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Electron-ion relaxation in a plasma interacting with an intense laser field
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The effect of an external high-frequency electromagnetic field on the electron-ion energy exchange rate
in a plasma is considered. Particular consideration is given to very high intensities of the laser field and

explicit analytical formulas are obtained for this case. The implication of the present approach for the
more simple case of electron heating is also briefly considered. For practical use, simple interpolation
formulas for the variation rate of the ion and electron temperatures are suggested, describing the entire
region from zero intensity to extremely high intensities below the relativistic threshold.

PACS number{s}: 52.40.Nk, 52.50.Jm, 42.55.—f, 52.25.Fi

I. INTRODUCTION II. ELECTRON-ION INELASTIC COLLISIONS
IN AN EXTERNAL FIELD

The problem of the electron-ion energy exchange in
plasma [1—3] as well as the electron-phonon energy ex-
change in metals [4] has attracted much attention during
the past three decades. The interest in these problems is
renewed in eonneetion with the investigation of superin-
tense ultrashort laser pulse interaction with materials
[5—8], since the characteristic time of the electron-ion en-

ergy exchange is comparable to a pulse duration, and
therefore a strongly nonisothermal plasma can be gen-
erated. At such conditions, the mechanism of electron
transport considerably changes [9].

Although the kinetic properties of electrons in plasma
exposed to a strong electromagnetic field has been inten-
sively studied recently [10—15], the problem of the
electron-ion relaxation at such conditions was not ade-
quately considered. The heating of ions via electron-ion
collisions in the laser field has been recently studied in a
weak-field limit [15]. The aim of the present paper is to
consider the electron-ion energy exchange in an elec-
tromagnetic field of arbitrary intensity. The limit of
zero-field strength is also recovered for completeness.
Particular attention is given to the case of very intense
fields, however the limit of zero-field strength is also
recovered for completeness, and a simple interpolation
formula covering the intermediate region of field intensi-
ties is finally suggested.

In the present paper we shall consider the electron-ion
scattering problem using quantum consideration [16]
since electrons are accelerated to large velocities in an in-
tense field. However, we restrict ourselves to a nonrela-
tivistie consideration. In the following, the Planek con-
stant fi is assumed to be unity.
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We consider the electron-ion plasma in the high-
frequency field Ecostot. The wave function of the free
electron with a canonical momentum k can be written as

1 i & eE
exp ik r — k+ sincot' dt'0 2' N

where 0 is the volume of the system and e is the electron
charge. The influence of the electric field on the ion
motion can be neglected due to the small ratio m jM of
electron and ion masses.

Let the colliding electron and the ion have initial mo-
menta k and p and final momenta k' and p', respectively.
Then, using the conventional perturbation theory ap-
proach for the electron-ion scattering problem, we can
calculate the corresponding transition probability per
unit time,

~(p', k'Ip, k) = y J.'(p) 0
x5(p'+ k' —p —k) I V(k k') I'

ks2 k2 s2 2

X5 — +neo . (2)
2m 2M

Here, J„are Bessel functions, p =(k—k').Ee /tn to,
V =4m.e Z/q, and Z is the ion charge. The 5 functions
in Eq. (2) describe n-photon emission and absorption pro-
cesses accompanying the electron-ion scattering event.

We shall concentrate on the calculation of the varia-
tion rate of the ion subsystem energy E caused by
electron-ion collisions. We can therefore write
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&2 2

E,'= g F(p)f(k) 8'(p', k'ip, k)
2M

(3)
sible scattering events. Substituting Eq. (2) into Eq. (3)
we can write the expression for E,' in the following form:

where F and f are ion and electron distribution functions,
respectively. The summation in Eq. (3) goes over all pos-

E = gE,'(n. ),
n=0

E (n)= ' fdgf dq~V ~
(2m) 5 n—co +5 +neo

8(2m ) 2m 2m

xZ„'(p»}f
2

0+
M p

—
Mq

—
q M 2M

Here, p= q

Ee/mdiv,

N; is the total number of ions, and averaging over ion momenta p is assumed. When n =0 only
one 5 function is assumed in Eq. (4}.

For the particular analysis in the present paper we assume Maxwellian distribution functions for ions and electrons
with temperatures T~ and T„respectively, in particular, f ( k ) = A T exp( k /—2m T, ), A T

=n, (2r//m T, ) /, and n, is
the electron number density.

Let us now take into account the existence of the small parameter m /M and consider the expansion of Eq. (4) in
power series of 1/M. It is clear, that after averaging over directions of p, the main contribution —1/&M determined
by the term p q/M-QT, q/VM in the last parentheses in Eq. (4) vanishes, but the remaining term —1/M in the
same parentheses survives. Therefore to take all terms —1/M into account one needs to also consider the contribution
of the respective order resulting from the expansion of the distribution function f in Eq. (4). Retaining the necessary
terms we get after the integration with respect to Q in Eq. (4)

E (n)=
Sm A& 21f dq~ V

~

—exp
(2m )

2 2 2mean q
2T Sm

n ru/2 T, —n ~/2 T, q ii iV m n ra /2 T, —n u /2 T2

2M ' ' ' M
(5)

We are reminded that for n =0, in accordance with the
remark given after Eq. (4), only one exponent is assumed
in the term proportional to (T, —T;) in Eq. (5). In the
limit of weak electric fields one may retain only the term
with n =0 in Eq. (4) and put Jo(p)=1 in Eq. (5). The in-
tegration in (5) then gives

dT]
=n, CO(T, —T, )lnA

8&2m. 4e Z
3mM

In deriving Eq. (6) we took into account the relation
E, =3N; T, /2 and introduced . the notations v, =QT, /m
and A=me, /co, where the m is the electron plasma fre-
quency. The quantity co appears in the expression only
for n =0, as the result of the cutoff due to screening
effects. co does not enter results for n&0 if the relation
neo& co~ is valid, and therefore screening effects are not
important.

Let us briefly discuss the structure of Eq. (5}. For
n =0 only the first term in parentheses contributes and
the energy transmission between electrons and ion s
would stop at T; = T„provided the electric field is weak
enough and, therefore, terms with n )0 are negligibly
small. However, at higher-field intensities, photon ab-

sorption and emission processes take place (n %0) and the
energy exchange between electrons and ions does not stop
even at T; = T, . The physical explanation of this effect is
quite simple: electrons continuously absorb energy from
the electromagnetic wave due to collisions and transmit,
roughly speaking, the m/M fraction of the absorbed en-

ergy to ions.
Equation (5) can be considerably simplified in the limit

of strong fields. Furthermore, it will be clear that in this
case the sum over n in Eq. (4) is determined by large n.
Therefore, the well-known conventional procedure [17]
can be applied. The asymptotic expression for J„(p) at
p) n )) 1 should be used [18]:

= 2J„(p)= cos p
'7Tp

and the cutoff of the integral in Eq. (5) at
~
q.E~ /E =q i

=ma n /~ eE~ should be introduced, be-
cause asymptotic Eq. (7) is not valid in the region
~q E~/E (q, and the latter contributes negligibly in the
integral over q. Because the argument p is large and cosp
in Eq. (7) rapidly oscillates, we can put cos2p= —,

' when
calculating the integral with respect to the directions of q
in Eq. (5), keeping in mind the above cutoff. Instead of
Eq. (5), we then obtain
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E (n)=
Nm Az- „~ qvE

2

dq~V ~
4 ln

(2lr) &&
' uz co

mco n
exp

2q T e

2

(8)

2 2~vEv, n

Xln
q'E
neo

2T
+T, 1+ (1—e

neo

—(neo/T )e

(9)

Here, q -q2 if neo & T, and q -q3 if neo & T, .
It is clear now that the sum E in Eq. (4) is determined

by large values of n. Thus, summing up of the series in
Eqs. (4) and (9) can be done by replacing the sum by the
integral (let us be reminded that the cutoff at n -mvz/co
exists).

If co » T„we simply obtain, retaining only large loga-
rithmic terms,

Here, we introduced the electron quiver velocity
uz=~eE~/mco. In the following we assume the relation
mvE »mv„co.2 2

Let us consider the integral (7) without the cutoff at
q =ql. If neo«T, then the main contribution is given
by q &q2=mnco/+mT, Th. us, we have q2»q, . If
neo » T, then the main contribution is determined by the
region of q in the vicinity of q3-&nmco with the width
-QmT, «q3. Provided n«mvz/co we also have

q 3 ))q, . Therefore, we can set q, =0 while calculating
the integral (5) for n &mvz/co. If n &mvz/co, then
neo » T„q3 & q „and the series in Eq. (4) is interrupted.

After this analysis, the integral in Eq. (7) can be easily
evaluated:

dTc

dt

r r

8n, e Z (vz+u, ) 1 mvz—ln 1+
3M(u +u )i 4

main distinctions are (1) the appearance of the small fac-
tor u, /uz and (2) the substantial modification of the loga-
rithmic factor —a double logarithmic factor appeared
and the arguments under the logarithm sign changed.

It is seen that the energy exchange rate is strongly
suppressed by an external high-frequency field. At high
intensities, it does not depend on the temperature T„
provided co»T, [Eq. (10)], and weakly depends on the
latter, if T, »co [Eq. (11)]. A substantial distinction be-
tween Eqs. (10) and (11) is due to the different role of
light emission and absorption processes in e-i collisions.
At ~ && T, the stimulated emission of radiation is evi-

dently strongly suppressed, the thermal motion has no
significance and the characteristic momentum transfer q
is determined by the absorbed energy ig v'n-corn. If
co&&T„ then absorption and emission processes are
equally significant. The absorption or the emission n

quanta with n & T, /co does not change the electron ener-

gy considerably and the characteristic momentum
transfer is q -nco/u, For n .& T, /co, the influence of the
electromagnetic field is like that of ~ && T„which has al-
ready been described. From either Eq. (10) or Eq. (11), it
is seen again that at T, = T, ion heating does not stop (T;
simply drops out).

For practical aims the case T, »co, T; is the most im-
portant one and the following interpolation formula is
suggested (here we have returned to Gaussian units and
introduced the Planck constant R and the Boltzmann
constant ~):

dT;

dt

2
'2

Cp T mvE
ne ln

4~2nu, vz' (10) mvE
2

+ln +exp(~2m )
KTe

dT; Co T,=n,
dt ' v'2~ v2v

2
'2

mvE mvE
2

+1n lnT

III. DISCUSSION

Formulas (10) and (11)are represented in the form sim-
plifying comparison with the low-field limit (6). The

If co&(T, we separate the region of the integration
over n into two domains (1,T, /co) and (T, /co, mvz/co).
Then taking into account that large numbers n contribute
into the sum over both domains we can expand exponen-
tial terms in Eq. (8) in the first dolnain and neglect them
in the second one. The integration with retaining only
large logarithmic terms results in

~e("z+ve )
Xln

flCOVz +fROp Ve

(12)

It is seen from forlnula (12) as well as from the direct
comparison of Eq. (6) with Eqs. (10), (11) that the effect of
an intense external field is essentially a substitution of the
electron thermal velocity v, by its quiver velocity vE. Of
course, the numerical factors as well as more complicated
logarithmic terms cannot be deduced from such a quali-
tative argument alone.

In conclusion, let us briefly discuss the implication of
the above theory for the less complicated case of the elec-
tron heating in an intense laser field. Using the above
technique, one can readily obtain the following expres-
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sion for the variation rate of the electron subsystem ener-

gy Ee:

E,'= g E,'(n),
n=1

E,'(n) =4N, n, eZ . (1—e4 2

mvE

qVE

neo

—n co/T 2 Te') 1+

dTe

dt

sn, e4Z2
lnA, ,

mVE

(14)

ln

2
'2

mvE e»T,

This expression is valid for mvE »co, T„q has the same
meaning as in Eq. (9). Let us compare Eq. (13) and Eq.
(9) in more detail. Since the ion temperature does not
enter the final result [see Eqs. (10) and (11)],only the term
proportional to T, is important in Eq. (9). It is clear that
multiphoton emission and absorption processes play con-
siderably different roles in the electron and ion heating.
In the former, they are competitive, but in the latter,
both contribute to the ion heating. Nevertheless, due to
the accidental cancellation of numerical factors, the final
results for the rate of temperature variation appear to be
quite similar. Using the approach of the preceding sec-
tion we immediately get

For the sake of completeness the following interpolation
formula, the counterpart of formula (12) (again written in

Gaussian units) is suggested:

8n, e4Z2v'
—,'ln 1+

3m(U +U )E e L

mVE
2

+ ln +exp( —,
' &n./2)

KTp

KT~
Xln (15)

The interpolation formulas (12) and (15) describe the en-

tire region from zero laser intensity to extremely high in-

tensities below relativistic threshold, provided T, »Ace.
Although both the analogy and distinction between Eq.
(12) and Eq. (15) are clear after attentive comparison, let
us emphasize some points. The formulas are much more
similar at high-field intensities rather than in the low-field
limit. In the latter case, dT; /dt does not depend on the
field intensity, but dT, /dt is obviously proportional to
E . Besides, Coulomb logarithms (Gaunt factors) are
considerably different: ln(T, /co ) for ions, and ln(T, /co)

for electrons, although the inequality co»co was as-

sumed in the present paper. The physics of this distinc-
tion is clear, since a weak laser Geld does not affect the
electron-ion energy transfer at all [summation in (4) starts
from n =0],but it does course the electron heating.

1nA]= '

mvE T
lnln

e

2 2
mv

+ln
T.

co&&T, .
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