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The approximate propagation of Gaussian pulses in a Langmuir plasma described by Zakharov equa-
tions is considered. By using the Rayleigh-Ritz optimization method based on trial functions, a set of or-
dinary differential equations for the pulse parameters has been derived. In the static limit, previous re-
sults are regained. In the nonstatic description, the periodic time of oscillation for the width of the pulse

is reduced from that in the static limit.

PACS number(s): 52.35.—g

I. INTRODUCTION

Zakharov equations [1] describe the interaction of
averaged high-frequency Langmuir waves with low-
frequency plasma density fluctuations. The coupling be-
tween the high- and low-frequency oscillations is due to
the ponderomotive force. This force associated with the
Langmuir oscillations drives the low-frequency density
fluctuations which in turn trap the Langmuir oscillations
in them. Excellent review articles are available (e.g.,
[2-4]). Zakharov equations have uniform solutions as
well as stationary solitary-wave solutions. Numerical in-
vestigations of these equations were done by many au-
thors (e.g., [5-8]).

The evolution of pulses which are initially nonsolitary
has been investigated by using the inverse-scattering
method for nonlinear many-field equations [9—12]. But
for the case of Zakharov equations no inverse-scattering
transform exists. Therefore approximate analytical solu-
tions for the evolution of pulses are necessary to summa-
rize information and to give physical insight in the nu-
merical results. In this respect different methods have
been suggested, such as the moment method [13-15] and
a variational method based on Rayleigh-Ritz optimiza-
tion [16-18]. If pulses are sech-shaped with nonsoliton
initial conditions and the fields governed by the Zakharov
equations, then it is shown [18] by using a variational ap-
proach that plasmon number and momentum remain
conserved and the Hamiltonian of the system remains al-
most conserved for small values of the pulse velocity and
b where b is the coefficient of x 2 in the chirp factor.

In this paper we wish to investigate the evolution of
Gaussian-shaped pulses connected with the Zakharov
equations by applying the variational Rayleigh-Ritz op-
timization method. The same problem connected to the
nonlinear Schrédinger (NLS) equation was considered in
[19]. In Sec. II we derive the evolution equations for the
solution parameters of pulses. Analytical solutions for
special cases are given in Sec. III. In Sec. IV, integrals of
motion are given. Numerical results and discussion are
given in Secs. V and VI, respectively.

II. ORDINARY DIFFERENTIAL EQUATIONS
FOR PULSE PARAMETERS

The coupling between high-frequency Langmuir waves
and the associated low-frequency ion density perturba-
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tion is described in one dimension by the Zakharov equa-
tions

iE,+E, =nE ,
t XX (1)

ntt_nxx=|Ech ’

where ¢, x, E, and n are the dimensionless time, distance,
slowly varying envelope of the high-frequency Langmuir
field, and low-frequency density perturbation, respective-
ly [2]. In order to investigate the propagation of the
slowly varying pulse envelope determined by (1) we use
the initial forms of the pulses as

E= Agexp(—x2/2ad)expli(box?+cox)], )
2
n=ngexp(—x%/a}) .

We have used the Rayleigh-Ritz optimization method
based on chosen trial functions [19,20] to study the prop-
agation of pulses. The field equations (1) may be derived
from a variational problem:

8[ [Ldrdx=o0. (3)

Here the Lagrange field density L corresponding to (1) is
L= é(EE,‘ —E*E)+E}E,—L[(E*E—u,)*—u?],

4)
and the ion flux density u is given by

u,=n+|E?. (5)

In order to describe the evolution of pulses subject to
the initial conditions (2), we use as trial functions

2

ET=Aexp exp[i(bx2+cx)],

2a?
(6)
uT=Bexp[ —(x —x,)*/a?],

where A4, B, a, b, ¢, and x, are time-dependent parame-
ters. The above form of widths and equal displacement
x, is introduced in the trial functions to simplify the cal-
culations. The behaviors of 4, B, a, b, ¢, and x, are
determined by the reduced variational problem [21]
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8 [(L)dt=0, ™M (Ly=[" LET,uNdx . (8)
Using the solutions (6) for E” and u 7, we can write (8) in
where the form
|
(L)= 1‘/77 * * Vi * gl 2 24 .2 2
= (AAr— A A,)a+E-A A+VTA* Aa[(b,+4b*)(La*+x7)+(4bc +c,)x | +c?]
\/_ B?
—2‘/712[¢1(A"A—B,)2 “—(x}+3a?~1)—Ba,(4*4—B,)] . 9)
[
For arbitrary variations 84, §4*, 8B, 8a, b, 8¢, and c=za(x,/a),, (17)
6x,, (7) gives seven equations, which can be reduced to d
three coupled equations for @, B, and x : —(arg4)=—(b,+4b*)(1a’+x})—c,x,——
dt 2 1 1 202
aa, +B B, +v,=0, (10)
—dbex | —c*— (B —N?%/a)
aya, +B,B, ty,=0, (11)
1,:2C0N2(1/(N20+\/§Bz) , (12) —Ba,/Z\/Za , (18)
where where we have used the following initial values:
3B B(t=0)=0, x,(t=0)=0, c(t=0)=c¢, . 19)
= 2 —_—
=B, a,=, IN°+ V2 oa |’ The advantage for choosing such an initial value of B is
to ensure that the initial ion density perturbation, n, is
Bi=2a, B,= 1_ B, Gaussian. The second initial condition is used for mak-
2V2 13 ing initial pulses symmetric about the line x =0. Analyt-
3 Ba® N 2Bx? 2B (13) ical solutions for the pulse parameters in a special case
Y1=2a,B,— 2 L+ L— Ly=2 and numerical solutions are given in Secs. III and V, re-
a a a a

3 BB,a, 3 B%a} N? B,
"TW3 a4 82 &2 22 a

=

4 —n2?
2‘/2(1\7 +B%x2 —BYa—

and

N =|4,l%a, . (14)

The other parameters are determined as follows:

|A|*=N?%/a , (15)
1d
b—4 ar (Ina) , (16)

(V2N2%a%a —(V2N%a,—2—8bka
NZa}

Sat—2a31"?

spectively.
II1. SPECIAL SOLUTIONS

In general, the exact solutions of (10)-(12) and
(15)-(18) cannot be determined analytically. However,
analytical solutions may be obtained for a particular case.
Zakharov equations reduce to the NLS equation in the
static limit for which n=—|E|% In this case the
Lagrange field density expression (4) will not involve u
and the constraint due to arbitrary variation 6B will be
absent. Then (11) becomes

=(4—V2N%)/a’ . (20)

The periodic solution for the width of the pulse is given
by

+ 0s
(2N2a,—2V2—8V2b%a})!? [c lao(zv4

N?a,—2v2—8V2b2a}

(2N%ay—2V2—8V2b%al)a — N}
2—4V2N%ay,+8+32b3ad)'?

-1
—COoSs —
[ (N%*?2—4V2N%a,+8+32b3a

while the other parameters are
c=cy=0, x,;=0, (22)

together with (16) and (18) for b and arg A4, respectively,

=(2N%ay—2V2—8V2bkad)t /a,, (21)

8)1/2 }

provided that

172
Nia —1 (23)
V2 ’

‘ 1
byl =1b(t=0)| < T
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and
| A(t=0)|ay>2!"*. (24)
The period of oscillation of the width is
T=nN%}(V2N%a,—8b2al—2)73"2 . 25)

This special case has recently been considered by Ander-
son [16] with the dynamics governed by the NLS equa-
tion. Our results correspond to those results with ap-
propriate changes in notation.

IV. INTEGRALS OF MOTION

Zakharov equations possess three integrals of motion
for the one-dimensional case. These are the number of
plasmons

1=[" |EPdx , (26)

the momentum

p=["
and the energy
H=[" [LE*E*~EE,—Lul+uD)ldx .  (28)

é(EE:—E*Ex )—nu, |dx 27)

If the fields are given as in (6), then the above integrals of
motion become

I=V'r|Al%a 29)
P=%\/—1}x1, [A[2a+‘/—iB2 : (30)
H=—-%\/1_TN2 %+a,2+2xf,

Vi

+ Ve [N*—B*1+x?,)—Bla?

—BB,aa,—3B%?] . 31)
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FIG. 1. Width versus time for | 44| =1, x,(0)=0, B(0)=0,
b0=0017, C0=0.1, no=_13 e ey ao=3; — = =, aqy=4
,a0=10.
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FIG. 2. Width versus time for | 4,|=1, x,(0)=0, B(0)=0,
ng=-—1, ¢;=0.1, ag=4: , bp=0.06; — — —, by=0.03;
<« .+, by=0.017.

By using (12) and (15), we may find that I and P are con-
served for solutions but H is not conserved.

V. NUMERICAL RESULTS

The evolution equations of the pulse parameters are
determined by Egs. (10)-(12) and (16)-(18). In the static
limit we have n=—|E|? for which B =0 and the solu-
tions of the other parameters are given by (15), (16), (18),
(21), and (22). General solutions of the equations of the
pulse parameters have been investigated numerically by
using the Runge-Kutta method. The difference between
these numerical solutions and the analytical solutions in
the static limit may be interpreted as the effect of the

s
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FIG. 3. Width versus time for | 4,|=1, x,(0)=0, B(0)=0,
co=0.1, by=0.017, ay=3: ,
no=-—0.8;. - - ., ng=-—1.2.
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FIG. 4. Width, Hamiltonian, and 10 times velocity of the

pulse are plotted against time for ay=3, |d,|=1, nyo=—1,
by=0.017, ¢,=0.1, B(0)=0, x,(0)=0: ——, width; — — —,
10 times velocity; - - - ., Hamiltonian.

presence of ion flux density, u, defined via (5). We have
put | 4,/ =1 in our computation.

Figures 1-5 depict the dependence on the initial values
of b, a, ¢, and n,. Figure 1 corresponds to the evolution
of the width for different initial values of a. Figure 2
shows the effects of the initial values of b on the evolution
of width. Figure 3 shows the effects of the initial values
of n on the evolution of width. Figure 4 shows that the
Hamiltonian is not conserved in our solutions, however,
almost conserved at the early stage of the evolution of the
pulse at which the velocity of the pulse is almost uniform.
Figure 5 shows the effects of the initial values of ¢ on the
evolution of the width.

VI. DISCUSSION
Using the Rayleigh-Ritz optimization method based on
chosen trial functions we have investigated the propaga-
tion of pulses for Langmuir waves described by the Za-
kharov equations. A Gaussian pulse has been used as the
initial pulse. From (25) and (21) we may get the period of
oscillation, the maximum and minimum values of the
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FIG. 5. Width versus time for | 44|=1, x,(0)=0, B(0)=0,
by=0.017, ay=3, ng=—12: - ... ¢,=0.15;
o =0.05.

width of the pulse in the static limit which are 10.72,
4.45, and 0.38, respectively, for a,=4, b,=0.03, and
| A4gl=1. On the other hand, for the nonstatic case, the
time of oscillation and the maximum value of the pulse
are reduced and the minimum value of the width is in-
creased as may be seen from Fig. 2. For our solutions (6),
the plasmon number and momentum are conserved but
the Hamiltonian is not conserved though the fluctuation
is not much. The Hamiltonian is almost conserved if the
initial pulse is sech-shaped [18]. If we introduce a certain
polynomial in powers of x whose coefficients are time-
dependent parameters as the amplitude of the Gaussian
pulse (6) instead of A, the situation may be improved. In
this case the algebra will be more complicated.

We may conclude that our solution will give an ap-
proximate solution of a nonlinear evolution of the pulse.
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