p„30 where 8f ', ' /()&„&0. Outside this
region 4', vanishes. All other 4'„are set equal to zero.
The 4, corresponding to the PNPM are likewise all set
equal to zero, so that (t) H )PNPM =0. The sign of
o H = ( 5 H )PPM is then determined only by the sign of
the integrand in the region of localization, which is then
negative.

The kind of localization introduced here means that,
for every q, in configuration space, only the particles
whose constants of the motion have values near
&~,p„20,p„30 are perturbed; this localization is thus quite
different from a localization in configuration space.

along orbits

the rate of change of 4 along the unperturbed orbits. En

particular, there are no explicit spatial derivatives

V. DISCUSSION OF THE EXPRESSION FOR
THE SECOND-ORDER PERTURBATION ENERGY

A. The perturbation energy (5 H )ppM for particles
with periodic motion

To study the sign of (5 H )PPM, Eq. (41), one has to dis-

tinguish the following two cases.

k2 =k3 =0~k&3=0, perpendicular wave propagation

In this case, the wave propagation is perpendicular to
B' ' since k23.B' '=0 for all q&. Let us consider, in phase
space, the subspace defined by &,=A'~, p„2 =p„20,
p„3=p 3(). It follows immediately from Eq. (41) that
o H (0 if ()f( )/()& &0 for some &,p ~,p 3 around

%~,p 20,p 3Q corresponding to PPM, and for any parti-
cle species v. This means that the presence of a local
minimum with respect to &, in f ', ' (&„p 2,p 3 ) guaran-
tees 5 H & 0, without any restrictions on the spatial Uaria-

tion of the perturbations perpendicular to B( ': it suKces

2 k2 k3 are not both zero, kqs B' '40

En this case, the wave vector k23 has a component in

the direction of B' ' (with the possible exception of some
isolated points q, ) since

k» B' '=k, 8""(q))+k3B '
(q, )

1

J(q, )

dA' ' dA' '
3 2—k2 +k,

q,
(44)

If r)f ', ,
' /&j, , & 0 for some &„p,2,p„3 around

.JV,~,p 2o,p 3o corresponding to PPM, and for any parti-
cle species v, one again localizes the perturbations 4
around these values, as in the preceding cases. All 4', ,

corresponding to PNPM are set equal to zero; therefore
( )PNPM =0.

If ()f („0) /(3p„3 = r)f ',,
) /()p, 3

=0 (local isotropy), all
terms in Eq. (41) are negative. If r)f( )/()p 2 and/or
()f' ) /()p„3&0, one can use the arbitrary n to make the
integrand in Eq. (41) negative. This is most easily shown
if one chooses + independently of t, i.e.,
4' =0',,(&,p 2,p 3). In this case, the integrand in Eq.
(41) is given by
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gf (0)

n, + (k„.v)

1

X n + 1 1 ~fv
k23 . (45}

2v m„a/„" " Bv,)

n, i.e., by choosing n„ large enough to satisfy both ine-

qualities.
The expression (45} is also negative if both factors are

negative, i.e., if

n„« — (k„v)
277

and (47)

and

n, ) — (k„v)2'

1 1 fv(0)

2v m„gf(v& ( ' i3v, )
'

(46)

which can easily be satisfied by the appropriate choice of
I

fizH =(fizH )ppM

gf (0)

(v tv)(t&& )0,
(iv

it suffices to take n, =0 to make the expression (45) (and

thus 5 H) negative Fo.r any (v.kz3)(k23 (af'„"Iav)~„),
it is negative if the factors in the square brackets are ei-

ther both positive or both negative. Both factors are pos-
itive if

1 1 dfv

2v m„gI'v) " Bv

which can be satisfied by choosing the arbitrary n„ap-
propriately small.

Note that when df (%~ p zp p 30)/(l~ )0, fi H &Q

is possible without imposing any conditions on kz3. It is
not necessary either to assume large deriuatiues of the per-
turbations across the magnetic fteld.

If Bf'„'IBA„&0 for some &„,p„z,p„3 around

&~,p,zp, p,30 corresponding to PPM, and for any parti-
cle species v, one again localizes 4, around

&~,p,zp, p,30. All other )Il„, and all 2p„ for the PNPM
are set equal to zero. The positive contribution of
[d,%',] =[BV„IBt] to the integral in Eq. (41) can be
eliminated by choosing )p,='II„(&„,p,z,p„3). In this
case, Eq. (41}reduces to

X f 3 d~APVZdpv3 q'v
4m„ v

df.(0)

+ (k23 v) n, + (0) k23'
2m

' 2~ m„(if(„0) v
(4&)

Since )p„ is localized around &~,p„zp,p„30, the condition for 5 H & 0 is

@r(0)
n„+ (k„v)

V

gf (0)

2nm„()f („0) . v
(49)

1 dfv dfv
n„+ (k23 v)+, , k, +k,

or, equivalently, when Eq. (42) is taken into account,

n„+, (k„v)
V

(50)

If (kz3.v) (kz3 ~ (()f(„)/Bv) ~, ) )0, it is clear that choosing n =0 satisfies inequality (49) without any conditions being
imPosed on kz3, excePt kz3%0. For a homogeneous Plasma with constant B' ', and choosing kz3 =k((pet), one obtains the
result of Morrison and Pfirsch, Eq. (144.b} of Ref. [2], which was obtained in the context of drift-kinetic theory. For a
y-dePendent, force-free Plasma slab, and choosing kz3=k~~pez)(y =yp), one obtains the result of Ref. [7], which is also
valid for a guiding center plasma [9].

If (kz3 v) (kz3.(Bf' ) /Bv) ~„)&0, inequality (50) can also be satisfied. With the arguments of the mean values given
explicitly for the sake of clarity, this inequality can be written as

k2
k3

l v vvPv2vPv3v kv ' 3 3

n k~
+bv &vvpvzvpv3v k

k~
+h &vvpvzvpv3v, (0, (51)
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where

k2
bv ~v Pvz Pv3~ y

Ic, 3

k2
hv v~Pvz Pv3~ ~

z. ( k,
~

7 1

2zr

(52)

The equilibrium distribution functions are monotonically
decreasing functions of the particle energy, and no

negative-energy modes are possible, in accordance with

the general results obtained in Sec. II and Ref. [8].

B. Pexturbation energy (5 0 )pNpM for particles
with nonperiodic motion

k, Bf', ' df'„
X +

k3 Bp„z BP,3
(53)

Instead of prescribing the two arbitrary components
kz k3 one can consider k3 and the quotient kz /k3 as in-

dependent of each other.
Inequality (51) is satisfied if one factor is positive and

the other is negative. This is the case (since
—Bf'„'/B&„&0here) if either

0( +b„&—h, for h, (0
3

(54)

or

n,—h„& +b, &0 for h, &0,
3

(55)

which can always be satisfied by choosing the arbitrary
n „/k 3 correspondingly.

Inequalities (54) and (55) extend to the general one-
dimensional case the results obtained for a homogeneous
plasma in Ref. [6], and for a force-free plasma slab with
shear in Ref. [7]. The quantity

h,
1+ (56)

can be interpreted as the local anisotropy of the distribu-
tion function in phase space, and coincides with the pre-
vious definition of the anisotropy in the homogeneous
and force-free cases.

It has just been shown that, when Bf', '/B&, &0, it is

always possible to have 5 H &0 without any restriction
on k23 or the spatial variation of the perturba-
tion across B' '. When al'."Ia&„&0 and

(kz3 v)(kz3 (Bf„' '/Bv)~„) &0, it is also possible to have

5 H & 0 without any restriction on kz3, except kz3%0, and
without any restrictions on the spatial variation of the
perturbation across 8' '. In the case where
Bf', 'Id&„&0 and (kz3 (Bf', 'IBv)~„) &0, 5 H &0 is

also possible. In this case, however, n /k3 is restricted
by inequalities (54) or (55), which reflect the explicit
dependence of the equilibrium distribution function on
the canonical momenta, i.e., the (local) anisotropy off ' '.

If df', '/Wf„&0 and df'„'Idp„z =0, Bf' 'IBP„=0,
then h =0 for &„=&~,p~z =p„zo, p~3 =p 3O, the equi-
librium distribution function is locally monotonically de-
creasing and isotropic, and inequality (51) cannot be
satisfied for these &~,p zo,p 3O. If Bf'„'/B&, &0 and

h, =O for all &„,p,z,p 3, then f', ' =f'„'(&„),the equi-
librium is everywhere isotropic and homogeneous, and
there is no electric current since V XB' '=0 in this case.

It should be noted that the particles with nonperiodic
motion usually do not have the same importance as those
with periodic motion. For instance, in a homogeneous
equilibrium, there are only particles with periodic motion

(Appendix C and Ref. [7]);also, in the case of a force-free

plane slab configuration, the overwhelming majority of
particles perform a periodic motion, as shown in Ref. [7].
The particles with nonperiodic motion, however, must be
taken into account when the equilibrium distribution
functions allow arbitrarily large velocities and energies,
e.g., when one considers Maxwell-like distributions,
which could then lead to the particles being untrapped
and having a nonperiodic motion, as described in Appen-
dix C.

To study the sign of (5 H )pNpM Eq. (37), one again has
to distinguish the following two cases.

1. k2 =k3 =0, perpendicular wave propagation

It follows immediately from Eq. (37) that 5 H &0 if
Bf'„'IB&„&0 for some &„p„z,p„, corresponding to
PNPM, and for any particle species v. This means that
the presence of a local minimum with respect to &„ in

f'„'(A„p„z,p„3) guarantees 5 H &0, without any restric
tions on the spatial variation of the perturbations perpen
dicular to B' ': it suffices to localize 4, (d„+„is then also
localized) to the region in .P„,p„z,p„z, where

BfP'/B%„& 0. Outside this region 4, vanishes. All oth-
er 4„are set equal to zero. The +, corresponding to the
PPM are likewise all set equal to zero, so that
(5H)ppM=O. The sign of 5 H=(5 H)pNpM is then deter-
mined only by the sign of the integrand in the region of
localization, which is then negative.

2. kz%0 and/or kzAO kzz'B

If Bf'„'/B&,&0 for some &„,p,z,p„3, the positive

contribution of the term dependent on kz, k3 in Eq. (37)

can be completely eliminated with the help of the arbi-

trary C, . Then the same line of reasoning as in the

preceding case shows that 5 H is negative.
If BfP'/B&„&0 for some &,p z,p 3, the positive

contribution of [d,%„] can be eliminated by choosing 4,
as a function of the constants of the motion only, i.e.,
ql, =%'„(&,p„z,p 3), d 4 =0, and the contribution of
C is eliminated by choosing C =0. No condition is im-

posed on k2, k3 or, alternatively, on k23, except k23&0. If
the equilibrium is locally monotonically decreasing and

isotropic, i.e., if df ', ' IBA, & 0 and aI'."Iap„z =0,
df' '/Bp„3=0 for & =&~, p„z=p„zo, and p, 3 p 3O,

then 5 H cannot be made negative at these values of &„,
p 2, and p 3, as was also the case for the PPM.

It has just been shown that if there is nonmonotonicity
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(Bf'„'/B&„&0) for some &„p,2,p,3 corresponding to
particles with nonperiodic motion, 5 H can be made neg-
ative without imposing any condition on k23. Iff ', ' is lo-
cally monotonic (Bf' '/Bff„&0), but anisotropic
(Bf'„'/Bp„2+0 and/or Bf', '/Bp, 3%0; this local anisot-
ropy in phase space does not exclude isotropic pressure
tensors), 5 H can also be made negative without imposing
any condition on k&3, except k&3%0. No restrictive as-
sumptions have to be made concerning the behavior of
the perturbations across the magnetic field.

VI. CONCLUSIONS

The general expression for the free energy 5 H avail-
able upon arbitrary perturbations of general Vlasov-
Maxwell equilibria derived by Morrison and Pfirsch [1]
was transformed to a relatively simple and compact ex-
pression [Eqs. (6) and (12)] which is very convenient for
applications. From this expression, a previous result of
Weitzner and Pfirsch [8] is immediately obtained, name-
ly, that equilibria for which the equilibrium distribution
functions depend only on the particle energy and are
monotonically decreasing do not allow negative-energy
perturbations.

The general expression for the perturbation energy is
then evaluated for arbitrary, double symmetr-ic, i.e., one
dimensional, equilibria. In generalized coordinates
q „qz,q3, such equilibria depend only on q „the equilibri-
um magnetic field B' ' is perpendicular to Vq „
B' 'Vq, =0, and the equilibrium distribution functions
of each particle species v are of the general form
f'„'=f', '(&„p,2,p„3), where %„is the (conserved) par-
ticle energy and p„2,p„3 are the (conserved) canonical
momenta corresponding to the two ignorable coordinates
q2, q3, respectively. For these equilibria, the following re-
sults are obtained.

Perturbations of negative energy (5 H &0) exist for
any local deviation from monotonicity (i.e., if
Bf'„'/Wf„&0 for some &„,p„z,p,3) of the distribution
function of any of the particle species v, and for any wave
vector k23=k Vqz+k3Vq3, without restrictions on the
behavior of the perturbations across the equilibrium mag-
netic field, i.e., large gradients of the perturbations across
B' 'are not needed

If Bf'„'/8& & 0, only waves with k23%0 (which there-

fore have a component in the direction of B' ' can possess
negative energy.

For any df'„'/deaf„, if (k&3 v)(k23. (Bf'„'/Bv)~„) &0
(the angular brackets mean averages along the unper-
turbed particle orbits), negative-energy perturbations also
exist, with no restriction on k/3 except k23%0, and
without requiring large gradients of the perturbations
across B' '

~

If both Bf'„'/8&„&0 and (k&3 v) (k23.(Bf'„'/
Bv)~„)&0, but if Bf'„'/Bp„z and Bf'„'/Bp„3 are not both
identically zero for all v, negative-energy perturbations
also exist [Bf', '/Bp„2=Bf'„'/Bp„3 =—0 for all v only for
equilibria which are everywhere isotropic,
f', '=f'„'(&„),which therefore have no electric current;
for all cases of practical interest, 8f '„'/Bp „z and
Bf'„'/Bp„3 do not vanish identically]. In this case, how-
ever, k23 is not completely arbitrary, since n, /k3 is re-
stricted by inequalities (54) and (55). As in the preceding
situations, no large gradients across B' ' are needed in
this case either.

The results derived here include those previously ob-
tained in the case of a homogeneous plasma [6], and in
the case of a force-free plasma with shear [7]; they are,
however, much more general since they apply to all one
dimensional equilibria ~

APPENDIX A: RELATIONS FOR THE
TRANSFORMATION OF THE PERTURBATION

ENERGY

The second-order perturbation energy, Eq. (3), can be
put in a very convenient form by means of the relations
derived in this appendix. By taking the identities
(8/Bv) Xv=0 and (8/Bv) X(Bf'„'/Bv) =0 into account
the term

(Bf'„'/B ).v(e„/ mc)G, vX(B/Bv)[B' '(BG„/Bx)]

can be expressed as the sum of a divergence in v space,
which vanishes after integration, and another term, ac-
cording to the equation

af ~.
o' e, a aG,

G vX B'
Bv m, c ' Bv Bx rn, c " Bv Bv

B ~ v
BG„

x

a
Bv m c ax av av m.c ax av

(A1)

Th««m —(8f '„'/Bv) ~ (e„/m )G„(B/Bv) X [(BG„/Bx)XE' '] can be similarly transformed to yield



702 DARIO CORREA-RESTREPO AND DIETER PFIRSCH

df'' e aG
G

~
X E(0)

Bv rn Bv Bx Bv rn

e, af(,0) aG,
Gv X

' XE(0)
Bv Bx

e 9G
XE

rn v Bx

gf (0)

Bv

e„()f ( ' (IG „
Gv X

' XE"'
mv

' Bv Bx rnv

BG, ,
i3G

XE ' X
Bx Bv

gf (0)

Bv

(A2)

The stationary Vlasov's equation is d„f '„' =0, where d, is the operator defined in Eqs. (4) and (5). With the help of
the vector F'„', defined by Eq. (7), namely,

(p) J v + v B(p) J v

()x m c ()v

the equilibrium Vlasov s equation then takes the form given by Eq. (8):

(0)
P(0) —F(0).v+ ~ E(0).vJv v

(Iv v

and one has

gf (0)

Bx

BG„ BG„ BG
v+ (d„G„) = F'„'—

Bx ()v Bv

(0)
(.)B X

m„c Bv

aG. aG, BG,
v+(d„G, )

Bx Bv ()V

e„aG„aG„„,af(0) BG,E' ' +(d,G„)F'„'

(0)

+ "
(v X a(0).

m, c ' Bv

()G„(IG,
Bx Bv

e, BGvB(o'X
m, c Bv

gf (0)

(d,, G„)

(0),(.). 'f.
clv

BG, BG, BG
+(d„G, )F', '.

Bx Bv ()V

ev BG
+ ' B'"X

mvc Bv

af(,,
"'

(d,G„) .
a

(A3)

The last term in Eq. (Al) can also be further transformed if one takes into account the relation

e„,,
8G„BG, e, (IG, (IG,

,0) BG,

m c Bx Bv m c Bv Bx Bx

BG
X

Bv

BG, e BG, e,
x a'„' — xE"'+ (d „G„)B"'—

Bx mv Bx mvc

v (0). v (0)

m c Bv

APPENDIX B: CONVENIENT REPRESENTATION
OF DERIVATIVES IN x-v SPACE

For time-independent equilibrium fields E' ' = —VW' '

and B' '=VX A' ', the particle energy
&„=(m,/2)(v) +e„4( ' is a constant of the motion.
The equilibrium distribution functions f ' ' can be written
as

f', '(x, v)= f'„'(&,(x,v),%'„,(x,v)),
where ~ runs over as many indices as there are other con-
stants of the motion % in the problem under considera-
tion. The derivatives of f'„' are then

ax„.= —e.E"' +, (»)
()X „0&. A, , ()X (IR
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af',"
av „"aa„~„„+ av „ax„„~„' (B2)

af (0)
F''= —m a''

V V V

where the summation convention has been adopted (the
quantities kept constant when partial derivatives are cal-
culated are given explicitly only when this is particularly
convenient). The vector F'„', Eq. (7), is then

af '„" am.„e„+ " "+ "B"'X
aW'„„ax m „c av

(B3)

and the quantity F'„'.(aG„/av) —(af '„'/av) (aG„/ax},
which appears in Eq. (6},takes the form

BR„„e. . . aR„„+ B X
ax m~c av

aG„af'„" af'„" a&„„aG„
" "'

ax a&„am„„av ax

af(„" af(„" aG„ae,„e„„,am„„
v x m„c v

af'," aR„„aG„
a&„„av ax (B4)

Let q,.(x), i =1, . . . , 3 now be generalized coordinates with covariant basis ax/aq; and contravariant basis
aq, /ax =Vq, . The corresponding covariant and contravariant velocity components are, respectively,

v;(x, v) =v. ax
(B5)

aq;

and

v'(x, v)=v Vq, =q, .

Since v =v; Vq;, one has

(B6)

q;.
I

With%'„„(x,v) taken as R„„(x,v;(x, v) },the derivatives are

(B7)

ax
aR,„aA',„av;+

ax ., av, „ax
av+

ax ., aU,. av „ax „
W1„aR aU;

l X y

(B8)

and correspondingly for 6„,
aG„ aG„ aG„ aU,+ Vq;ax „ ax ,

' av „ ax

af (0)
= —m(dG), , aG,

F

Equations (B4), (B8), and (B9) then yield

af '„" aG„
Bv Bx

af'," ax„„aG,
ada„„av ax

(B9)

af'„" aG„+
aA „av

a~v» aR„» av;+ Vq,-.ax ,
' av ax

e aA'„„+ B"'X
m c Bv

av; .BR„
Vq;Bx Bv

af (0)
= —m (d„G„)

V

af(.') am„„aG„
aA'„ av ax

af'." aG„+
BJV Bv

ail, e. (0) ail,+ B X
i3x v,. m c Bv

(B10)
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where the relation

a% av.
q;'

au, ax„. ax,. au,

X X(u;Vq;)
c)v Bx

a
X Xv =0

Bv Bx
(Bl 1)

has been taken into account. The derivatives of 6, and A,„with respect to x on the right-hand side of Eq. (B10) a«
now performed at constant v;(x, v) =v (ax/aq; ), and not at constant v.

APPENDIX C: PARTICLE ORBITS:
PERIODIC MOTION AND NONPERIODIC MOTION

IN ONE-DIMENSIONAL EQUILIBRIA

can be considered as effectively being in a one-
dimensional potential V„(q, ), as will presently be shown.
(One can choose A I

' —=0 without loss of generality. )

The Hamiltonian H of a particle of species v is given

m
H, = v'v;+e, 4' '(q, ), i =1, . . . , 3, (Cl)

where the velocities U', U, are related to the canonical mo-
menta p by the equations

V =g Uk, , k =

e

V

(C2)

(C3)

(C4)

From Eq. {C3)one obtains
1 1A,

The extremization of the second-order perturbation en-

ergy for configurations in which the equilibrium quanti-
ties depend on only one spatial coordinate q, involves the
determination of the constant of the motion
&,(A„,p,2,p„3), Eq. (34). To determine this constant, it
is necessary to know whether the particles with given
conserved energy &„and conserved momenta p„z,p,3

perform a periodic motion in (q&, v&, u2, u3) space. If
q, (t) is a periodic variable, then so are zu(t) and v3(t),
because, at constant p,2 and p,3, respectively, they de-
pend only on q, [Eq. (C2)]. v~(t) is then also periodic
since it depends only on u

' =q ~, uz, u3, and q, [Eq. (C5)].
This problem is investigated in this and in the following
appendix.

Owing to the fact that the canonical momenta p,2,p, 3

are constants of the motion, the particles moving in the
magnetic field

B '=VX[A '(q, )Vq;]

dA3 '
()X dA2+

J(q, ) dq, aq, dq, aq,

H, = [u'u, +u"u„]+e„4~ ', @=2,3, (C6)

m,
[u'u, +g' u, u„+g 'v„u, ]2

+e,,e'", ~,X=2, 3 . (C7)

Inserting u, from Eq. (C5) and taking into account that
U =q, , one can express this as1 ~

2
m, , q1H„= » + V, (p„2,p 3, qt ),
2 g

with

(C8)

m,
V.(p.2 p.3 qi ) =

2
1' 1A,

UUg+gUpU&

+e,,e"', p, a=2, 3 . (C9)

[The dependence on p,2,p„ is, of course, obtained from
Eq. (C2).]

From Eq. (C8) one has, for a particle with conserued
energy %„and conserved momento p,z,p„,

2

2g 11(
)

pf, —V, (p„2,p„3, 'ql )] . (C10)
m,

If the potential V, (p,z,p,3, q, ), as a function of q, , has
troughs [for instance, a trough between two maxima
V,„(q,„)and V,„(q,s)], a particle of energy %„ is

trapped if &„(min( V,„), where min( V, ,„) is the
smaller of the two maxima V,„(q,„),V,„(q,~ ). Oth-
erwise, the particle is untrapped. For trapped particles,
the motion is periodic; the particle oscillates between the
turning points q, and q», which can be determined
from Eq. (C10) by setting q, =0 and solving for q, . A de-
tailed discussion of the particle orbits can be found in
Ref. [7] for the special case of a force-free plane slab
configuration. In that case, it was found that the
overwhelming majority of particles were trapped and per-
formed a periodic motion.

As an example, consider a homogeneous equihbrium
with no electric field, N' '=0, constant magnetic field
B' '=8' 'e„and vector potential A' '=B' '(x —xo)e,
i.e., 3' '=0, 2' '=8' '{x—x ) A' '=0. Therefore

(C5)
q1 =X, q2 —J, (C11)

and H can be written as and



49 NEGATIVE-ENERGY PERTURBATIONS IN GENERAL AND IN. . . 705

e
p„„=m„u„, p„=m, u + 8' '(x —xu),

C

The potential, Eq. (C9), is

{C12)

APPENDIX D: CONSTANT OF THE MOTION
C„(&„,p„2,p„3 )

The minimization of the perturbation energy 5 H, Eq.
(30), with respect to I (q„u „v2,v3) leads to an equation
of the form

V„= [v (p„,x)+v, (p„)]
e . along orbit

+a, (q1, v„v2, v3)

2 2I vz—co„(x—xo) +
V m,

(C13)

1 Ivy(x —xo) ti=
co m

2
' 1/2

2 ~ Pva

m '
m„

where co,=e„8'o'/cm, is the gyration frequency. Since
the potential is parabolic, all particles are trapped and
have a periodic motion. The turning points follow from
Eq. (C10) with v„=0:

+2(q 1 &u 1 & u2&u3 )Cv(v&pv2&pv3 ) '

This follows from Eq. (34) since d„l „ is the rate of
change experienced by the moving particle along the un-
perturbed orbit, i.e., d„l „=(dI'„/dt ),i,„„b;,.

The question of interest in determining the constant of
the motion C,(gf„p„2p, 3) is whether the motion of the
particle in (qi, v„v2, v3) space is periodic or not. If it is
periodic, qi(t), u, (t), u2(t), and v3(t) are periodic func-
tions along the unperturbed particle orbits, with period ~,

[v+v ]

=Rg+R (C14)

where R~ is the gyroradius.
The general form of the equilibrium distribution func-

tions, which do not depend on either y or z is, in this case,
f'„'=f'„'(%„p„„,p„, ). However, if it is further re-
quired that Bf'„'/r}x~„=0, then f ',u' =f '„'(&„p„,).
This case, which is a special case of the theory developed
here, was treated in Ref. [6].

to+ v.

( &= f dt
to

Integrating Eq. (Dl) between t and t+r along orbits
yields

(D3)

These particles constitute the group of particles with
periodic motion. All other particles are the particles with
nonperiodic motion.

For particles with periodic motion, mean values along
the unperturbed orbits are now defined by the expression

I,(q1(t+r), vi(t+r), v2(t+r}, v3(t+r)) —I „(qi(t),v1(t), v2(t), v3(t))+r(a1}=r(a2}C, . (D4)

Since, for the particles with periodic motion, q, (t+ r) =q, (t ), etc., I',(t+r) I'„(t ) in this e—quation is then determined
from the fact that the generating function g„(q„v„u2,v3) for the perturbations, Eq. (29), must be a single-valued func-
tion of its variables. Since

g„(q,(t), . . . )=qi„{q,(t), .. . }e (D5)

this means that the functions 4, and I „are subject to the periodicity conditions
A

% „(q,(t+r), . . . )=%„{q,(t), . . . }

and

(D6)

I'„(q,(t+r), . . )=I,(q, (t),.. . . )+21m„, (D7)

n„being any integer number, i.e., n =0+1,. . .. This then determines C„ for the PPM from Eq. (D4}as

C„= (a, }+ n„
2m.

a2
(D8)

where, explicitly, from Eq. (34),
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af (0) af (0) af (0)
]

(0) 2
a& k23 v+k2

a
+k3

aaf„ Pv2 5'v3

ave

af (0) af (0) af (0)

af '0' m, av „ap„, ap„

af (0) af (0)

k23'v+ k23
m Bv

(D9)

21
@2=

Bf,
2

(D10)

» the other hand, for particles with nonperiodic motion, Eq. (Dl) imposes no restriction on C, C„(~„,p, p )

can be chosen arbitrarily for the PNPM.

APPENDIX E: COORDINATE SYSTEM
t,&„,p„„p„3IN q&-u; SPACE

BJy,
=m q2,

oU&
m vq3 (E7)

U)

q&

qlo q&

Pv2

5'v3

(El)

It is useful to introduce coordinates which make dis-
cussion of the expression for the perturbation energy par-
ticularly simple. Let the new coordinates be defined by
the following transformations:

aPv2

BU)

BP,3 e,
C

~Pv2

BU3

ay (0)
3

Bq)

=0

aPv3

C)V )

apv2 apv2=0
av2 BU3

=m

a~., e. a~2"'

Bq, c Bq,
(E&)

(E9)

Therefore one has
These relations enable one to calculate the Jacobian of

the transformation,
at

Bq)

1 at
0

at at

av( av2 av3

and for the canonical momenta, viz. ,

From the expressions for the particle energy, viz. ,

m
g'~(q, )u;v, +e,4' '(q, ),

(E2)

(E3)

a(t, &„,P„2,P„3 )

a(q(, u), U3, V3)

at at at

a& a&
aq, au, Bv2

ar

BU3

aJy.
av3

one obtains

c

ij ()q)(0)

(E4)

(E5}

~P 3

aq)

One obtains

~P v2 ~JP v2 ~P v2

BU) BU2 BU3

~$ v3 ~$ v3 ~J v3

BU) BU2 BU3

(E10)

Bit m

BU) 2
[g' v-+g "v, ]

m

2
' [u'+u']

6=m, , (E11)

and the new coordinate system is therefore we11 defined.
Taking into account Eq. (87},one obtains from the re-

lations

=m. U '=m. q, , (E6) dt d &gp pdp 3 kdq)dU)dv2dU3 (E12)
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and

(}v (}v Bv
d v= ~ X dv)dv2dv3

V) Vg V3

=Vq&. Vqz X Vq3dv, dv2dv3

The perturbations 5x„and 5p, =m „5v
+(e„/c )5 A+ (e„/c )(5X„V)A' ' are given by

5x =
a

1
dv(dv2dv3J q)

the volume element in q&-v space,

1
dq, d v= dt d&gp„zdp„3 .

J(q, )m „

(E13)

(E14)

BG

m „(}v
e ev

5p„=m„5v+ 5A+ "(5X„V}A(0)
c c

(F8)

APPENDIX F: NEGLECT OF THE
ELECTROSTATIC ENERGY TERM

The contribution of the electrostatic energy term

x p

aG„e, aa(') aG„+
Bx „m c Bx Bv;

(F9)

fd x5E
8m

(F1)
Employing the relations above, one obtains 5f„as a func-
tion of x and v:

has been neglected. To justify this, let us consider the
perturbed electric charge density 5p. Generally, the
charge density is

p=pe, ff,d v, (F2)

5f„=
V

af(„" aG„e„„, af(„" aG„
(}x ()v m „c (}v Bv

@"(,0) aG„
(}v ()x

(F10)

and the perturbed charge density is

5p= pe, f5f„d v . (F3)

The perturbation in the distribution function is given by

which, with Eq. (7) taken into account, yields

, ,
(3G„Bf'„' BG,

m, ' (}v Bv Bx
(Fl 1)

5f (o) 5f (o)

5f„= 5x,+ .5p„,
p pv x

(F4)

Qf (0) Qf (0)

=m,
5pv x

(F5)

with p„=m„v+(e„/c) A' ' the canonical momentum of
species v, given by Eq. (16). It therefore follows that

I 5x aG, af(„"

(}q„(}„&,(}p„„
(F12)

With Eqs. (B10), (18), (20), and (21) taken into account,
5f„can be expressed as

5f (0)

5f„=—(d„G„)
V ~VK

5f (0)

(}X

5f (0)

(}X p

Qf (0)
Qp Qf (0)

(}X p Bx v (}Pv;

5f(0) e 5g(0) 5f(0)
V + V l V

Bx c Bx Bp;

5f (0) e g g (0) 5f(0)
V V l V

Bx " c Bx Bp;

(F6)

Since

aG„ aG„
Qx v, Qq)( U,

one obtains

aG„ aG.
(}q, (}x ., (}q„

(F13)

(F14}

5f (0)

Bx

e„a~,") @"(;)

m c Bx BU;
(F7) With G„given by Eqs. (23) and (29), the following rela-

tions can be derived:

and

[r„+,e,+,e, ) —
( „+ ~~+ 3&3} „' .+"2 2+"3't3 ' .+"z ~+"3 3

~V V 2 V V v v v 23

(F15)

BGV; ir r +k2&2+k3q3] —i fr +k2&2+k3q3]
3J, K=2,

Bq . 2
(F16}
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which, together with Eqs. (F3) and (F12), yield

e a"'
i [I'+ k 2 q& + k, q 3 ]

—i [ I',, + k
2 q&, k

3 q 3 ]

2

+i%, [d,l,, +k23.v]+k2 +k3 [e ' ' ' ' ' —e
V dp vz dp v3

(F17)

Taking d„+„=0,i.e., 'P„=V,(&„,p,2,p„3 ), does not have any influence whatsoever on the results obtained in Sec. V.
In this case, the perturbed charge density is

5 t (0] g p(0) g p(0)

5p= —y 'e—„jd'Ue, '' [d„r„+k„v]+k, ' " +k, ' ' [e""'"'"'"'"]—e
'[' '"'"'""-"]. (F18)

The perturbed charge density 5p can be made zero since the expressions for 5 H only contain %„(d,,%„) . 4, is

chosen localized in &„and p,„. The distribution of signs in 4, is free. For instance, one can take %„piecewise continu-

ous in gt', and p,„,with changing signs so that positive and negative contributions to 5p balance each other.
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