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Using the appropriate Langevin equations describing the stochastic motion of test electrons, we inves-

tigate the problem of the changes of kinetic energy and velocity distribution of electrons colliding with

ions in the presence of a moderately strong radiation field and a steady, homogeneous magnetic field B.
The cases where the electric field of the wave is either linearly polarized along B, or left- or right-hand
circularly polarized on a plane perpendicular to B, are explicitly considered. The results concerning the
kinetic-energy changes extend similar results obtained by the same authors using a diFerent approach.
The results concerning the changes of the velocity distribution may be summarized as follows. For a
linearly polarized wave, collisional bremsstrahlung forces the slow absorbing electrons and all emitting
electrons to align on average their velocities along the electric-field direction. Velocity randomization
due to pure collisions mostly contrasts this process, and is dominant for fast electrons. For circularly
polarized radiation, the electrons are forced by collisional bremsstrahlung to draw their velocity near to
the polarization plane if their unperturbed velocity component perpendicular to B is larger than either
their parallel component or the wave-induced velocity. %'e find that the regions of velocity space where
both this process and emission take place widen upon increasing IB~, whereas the rates at which the
latter occur are, in general, decreasing functions of

~
B .

PACS number(sj: 52.40.Nk

I. INTRODUCTION

Direct and inverse bremsstrahlung plays an important
role in a number of phenomena where radiation interacts
with matter. An example is the heating of a plasma in a
laser field. In these processes, electrons collide with ions
in the presence of an electromagnetic wave, and the com-
bined effects of both the wave and the Coulomb fields of
the scattering centers on the electron result either in a
loss or in a gain of kinetic energy of the electron itself.

Several contributions have been devoted to the subject,
and most of them may be traced back starting from Refs.
[1,2]. A common feature of these contributions is, as a
rule, the effort to consider strong radiation, so that non-
perturbative treatments are needed.

Also of interest is the situation where direct and in-
verse collisional bremsstrahlung takes place in the pres-
ence of a magnetic field. The present work is devoted to
this case.

Previous accounts treated this problem as an elementa-
ry single-particle process [3—5]. A quantum-mechanical
formulation has been provided by Seely [3], while Kara-
petyan and Fedorov [4] and the present authors [5] have
reported on several results obtained using a simpler clas-
sical model. These treatments basically give the average
change with time of the electron kinetic energy, but no
information is obtained about the evolution in velocity
space of a population of electrons undergoing the brerns-
strahlung process in a medium such as a plasma.
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This latter problem is usually addressed solving the
corresponding Fokker-Planck equation for the electron
distribution function. Without a magnetic field, interest-
ing results have been reported concerning the case where
the radiation field is weak [2,6—8]. In particular, in Refs.
[2,6,7], where only the isotropic part of the electron dis-
tribution function was investigated, analytical self-similar
solutions were obtained, yielding specific information on
the evolution that the electron population undergoes in
the velocity space.

When either the radiation is not weak, or a magnetic
field is present, anisotropies of the electron distribution
function are in general unlikely to be negligible. In these
cases, detailed information about the shape of the elec-
tron distribution function may be obtained by means of
difFicult numerical analysis.

The principal aim of this paper is to get information on
the modifications of the electron distribution in the veloc-
ity space as a result of collisional bremsstrahlung. We
describe the basic mechanisms determining the
(velocity-space) trajectories of test electrons undergoing
collisions in the presence of a radiation field and a homo-
geneous steady magnetic field, in order to show the origin
and the relevance of the anisotropies in the electron dis-
tribution function for some special cases. We do this
without actually solving the corresponding Fokker-
Planck equations, but rather considering the simpler
scheme of the associated Langevin equations. The latter
describe the temporal evolution of the test electrons'
coordinates, in terms of which the Fokker-Planck equa-
tion itself is expressed, and represent a linkage between
the kinetic and the single-particle approaches to the
problem. The same approach has been successfully used
in Ref. [9] to investigate the problem of wave-induced
current in magnetized fusion plasrnas.
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In Sec. II some information about Langevin equations
and their connection to the Fokker-Planck equation is
given. Under the hypothesis that electron-electron col-
lisions are negligible, the Langevin equations for the spe-
cial cases where the wave is either linearly polarized
along the magnetic field (parallel geometry), or left- and
right-hand circularly polarized in a plane perpendicular
to it (perpendicular geometry), are derived in Sec. III. In
the same section, the expressions of the rates of kinetic-
energy change of colliding electrons are derived, whose
domain of validity is not restricted to the case where the
radiation frequency co is much larger than the collision
frequency v; thus an extension and an independent check
of previous results [5] is furnished.

For the case of a linearly polarized wave in the parallel
geometry, the presence of a moderately strong magnetic
field is expected not to be particularly relevant to the re-
sults in which we are interested. This case, accordingly,
is to be considered as representative of the situation when
no magnetic field is present.

Section IV is devoted to discussion and concluding re-
marks.

II. FOKKER-PLANCK AND LANGEVIN EQUATIONS

where f is the electron distribution function, E is the
electric field of the wave, e and m are the absolute values
of the charge and the mass of the electron, c is the speed
of light, and v is the electron velocity; the operator 5 de-
scribes the stochastic (collisional) interaction of electrons
with all the other species in the plasma.

For a completely ionized plasma it is possible to write
(r in such a way that Eq. (1) assumes the form of a
Fokker-Planck equation [10]:

(2a)

where

(b,v, ),3;=—lim
o ht

(bv, bv, ),8;.—= lim
~f-0 ht

(2b)

( A ), indicating the ensemble average of the quantity A.
The basic assumptions adopted to obtain the kinetic

equation in the form of Eq. (2) are that [10] (a) collisions

We start with a kinetic equation for the electron distri-
bution function to describe the evolution of the electron
population in a plasma. Here, ions are thought to be uni-
formly distributed in space; moreover, the presence of a
steady and homogeneous magnetic field B is considered,
and the radiation wavelength is supposed to be much
larger than any other characteristic length of the system
(dipole approximation). Under these assumptions, the
electron distribution function does not depend upon the
ordinary space variables, and its kinetic equation assumes
the form (in Gaussian units):

T

Bf e 1E+—vXB V„f=K[f],
dt m c

are instantaneous and localized in space, (b) small-angle
scattering events (remote collisions) dominate over large-
angle ones, and (c) the binary collision approximation is
reliable. Point (b) implies that for the Coulomb loga-
rithms relative to each couple of colliding species,
A—=ln((M/g ) »1, where g and gM are the minimum
and maximum impact parameters. This, in turn, makes it
possible to write the kinetic equation in the form of Eq.
(2a) [i.e., to neglect terms involving higher-order deriva-
tives in v, which are of order A ' at least with respect to
those appearing on the right-hand side of Eq. (2a) [10]].

The Langevin equations associated with the Fokker-
Planck equation, Eq. (2a), are the following:

v; = A;+F;(t), (3)

where the dot stands for time derivation and F,(t) are
stochastic forces with zero ensemble average, represent-
ing instantaneous and completely uncorrelated collisions:

(F;(t)),=0,
(F;(t)FJ(t') ),=&J&(t —t')

(4)

The "macroscopic" equations of motion can be obtained
from Eqs. (3) by averaging over the ensemble.

In the present case the Langevin equations will be
found to be nonlinear; to make them solvable we assume
that ( A;), = A;((v), ), and the problem is reduced to a
set of ordinary differential equations involving the ensem-
ble averaged variables. This implies that fluctuations of
the stochastic variables around their mean values are
neglected [11],and diffusional contributions to the flow in
velocity space (i.e., the effects of the gradient of the en-
semble density) are ignored. All of what follows is based
on the ensemble averaged Langevin equations, and since
the above approximation will be tacitly assumed, the
averaged variables will be indicated without angular
brackets.

III. DERIVATION OF THE AVERAGED
LANGEVIN EQUATIONS FOR SPECIAL CASES

Za r a v;;a
(5)

ZaU, U aU, ,& au,

where I =coze A/m, with co—:(4nN, e /m} ~ the (elec-
tron} plasma frequency and N, the electron density;
v—:~v~, A depends on the latter quantity through the
minimum impact parameter g' =Ze /(mv ); the in-
teraction range g'M can assume the value of the Debye
length if collective effects are important, or otherwise it

We make the assumption that electron-ion collisions
dominate over electron-electron collisions. A sufficient
condition for this is Z v «U, «v, with Z &)1 the
effective ion charge in units of e, v the magnitude of the
wave-induced electron velocity, and v, = v T!m the
thermal velocity, T being the electron temperature in en-
ergy units [8].

The operator 5, describing the collisional relaxation of
the electron population upon ions at rest, has the follow-
ing form in Cartesian coordinates in velocity space [10]:
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may be given a value ranging from several tens to a few
hundreds of Bohr radii.

vals Tsuch that T))co ', 0 ', (co —0,
(

', we find

W=- —m (uu~~ ) (8b)

A. Parallel polarization

It is convenient in this case to express the Fokker-
Planck equation in spherical coordinates, i.e., in terms of
the variables (P, u, p), which are the azimuthal angle of
the electron velocity v around the magnetic-field direc-
tion n =—B/(B(, the velocity magnitude, and the quantity

p —=u1/u, being u
~~

—=n.v. For an electric field
E=nEocoscot, one obtains:

a 1 a
u [fpa cosset]

Bt v Bv

IZ 1 —p a+ f p+ a costut — [fII]
Bp v v

a2 1 i3+,[f(1—p )]+
2v Bp' 1 —

p,
' i3$'

where a = eEo lm —and 0 =e(B(/mc.
From Eq. (6) the following set of ensemble averaged

Langevin equations is found:

0 = —pa coscot,

in which (uv~~) can be approximately evaluated by
direct substitution of v(( as given by

v, = rz
v(, +0

v

rz ~02
W=m

2

2

1 —3
2

(10)

which is consistent with the results of [4,5].
In conclusion, Eq. (8a) extends the treatment given in

[4,5] in that it removes the restriction v « m.

Information about the time-averaged scattering direc-
tion can be obtained from the second of Eqs. (7). The
quantity (p) may be written as a sum of two distinct
contributions:

[see Eqs. (7)], the magnitude ~ and the parallel com-
ponent ~ll=vll ~ of the electron velocity in absence of
radiation can be held constant. With this procedure a
form of W is recovered which has been already con-
sidered in the literature [5].

In the weak-field limit, i.e., when uo «(~7(, Eq. (8b)
reduces to

rz 1 pp —a coscot
3 v

(7) (p)—:(p), +(p)„,

(p), —:—Z, p
I
v

8 =m (u~~~u ), {8a}

where the angular brackets stand for time average. This
equation states that the changes of electron kinetic ener-

gy are connected to the work performed by the radiation
field along the parallel direction; in deriving it, no restric-
tion is imposed on the ratio co/v.

Equation 8(a) can be integrated by parts; then, under
the hypothesis that v&(~ and for averaging time inter-

The term —pI Z/u accounts for the fact that the
(ensetnble-) average velocity of a population of test elec-
trons, initially moving along a given direction, tends to
zero because collisions cause a randomization of the
directions of the scattered electrons' velocities. In the
second of Eqs. (7), —a cosait/v =u(B„/Bv~~),
and p a coscot/u=u(Bu/Bu~~)(Bp/Bu), „„„, with

u—:—uosimot, uo =—a/ai the wave-induced velocity. It is
important to note that the last of Eqs. (7) is not coupled
with the previous two, so that B is not relevant to the
bremsstrahlung process in this geometry.

Here, we confine ourselves to the case where the time
between subsequent collisions, v ' —= ( I Z /u ) ', is much
larger than any other characteristic time of the process.
Moreover, to account for the fact that the instant at
which any collision occurs is random, time averaging will
be performed on relevant quantities, such as kinetic-
energy changes and p.

The time-averaged rate of change of the electron kinet-
ic energy, 8', can be found immediately from the first of
Eqs. (7):

2

(p)„= u'

The term (p)„, whic, h henceforth we call radiative, de-

scribes the effect of collisional bremsstrahlung; of course,
it depends on collisions and it can be integrated by parts
to render its dependence on collisions explicit:

(p )„=—2Z p'u
P1

{12)

4"(( 8',
Pl r:-

(13}

where Eq. (10) has been used as well. Equation (13) states
that in this limit the signs of ( p, )„and W are opposite. It
means that the velocity of a test electron initially within
the Marcuse emission cone defined by 1 —3(~((/~- ) &0 is

forced by the bremsstrahlung process to rotate closer to
the magnetic-field direction while decreasing in rnagni-
tude. On the other hand, if it lies out of the cone the re-
verse is true.

When the radiation field is not weak, the exact Eqs.

Pure collisional friction is described instead by the term
( p, )„which we call collisional from now on.

Consider the weak-field limit of Eq. (12); straightfor-
ward algebra leads, up to order uo/~, to the following
expression:

2

(p)„— 2 uor.
7

1 3
IZ 2
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(11) must be used. Figure 1 shows the level curves of (p, )
as a function of ~1/c and t/c—:[ — 1]' /c for a
moderately strong radiation field. The dashed line in Fig.
1 represents, for the same parameters, 8'=0. Figures
2(a) and 2(b) show the separate contributions (p, ), and

(p)„. The weak-field level curves of (p, )„are reported
in Fig. 3.

B. Perpendicular polarization

In this subsection the case when the radiation field is
either right- or left-hand circularly polarized on a plane

I

perpendicular to B is considered; in Cartesian coordi-
nates:

8=Eo [e„costvt+e„sincvt ], (14)

with e and e~ orthonormal unit vectors perpendicular to
B. For both cases, a transformation to cylindrical coordi-
nates is appropriate. In fact, the ensemble averaged
Langevin equations describing explicitly the relaxation
process within the plane perpendicular to B must now be
considered. In terms of the coordinates P, v~~, and
v t =

~
v XnI, the Fokker-Planck equation reads

Bf 1 t)

Br vt t)vt

rz vt[1+2A ]+a cos(rot Tp) f + vi[1+A ]fa rz
2U

1 a a rz,{(+asin[cot+/] vtQ)—f]+ vt v~~f
vt

rZ a'f a' I.Z, a a rz
Vg Vg UII U

vt '
3 vl vtf (15)

where the upper (lower) sign stands for left- (right-) hand
circular polarization.

After neglecting O(A ') terms, as is usually done to
obtain a kinetic equation in the Fokker-Planck form, the
corresponding set of ensemble averaged Langevin equa-
tions takes the form

rz
vt —a cos[rot +P],

2V

rz
V = V

II 3 II
'
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Note that the collisional relaxation rate for v~ is one-half
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FIG. 1. Level curves of (p. ) in units of 10 sec ' as a func-
tion of the unperturbed velocities ~II and ~~. bc'/2m. =10 ' eV,
EO=SX10 V/cm, N, =10' cm, and g~ 50 times the Bohr
radius. The dashed line represents the solution of the equation
8'=0; to the right (left) of it the test electron loses (gains) ener-

gy, which is indicated by the letter E ( A) in the graph.

0.01

0.01 0.02 0.03 0.04 0.05

FIG. 2. Same as Fig. 1, but the collisional (a) and the radia-
tive (b) contributions to (p, ) are separately plotted.
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U = —artcos[cot+P], (17)

where rt—=ui/u is the cosine of the angle formed by the
electron velocity with the polarization plane.

In this case, the equation for (t is coupled with those
for vi and v, and the magnetic field now plays an impor-
tant role in determining 8'and the rate of change of g.

To find the time-averaged power F emitted or ab-
sorbed by a test electron, Eq. (17) is profitably changed to
a form which explicitly contains both the perpendicular
wave-induced velocity w —+ and the unperturbed one c,,

which in Cartesian coordinates read

w
+—=w 0 [e„sincut+e~coscut ],

c i=c~i[e„cosQt+e sinQt],
(18)

where w,
——= —a/(co+f1). The perpendicular electron ve-

locity is, of course, vi =w + c i in the plane perpendicu-
lar to B.

As it is shown in Appendix A, from Eqs. (17) and (18)
one finds

W—= —am [cow,*] '(vi. w ) . (19a)

FIG. 3. Same as Fig. 1 for (p)„ in units of 10 sec ' in the
case of the weak field: ED=10 V/cm (all other parameters
are unchanged).

of the corresponding one for v)). This is connected with
the fact that the first equation describes an evolution dy-
namics into the (two-dimensional) plane perpendicular to
B, whereas the second relates to the (one-dimensional)
dynamics along B.

The rate of change of v is given by the equation

FIG. 4. Level curves of ( j) in units of 10 sec ' as a func-
tion of the unperturbed velocities ~!I and c-,. hQ/2~=10 eV,
h~/2m=10 ' eV, E0=10' V/cm (right-hand polarization),
N, =10" cm ' and (M 50 times the Bohr radius. The dashed
line represents the solution of the equation W=O; to the left

(right) of it the test electron loses (gains) energy, which is indi-

cated by the letter E ( A) in the graph.

From Eqs. (16) and (17) the following equation for t)
can be derived:

t) —a cos[cot + P]
rz
2v v

(21)

[compare with Eqs. (7)].
With a procedure analogous to that followed for the

case of parallel polarization, the contribution
( j )„—= —a (1 —rI )U 'cos(cut+/) can be put in the form:

( j)„=—Z, rj e, w—I
(22)

2

(g)„=— (wo ) c., 1 —2 (23)

In Fig. 4 level curves of ( g ) and 8'=0 for a moderate-
ly strong (right-hand circularly polarized) field are report-
ed. Figure 5 shows the corresponding level curves for
( g )„;5(a) and 5(b) represent the situations of strong- and
weak-field regimes, respectively.

where ei—:vi/ut. The weak-field limit of Eq. (22) is ob-
tained by substituting Eqs. (18) into Eq. (22) and letting

! w& ! «c~z..

After integration by parts, for v«co, Q, !co—Q!, the
following approximate expression can be used for W: IV. COMMENTS AND CONCLUSIONS

mZ r
2 v

In the weak-field limit (!wo ! « ~i):

IZ (wo )
2

II

2

W= —m 1 —3
3 4

(19b)

(20)

We have reported calculations on two quantities: (i) on
( jc ) and (g), the time-averaged time derivatives of the
cosines of the angle the test-particle velocity forms, re-
spectively, with the radiation-field polarization direction
(parallel polarization), and with the field polarization
plane (perpendicular polarization); (ii) on W, the time-
averaged change of the electron kinetic energy, for both
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polarization cases.
The calculations on (p ) and ( ri ) aimed to obtain in-

formation on the changes occurring on the electron ve-
locity distribution as a result of collisional bremsstrah-
lung; the calculations on W provide information about
the regions in velocity space where prevailing of emission
(field amplification) or of absorption (particle heating)
takes place during breamsstrahlung.

Concerning W, our derivation extends to arbitrary ra-
tios v/co of previous derivations [4,5], though, for the
sake of comparison and simplicity, we confine calcula-
tions to the high radiation frequencies (v « co). Concern-.
ing, instead, (IM) and (ri), as far as we can judge, both
derivation and calculations are new.

The results of the calculations are reported in the
figures in such a way to allow for a correlation (if any)

0.06-

mW= vu V

BUl 2

p
V U

II

—const

(24}

between emission (absorption) zones and
increasing/decreasing of either (p, ) or (ri). Moreover,
the analysis is far more informative when we disentangle
the contributions to (p, ) and (t'I) due to collisions only
((jc), and (ri), ) and to the collisional interaction with
the radiation field ((y, )„and (g)„). Of course, these
contributions cannot be entirely separated, as in our
treatment there is no bremsstrahlung without collisions.
Nevertheless, the splitting of ( p, ) and ( g ) in two terms
provides additional insight into the results. In particular,
the radiative contributions to ( jc ) and ( g ) are of the
same nature of the radiation-induced power W [see Eqs.
(8},(12), (19), and (22)]. In fact,

0.05- for linear polarization along B, and

0.04—

0.03-

1 g t) mW= —vw .e~ —v
2 t)Ug 2

(25)

0.02-

0.01-

0.01 0.02 0.03 0.04 0.05 0.06

B)

0.05

0.04

O

0.03

0.02

0.01 0.02 0.03 0.04 0.05 0.06

FIG. 5. Level curves for (pl„: (a} in units of 104 sec ' and
in the same parameter range of Fig. 4; (b) in units of 10 sec
for an electric field Eo =10 V/cm (all other parameters are
the same); note that the dashed line (defining the Marcuse cone)
is steeper than the curve ( g ),=0.

for circular polarization perpendicular to B.
The above equations poirtt out that (a) W, (p)„, and

( g )„can be nonzero only if both collisions and radiation
are simultaneously present (vuo%0) and (b) W and either
(p)„or (r'1)„are correlated; namely, radiation-induced
changes of (p ) ( ( rj ) ) are caused by radiation-induced
variations of U at constant v

i (v t ).
From the calculations reported above we find that, in

the chosen geometries, the velocity of all test electrons
undergoing emission during stimulated bremsstrahlung is
forced either to align along the polarization direction or
to draw near to the polarization plane, depending on
whether linearly [Fig. 2(b)] or circularly polarized waves
[Fig. 5(a)] are considered.

The effect of this mechanism on the shape of the elec-
tron distribution function is further explored in Appendix
B for the case of a weak, linearly polarized (along B) radi-
ation field. We consider the situation where a quasista-
tionary state is attained, i.e., where the equilibrium elec-
tron distribution slightly deviates from the Maxwellian
form in such a way that collisional relaxation balances
the distorting effect of radiation (via stimulated brems-
strahlung). In this situation we find that the deviation f,
of the time-averaged (over the wave period) distribution
function f from its isotropic part is positive within the
Marcuse cone. In the light of the result reported above,
we interpret this deviation as a combination of two main
processes: a crowding of electrons along the axis of the
Marcuse cone, due to (jc)„[Fig.2(b)], and a spreading in
the whole velocity space due to pure collisions. It is
important to note that in this limit
If./f I -1(i)„/(p ), I -0(u(') /u').

On this basis, again in the weak-field limit, it is expect-
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ed that for a perpendicular (with respect to B) circularly
polarized wave, the quasistationary electron distribution
deviates from the Maxwellian form in such a way to be
depleted in the cone v~ &

~ v~~ [Fig. 5(b)].
We now turn to the more interesting case where the

wave field is not weak. Consider first the case of linear
polarization. In a large domain of velocity space (p),
and (p )„are in competition, the latter prevailing on the
former only for relatively low ~-„and .'~~ around u„(Fig.
1). An interesting result is that the unperturbed velocity
of the test electrons for which ( j.), dominates is forced
by bremsstrahlung to oscillate around uo while keeping
aligned with the polarization direction. In fact, in these
conditions, transition from absorption to emission occurs
at ~ ~~-—uo, as shown in Fig. 1. These oscillations can lead
to a flattening of the distribution in the direction of the
electric field of the wave at ~/, ,

——u„and relatively small

UL.

In the case of (perpendicular) circularly polarized radi-
ation, the magnetic field is important, as it can
significantly influence the perpendicular electron motion.
We first note that B enters Eqs. (25) through the quantity
w,

= —= —eEO/m (co+0, ); then, the following statements
may briefIy summarize the results of the calculations
when a magnetic field is present:

(a) The magnetic field is relevant when 0 is larger than
or comparable with co.

(b) The case where ~wu ~0 is indicative of either very
weak radiation field or large ~B or both.

(c) ( j)„(Fig. 5) and W [5] tend to an overall decrease
on increasing B .

(d) Both the domains where ( i) )„)0 and W & 0 widen
on increasing B~ (Fig. 5).

(e) When Q))cu, for a moderately strong radiation
field the transition from absorption to emission, as well as
the transition from positive to negative (j )„, occurs at
'~= wo =cEu/ B if ~/

~~

&« ~ . In other words, the
condition W=O as well as (g)„=0depends, for low un-

perturbed parallel velocities, on the ratio of the electric-
field to the magnetic-field amplitudes (see also [5]).

In conclusion, the adopted approach leads to a better
and more complete understanding of the main processes
involved in collisional bremsstrahlung. Although re-
stricted to selected geometries, the expressions derived
for the relevant quantities are more reliable than the cor-
responding ones reported in the literature. As previously
indicated in the Introduction, averaged Langevin equa-
tions are able to give information about the origin of an-
isotropies of the electron distribution function when col-
lisional bremsstrahlung is active. The picture they give
may well serve as a support for the interpretation of out-
cornes from numerical evaluations of solutions of the
Fokker-P lanck equation.
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APPENDIX A

u, cos(cut+/)=co 'v~. u+ .

From Eq. (18):

(Al)

W=m(uu) = — (v, u ) . (A2)

Upon integrating by parts, and neglecting the term
(ma/cu)[v~ u+]o,

W= (v u+) . (A3)

Now, in cylindrical coordinates, v~ = v ~e~ and
v~=u~e~+ u~(()e&, with e~ and e& the radial and azimuthal
unit vectors, respectively. Since

u e~ =cos — cut —P—

u e~=cos(cut+(t ),
(A4)

—v
e

+
W

Here, the explicit derivation of Eq. (20) from Eqs.
(17)—(19) in the text is presented for the particular case of
right-hand circular polarization; for the other one (left-
hand) the procedure is quite the same.

Referring to Fig. 6, where the vectors u+—:w+/wo,
~~, and v„=c ~+w+ are explicitly indicated, one can
check that
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FIG. 6. Vector representation of the unperturbed and wave-

induced velocities for the case of right-hand circular polariza-
tion perpendicular to the magnetic field.
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from Eqs. (17)—(19) one finds:

vi.u = —
3 vicos — cu—t —

((} +Qvicos(cut+/) .+ zr
2v

(A5)

Equation (20) then follows immediately.

APPENDIX B

In this Appendix we report for a special case a deriva-
tion of the modifications of the electron distribution func-
tion due to the radiation field, which lends support to
some results reported in the main body of the paper.

Let us consider now an equilibrium (Maxwellian) elec-
tron distribution function. We suppose that a suitably
weak radiation field is present, so that the time over
which the temperature changes is much longer than any
other characteristic time of the process. Thus a quasista-
tionary state is attained, where the shape of the electron
distribution function deviates from the Maxwellian form,
and collisional relaxation is in competition with the dis-
tortions induced by radiation. Below, this problem is ex-
plicitly formulated and an asymptotic solution is found
for electrons whose velocity suitably exceeds the thermal
one.

The Fokker-Planck equation for the electron distribu-
tion function f in the presence of a wave whose electric
field is linearly polarized along B is, in the dipole approx-
imation,

dt U2 Bu v BJM
[u f]+— [(1—p )f] .

+@[f)+@.[ff] (81)

P[g)—:— f '
d~wv wig(w—), (83)

a Rosenbluth potential [10,12]; N, is the electron density
and I is defined in Sec. III. The electron distribution
function is now split into two contributions: f =fo+f i,
with fo ——(f ) the slowly evolving part (angular brackets
stand for time average), and f, is the component evolving
over a time scale of the order of the wave period, i.e.,
over a much shorter time scale.

The evolution equation for fo is obtained by time-
averaging Eq. (8 1);after reordering of terms:

af,
~,

—@[fol—@,[fo fol

u v +— 1 —pv2 Bv '
v Bp

(84)

where u = —uosincvt, uo=eEolmtv; K is defined in $ec.
III, and K, [f,f] is the electron-electron collisional opera-
tor. The bilinear form K, [h,g] is defined as

K, [h, g] —= I A hg—,(82)
4n. 8 h 8 1(jg)

BV(BVf BV;Bvf

with

where the conditions (i)fo) =(K,[fo,f, ])= (K,[f,,fo])=0 have been imposed.
For weak field, an approximate evolution equation for

f, ean be obtained by first subtracting Eq. (84) from Eq.
(Bl), and then retaining in the resulting equation only
linear terms in the field amplitude Eo. Thus f, is linear
in Eo, and the lowest-order deviation of fo from the equi-
librium Maxwellian f =N exp[ —v l2U, I, with
N=N, (2nu, ), is quadratic in Eo. The limit Z)&1
(Lorentz gas) will be taken in the following, so that in the
equation for f, only the electron-ion collision term will
be retained [by the way, one may show that
5„[f,f i ]=0 for fi given by Eq. (A6) below]. The per-
turbation f, is then found from

c [u2f )
dt U

[(1—p')f ) +Klf, ]. (85)

Under the hypothesis that A, =I'Zv 3' '«1, the fol-
lowing solution is found [apart from 0 (A, ) corrections]:

f, =uop [A, cosoit+sincot ] .
Bu

(86)

The term ( K, [f,,f, ] ) can be evaluated, apart from
0 (A, } terms, taking only the contribution proportional to
sincot in Eq. (86). For the potential g one finds

Nuo
PIf, )

= &~/2 — ut3p sintot, u &&u, ,
2

(87)

so that

r uo
2

(Ke[f 1 ~ f1 ]) 4 P2(P)fm~ V )&U (88)

where Pz(JM ) is the Legendre polynomial of order 2. For
the first term on the right-hand side of Eq. (84}:

r

I"f.l+ —
~

I(& —y')f. j )BV V BP

rz uo
2

[P (p)+ —,']f, v &)v, .
3v,

(89)

Consider now Eq. (84); a quasistationary solution is
obtained by setting dfolr}t=0. The time-independent
solution is now put in the form:

fo(v, p) =f (v)+f, (u)+f.(u)P, (p), (810)

where f, and f, are the isotropic corrections to f, re-
spectively, and proportional to u o.

The Maxwellian function Af, with A an arbitrary
constant, is a solution of the homogeneous equation asso-
ciated to the quasistationary problem, since
@,[f f )=L[f ]=o.

For the collisional operator in the inhomogeneous
quasistationary equation, to lowest order in Eo,

C, [fo fol=@,lf,f;)+@,[f; f )

+@,[f P f.]+@,[P f. f ]
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0[f,. I
=—N '

&m/2, v&)v, ,
2

and for the potentials P:

where

I 2

(Z+1)+ Vy=N —,
f

u,
'- '

V +ac
2g[f; [=—— dxx f, (x), v ))v, .

2 0

P&(p)
$[f„I= — f dx x f, (x), u »u, .

30v o

(812) 2 I,
15%v,

I,, = J™dxxyf (x)
0

Z+3 ~o

3
(816)

Since {s,[f,P„h(v)] and Lr, [P„h(u),f ] are propor-
tional to P„[12],the solution to the quasistationary prob-
lem can be found for f; and f, separately. Under the hy-
pothesis that f; is Maxwellian-like, the term proportional
to f,f,„ is neglected in the corresponding equation
( v && v, ), which takes the form

; 1 j2

f,'+ 2 — ~, +' [f; ]
=—

1

ZUQ o
2

f,. —
6vf

(813)

where primes stand for the derivative with respect to v.
One sees immediately that f;=Bf is a solution; the
constant 8 can be found by direct substitution into Eq.
(813), and the final result is

ZOO

12u
(814)

For the anisotropic correction, let f, =yf; then (us-
ing the condition v &)v„and again neglecting the term
proportional to f,f ) the following equation for y is
found:

Z+3 "o [3(Z+1)] 3{z+1I/2f.
3 2 3O

5 3(Z+1)
2 2

(818)

Finally, letting Z be large, the following expression for f,
is found:

Z&ov v
f , =- ——'~ 3Z+

U V V
1

P&(p)f (B19)

Since the coefficient of y is large, an approximate solution
to Eq. (815) can be obtained by neglecting the term uy'

(and one is led to a Fredholm equation of the first kind):

2
V

2

y=C—. 3(Z+1)+— (817)
V2 2

t

with C a constant to be determined by introducing Eq.
(817) into Eq. (815) [it may be checked that the term uy'

in Eq. (815) is, in fact, negligible].
After straightforward algebra,
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