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Variational approach to approximate propagation of Gaussian pulses in a Langmuir plasma
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The approximate propagation of Gaussian pulses in a Langmuir plasma described by Zakharov equa-
tions is considered. By using the Rayleigh-Ritz optimization method based on trial functions, a set of or-
dinary differential equations for the pulse parameters has been derived. In the static limit, previous re-
sults are regained. In the nonstatic description, the periodic time of oscillation for the width of the pulse
is reduced from that in the static limit.

PACS number(s): 52.35.—g

I. INTRODUc:r aON

Zakharov equations [1] describe the interaction of
averaged high-frequency Langmuir waves with low-
frequency plasma density fluctuations. The coupling be-
tween the high- and low-frequency oscillations is due to
the ponderomotive force. This force associated with the
Langmuir oscillations drives the low-frequency density
fluctuations which in turn trap the Langmuir oscillations
in them. Excellent review articles are available (e.g.,
[2-4]). Zakharov equations have uniform solutions as
well as stationary solitary-wave solutions. Numerical in-
vestigations of these equations were done by many au-
thors (e.g., [5—8]).

The evolution of pulses which are initially nonsolitary
has been investigated by using the inverse-scattering
method for nonlinear many-field equations [9—12]. But
for the case of Zakharov equations no inverse-scattering
transform exists. Therefore approximate analytical solu-
tions for the evolution of pulses are necessary to summa-
rize information and to give physical insight in the nu-
merical results. In this respect different methods have
been suggested, such as the moment method [13—15) and
a variational method based on Rayleigh-Ritz optimiza-
tion [16—18]. If pulses are sech-shaped with nonsoliton
initial conditions and the fields governed by the Zakharov
equations, then it is shown [18]by using a variational ap-
proach that plasmon number and momentum remain
conserved and the Hamiltonian of the system remains al-
most conserved for small values of the pulse velocity and
b where b is the coefficient of x in the chirp factor.

In this paper we wish to investigate the evolution of
Gaussian-shaped pulses connected with the Zakharov
equations by applying the variational Rayleigh-Ritz op-
timization method. The same problem connected to the
nonlinear Schrodinger (NLS) equation was considered in
[19]. In Sec. II we derive the evolution equations for the
solution parameters of pulses. Analytical solutions for
special cases are given in Sec. III. In Sec. IV, integrals of
motion are given. Numerical results and discussion are
given in Secs. V and VI, respectively.

II. ORDINARY DIl'I'KRENTIAL EQUATIONS
FOR PULSE PARAjMETERS

The coupling between high-frequency Langmuir waves
and the associated low-frequency ion density perturba-

tion is described in one dimension by the Zakharov equa-
tions

iE, +E =nE,

n« n„„=I
E—

I

where t, x, E, and n are the dimensionless time, distance,
slowly varying envelope of the high-frequency Langmuir
field, and low-frequency density perturbation, respective-
ly [2]. In order to investigate the propagation of the
slowly varying pulse envelope determined by (1) we use
the initial forms of the pulses as

E= Aoexp( —x /2ao)exp[i(box +cox)],
n=noexp( —x /ao) .

(2)

We have used the Rayleigh-Ritz optimization method
based on chosen trial functions [19,20] to study the prop-
agation of pulses. The field equations (1) may be derived
from a variational problem:

8J fLdtdx=O. (3)

(4)

and the ion fiux density u is given by

u, =n+ IEI'. (5)

In order to describe the evolution of pulses subject to
the initial conditions (2), we use as trial functions

E =A exp
(x —x, )

exp[i(bx +cx)],
2a

(6)
u =Bexp[ —(x —x, ) /a ],

where A, B, a, b, c, and x& are time-dependent parame-
ters. The above form of widths and equal displacement
x

&
is introduced in the trial functions to simplify the cal-

culations. The behaviors of A, B, a, b, c, and x& are
determined by the reduced variational problem [21]

Here the Lagrange field density L corresponding to (1) is

L = (EE; E'E,—)+E„'E„———,
' [(E'E—u, ) —u„],l
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5f &L&dt=o,

where

(L)=f L(E,u )dx . (8)

Using the solutions (6) for E and u, we can write (8) in
the form

(L ) = (AA,*—A A, )a+ A*A+v'sr A*Aa[(bt+4b )( ,'a —+xf)+(4bc+ct)x&+c ]
iv'tr, , &m.

B2
—[a(A'A —B, ) + (x&t+ —,'a, —1)—Ba, (A*A B—, )] . (9)

For arbitrary variations 5A, 5A', 5B, 5a, 5b, 5c, and
5x„(7}gives seven equations, which can be reduced to
three coupled equations for a, B, and x, :

c =
—,'a(x, /a ), ,

—
(argA )= (b, +—4b )( ,'a +x—,) —c,x, —

(17)

aiatt+PiB«+r i=o

&pa„+PpBtt+rp=o

x„=2coN a/(N a+V 2B~),

(10)

(12)

4bcx——c — —(B —N /a)—2 1 2
1 v2 t

Ba, /2V—2a, (18)

where

1 3 B
a, =B, a2= —N +2

4 v'2 a

1
P) =2a, P~= B ,2v'2

3 Ba, N a
y =2aB —— +

2 a a

2Bx i~ 2B+
a a

(13)

where we have used the following initial values:

B(t =0)=0, x, (t=0)=0, c(t =0)=co . (19)

The advantage for choosing such an initial value of B is
to ensure that the initial ion density perturbation, n, is
Gaussian. The second initial condition is used for mak-
ing initial pulses symmetric about the line x =0. Analyt-
ical solutions for the pulse parameters in a special case
and numerical solutions are given in Secs. III and V, re-
spectively.

BB,a,
2v'2 a

B2a2

gv'2 a'
N

2v'2 a III. SPECIAL SOLUTIONS

+
3

(N+Bx« —B )a —N
a 2 2

and

N'=
~
Ao~'ao

The other parameters are determined as follows:

(14)

In general, the exact solutions of (10)—(12) and
(15)—(18) cannot be determined analytically. However,
analytical solutions may be obtained for a particular case.
Zakharov equations reduce to the NLS equation in the
static limit for which n = —

~E~ . In this case the
Lagrange field density expression (4) will not involve u

and the constraint due to arbitrary variation 5B will be
absent. Then (11)becomes

(15) a« =(4—V2N a )Ia' . (20)

1
b =——(lna ),

4 dt
(16) The periodic solution for the width of the pulse is given

by

=(2N ao —2v 2 —8V 2boao)t/ao,

[V2N aoa (v 2N ao —2——8boao}a —2ao]'

N2a 2 (2N ao —2v 2 —8V 2boao)a —N ao+ cos
(2N ao —2v2 —Sv'2b ao)' ao(N a 4v 2N ao+8+32—b ao)'

N ao —2V 2 —gv'2boao
cos

(N4a 2 4+2N2a +8+ 32b 2a 4
)

1/2 (21)

while the other parameters are

C =CO=0, X j =0, (22)

together with (16}and (18) for b and arg A, respectively,

provided that

2QO

Nao2

~2
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and

Ia(r =0)lao»'".
The erip od of oscillation f ho t ewidthis

T= ~+~a o3 (V'2+ia —gb i 4T n o oa 2)

(24)

(25)

This s ecialp 'al case has recentl be
[16] e ynamics ov

y nder-
go e e byt eNLS

u s correspond to t
equa-

h s in notation.
wi ap-

IV. INTEGRALS OF MOTION

Zakharov e uquations possess three
'

g
siona case. These are th e number of

I=J
the momentum

(26)

20—

TIME

I
20

I
24

P = —EE*—
x x xE

and the energy

2E2 E+ & 2

(27)

(2&)
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V. NUMERICAL RESULTS
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VI. DISCUSSION
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