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We study the problem of adsorption of linear chain polymers situated on fractal substrates that
belong to the Sierpinski-gasket (SG) family. Each member of the SG family is labeled by an integer
b (2 & b & oo), and it is assumed that one side of each SG fractal is an impenetrable adsorbing
wall. By applying the Monte Carlo renormalization-group (MCRG) method, we calculate the critical
exponent P, associated with the nuinber of adsorbed monomers, for a sequence of SG fractals with
2 & b & 100. We find that our MCRG results deviate at most 0.12% from the available (2 & b & 9)
exact renormalization-group results. In addition, we test the bounds for g'i, proposed recently on
heuristic grounds by Bouchaud and Vannimenus [J. Phys. (Paris) 50, 2931 (1989)].We demonstrate
that their lower bound is violated for b & 12. Finally, we discuss a possible behavior of P for large
b, including the limit 6 -+ oo.

PACS number(s): 36.20.Ey, 64.60.Ak, 05.50.+q

I. INTRODUCTION

Adsorption of linear polymer chains at surfaces has
been extensively studied because of its practical and the-
oretical importance. In almost all theoretical studies it
has been assumed that polymers are present in a homo-
geneous container that has one adsorbing impenetrable
boundary [1]. Recently, a few studies have appeared in
which a fractal container of polymers was assumed [2,3]
(this assumption may have its own technological rele-
vance). In these studies, it has been assumed that in the
container there is a single-chain polymer immersed in a
good solvent, which means that the interaction between
the contiguous monomers in the bulk are not taken into
account. On the other hand, the interaction with the
adsorbing surface is taken into account by assigning an
energy e ( 0 to each monomer that is found at the
surface. The number of the adsorbed monomers M is a
function of temperature T and its relation to the total
number of monomers X is assumed to be

'N(T —T)'1& ' T & Ta i

T=T,
, (T —T ) T)T~,

where T is the critical temperature of the adsorption,
and P is the crossover exponent [1). It follows that, for
temperatures higher than T, one should expect a vanish-
ingly small fraction of monomers adsorbed at the surface,
whereas for T ( T there should appear a finite fraction
of adsorbed monomers.

In the case of a two-dimensional Euclidean container
of polymers, it is known [4) that I/2 is the exact value for

the critical exponent P. Bouchaud and Vannimenus [2]
studied the adsorption problem for the two-dimensional
and three-dimensional Sierpinski gaskets (SG) by model-
ing polymers as self-avoiding walks (SAW's). In addition
to some other results, they found gi = 0.5915 for the two-
dimensional SG and P = 0.7481 for the three-dimensional
SG. Furthermore, the same authors [2] established the
following bounds for P:

(1.2)

where df is the fractal dimension of the polymer con-
tainer, d, is the fractal dimension of the adsorbing sur-

face, and v is the critical exponent of the end-to-end
distance of polymer in the bulk. The above bounds
were obeyed for the results found in Ref. [2]. The same
bounds have been also confirmed in the exact renormal-
ization group (RG) study [3] of the adsorption problem
for the first eight members, enumerated by the integer b

(2 & b & 9), of the infinite two-dimensional SG family of
fractals.

In this paper we introduce the Monte Carlo
renormalization-group (MCRG) method to calculate the
critical exponent P for linear chain polymers on the two-

dimensional SG family of fractals. We have obtained
for a long sequence of the SG fractals, that is, for

2 & b & 100. Comparing our results for 2 & b & 9
with the exact RG results [3] we find that there is no
deviation larger than 0.12'%%uc, and, for this reason, we can
accept the MCRG results as reliable. As regards the pro-
posed bounds (1.2), the MCRG results demonstrate that
the lowered bound is not valid for all b & 12. Details of
the present MCRG calculations are explained in Sec. II.
In Sec. III we present an overall discussion of our findings
and related results obtained by other authors.
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II. THE MCRG APPROACH

In this section we are going to apply the MCRG
method to the SAW adsorption problem on the SG family
of &actals. These &actals have been studied in numer-
ous papers so far, and consequently we shall give here
only a brief summary of their basic properties. It starts
with recalling the fact that each member of the SG &ac-
tal family can be constructed in stages. At the initial
stage (r = 1) of the construction there is an equilateral
triangle (generator) that contains b identical smaller tri-
angles of unit side length, out of which only the upper
oriented are physically present. The subsequent fractal
stages are constructed self-similarly, so that the complete
&actal is obtained in the limit r —+ oo. In the case under
study, it is assumed that one side, of each &actal, is an
impenetrable attractive wall, and, for the sake of conve-
nience, we assume that it is the basis of the correspond-
ing triangle. Thus it follows that the &actal dimension
of the adsorbing wall (surface) is d, = 1, whereas the
&actal dimension of the complete SG &actal is known to
be df = 1n[b(b+ 1)/2]/lnb.

In order to explore effects of the adsorbing wall, we
introduce the two Boltzmann factors m = e ' ~ and
t = e "~+, where s is the energy of a monomer lying
on the adsorbing wall, and s& is the energy of a monomer
that appears in the layer adjacent to the wall. Here we
set the Boltzmann constant k~ equal to unity. Besides,
we should set cq ) 0 so as to prevent the tendency of
polymer chain towards being always adsorbed [2]. In
the terminology that applies to the SAW, we assign the
weight z to each step in the bulk (away f'rom the wall),
the weight mx to each step on the wall, and the weight tx
to each step in the layer adjacent to the wall (see Fig. 1).

Important aspects of the statistics of chain polymers

can be learned by studying never-starting and never-
ending SAW's, which can be described by the three re-
stricted partition functions B~"~,C~"~, and D~"~, that are
depicted in Fig. 2. The recursive nature of the &actal
construction implies the following recursion relations for
the restricted partition functions:

Bt +'1 ) B~ (B( I)
Ng

(2.1)

C (~+~)

1' )Ng, Ng)

CN g, Ng, Ng

(2.2)

D(~+&) IV, W P , )

g(~) D(&) (2.3)

where the coefBcients BN, CN, ~,N, and DN, N, N
are not functions of r, and each of them represents the
number of ways in which the corresponding part of the
SAW path, within the (r + l)th stage fractal structure,
can be comprised of the SAW paths within the &ac-
tal structures of the next lower order (see, for instance,
Fig. 1). Because of the independence of r, these coefIi-
cients can be calculated by studying all possible SAW's
within the fractal generator only.

The above set of relations (2.1), (2.2), and (2.3), can
be considered as the RG equations. One can argue
that these RG equations should have three relevant fixed
points (B', C*,D') of the type (B',0, 0), (B*,B',B'),
and (0, 1, 0) [2]. The first fixed point with C* = 0 and
D" = 0, due to the meaning of these quantities (see
Fig. 2), describes desorbed phase of the chain polymer
(with vanishingly small number of adsorbed monomers).
Conversely, the third fixed point with B* = 0 and D' = 0
describes the adsorbed polymer state. Finally, the sec-
ond symmetric fixed point, with all three RG parame-
ters being mutually equal, describes the critical state of
the polymer chain which occurs at temperature T = T,
when adsorbed and desorbed polymer phases become
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FIG. 1. The fractal structure of the 6 = 3 SG fractal at
the second stage of construction, with an example of the SAW
path. The crosshatched area at the basis of the triangle repre-
sents the adsorption wall. The steps on the adsorbing wall and
in the adjacent layer are weighted by the factors m = e
and t = e ",respectively. Here e is the energy of a
monomer lying on the adsorbing wall (s ( 0), and sz ) 0 is
the energy of a monomer that appears in the layer adjacent
to the wall. The depicted SAW path represent one term in
Eq. (2 2) for r = 1 with N~ = 3, Nc = 1, and No = 2.
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FIG. 2. Schematic representation of the three restricted
partition functions (for an rth stage fractal structure) used
in the calculation of the SAW critical exponent P. Thus, for
example, C" represents the SAW path that starts at the
triangle left vertex that lies on the adsorption wall, and exits
the triangle at the right vertex that also lies on the adsorption
wall. The interior details of the rth order fractal structure is
not shown (it is manifested by the wiggles of the SAW paths).
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identical. In what follows we focus our attention on the
symmetric fixed point in order to calculate the critical
exponent P [2,3]. It should be observed that Eq. (2.1),
for each 6, has only one nontrivial fixed point value B*
[5,6], which thereby completely determines the symmet-
ric fixed point.

Calculation of the critical exponent P begins with solv-
ing the eigenvalue equation

but the results obtained in [6] provide information for
both B* and A for a sequence with 2 ( 6 ( 80. In this
paper, among other things, we supplement these data by
making larger number of the Monte Carlo (MC) simu-
lations and by treating the additional case of b = 100
(see Table I). The next step in the MCRG method con-
sists of finding A~ without explicit calculation of the RG
equation coefFicients.

To solve the partial eigenvalue problem (2.6), so as to
learn A@, we need to find the requisite partial derivatives.
These derivatives can be related to various averages of the
numbers N~, Nc, and NLi of difFerent steps (monorners)
within a SAW path. For instance, starting with (2.2) (in
the notation that does not use the superscripts (r + 1)
and r) and by difFerentiating it with respect to C we get

(2.4)

aB'
(2.5)

where we have used the prime symbol as a superscript
for the (r + 1)th order parameters and no indices for the
rth order parameters, and the asterisk means that all
derivatives should be taken at the symmetric fixed point.
The above eigenvalue problem can be separated into two
parts, so that the first part

6C'
6C ): N C. . .(B)" (C)"'-'(D)"

Ng, Nc, XD

(2.8)

Now, it is convenient to conceive C' as the grand canon-
ical partition function for the ensemble of all possible
SAW's that start at the lower left vertex of the genera-
tor (lying on the adsorbing wall) and exit at the lowei.

right vertex. With this concept in mind, we can write
the corresponding ensemble average

appears to be pertinent to the bulk critical exponent v =
ln 6/ ln A„[5,6], while the second part

1
(Nc(B, C, D))c = —, )

N g, Nc, Na
NC CNg, NC. , N~ (B)

(clC'

i clC
BD'
OC

OC'

OD

f OD'
=0 (2.6)

x(C) (D) (2.9)

which can be directly measured in a MC simulation.
Combining (2.8) and (2.9) we can express the requisite
partial derivative in terms of the measurable quantity

gives, in general, two additional eigenvalues for each 6,
but in practice it turns out that only one of them (to be
henceforth denoted by A~) is relevant (A~ ) 1). Knowing
Ay we can determine the critical exponent P [2] through
the formula

dC' C'
= —(N. (B,C, L)).BC C

(2.1O)

In a similar way we can get the additional three deriva-
tives

ln Ap

lnA
(2.7) 6C' C'

0D 0 (N~(B, C, D))c (2.1 1)

Hence in an exact RG evaluation of P one needs to
calculate partial derivatives of sums (2.1), (2.2), and
(2.3), and thereby one should find the coefficients Biv
CN N N, and DN N N by an exact enumeration of
all possible SAW's for each particular b, which has been
accomplished in Ref. [3] for the SG fractals with 6 ( 9.
However, for b ) 10 the exact enumeration turns out to
be a formidable task. We have circumvented this problem
by applying the MCRG method. Within this method, the
first step would be to locate the interesting Axed point,

6D' D'

BC C (Nc(B, C, D))a (2.12)

BD D (Nn (B,C, D)) g) . (2.13)

Consequently, calculating the above derivatives at the
symmetric fixed point and solving the eigenvalue equa-
tion (2.6) we obtain

(N~) c + (N~) 4
2

+ (2.14)
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TABLE I. The MCRG (2 & 6 & 100) results obtained in this work for the fixed point value parameter B', the eigenvalues
A„and A4„and the corresponding critical exponent P for the SG family of fractals. For the sake of comparison, we give also
the corresponding exact RG results [3], for 2 & 6 & 9.

10
11
12
13
15
17
20
22
26
30
35
40
50
60
70
80

100

No. of MC
realizations

Exact
5 x10
Exact

5 x10
Exact

5 x10
Exact

5 x10
Exact

5 x10
Exact

5 x10
Exact

5 x10
Exact

5 x10
5 x10
5 x10
5 x10
5 x10
5 x10
5 x10
5 x10
5 x10
5 x10'
5 x10
5 x10
5 x10
5 x10
5 x10
3 x10'
3 x10
3 x10'

B*

0.61773 + 0.00038

0.55165 + 0.00028

0.50650 + 0.00022

0.47437 6 0.00018

0.45059 6 0.00015

0.43223 6 0.00013

0.41749 6 0.00012

0.40573 + 0.00011
0.39587 + 0.00010
0.38755 6 0.00009
0.38043 + 0.00008
0.37426 + 0.00008
0.36418 + 0.00007
0.35610 + 0.00006
0.34693 6 0.00006
0.34193 + 0.00005
0.33452 6 0.00005
0.32886 + 0.00004
0.32347 6 0.00004
0.31956 + 0.00004
0.31379 + 0.00003
0.31012 + 0.00003
0.30743 + 0.00004
0.30538 6 0.00003
0.30264 + 0.00003

2.3819 + 0.0009

3.994 + 0.002

5.802 6 0.003

7.793 + 0.004

9.936 6 0.005

12.237 6 0.006

14.661 + 0.008

17.211 6 0.009
19.91 6 0.01
22.72 6 0.01
25.64 + 0.01
28.68 + 0.02
35.09 6 0.02
41.84 + 0.02
52.75 6 0.03
60.25 6 0.03
76.63 6 0.04
94.05 + 0.05
117.83 + 0.06
142.92 6 0.08
197.2 + 0.1
257.0 + 0.1
322.3 + 0.2
389.4 + 0.2
537.6 6 0.4

1.671 + 0.005

2.163 6 0.007

2.541 + 0.008

2.844 + 0.009

3.09 6 0.01

3.28 6 0.01

3.46 6 0.01

3.60 6 0.01
3.72 + 0.01
3.82 6 0.01
3.92 6 0.01
3.99 + 0.01
4.11 6 0.01
4.21 6 0.02
4.33 + 0.02
4.39 6 0.02
4.45 + 0.02
4.52 6 0.02
4.56 + 0.02
4.59 6 0.02
4.65 6 0.02
4.68 + 0.02
4.62 + 0.02
4.74 + 0.02
4.65 6 0.03

0.5915
0.5915 + 0.0040
0.5573
0.5573 6 0.0025
0.5305
0.5304 6 0.0019
0.5089
0.5090 + 0.0016
0.4908
0.4908 6 0.0015
0.4753
0.4746 + 0.0014
0.4617
0.4618 6 0.0013
0.4497
0.4499 6 0.0012
0.4388 + 0.0012
0.4293 6 0.0012
0.4211 6 0.0011
0.4123 + 0.0011
0.3976 6 0.0011
0.3848 + 0.0010
0.3693 + 0.0010
0.3611 + 0.0010
0.3440 + 0.0009
0.3319 + 0.0009
0.3181 6 0.0009
0.3072 + 0.0008
0.2910 6 0.0008
0.2782 + 0.0008
0.2650 6 0.0009
0.2608 6 0.0008
0.2444 6 0.0009

which means that Ay has been expressed in terms of
quantities that all are measurable through MC simula-
tions. Indeed, the quantities (Nc)&„(ND)&, , (Nc)&, ,
and (N~)&, can be directly measured via MC simula-
tions. Details of the requisite MC technique have been
extensively explained in recent Refs. [6] and [7], and we

would not like to elaborate on them in this paper.

III. RESULTS AND DISCUSSION

The MCRG results for B* and A„are given in Table I.
These results are somewhat improved in comparison with
the results of Ref. [6] (the improvement has been achieved
by enlarging numbers of the MC simulations). Besides,
we have studied here the b = 100 fractal that was not
reached in Ref. [6]. Hence we can offer a new bit of
information relevant to the SAW bulk critical exponent v,

that is, we have found v = 0.73248+ 0.00008 for b = 100.
In Table I we present our MCRG results for Ay, which

together with A„gives, according to (9), specific values
for the critical exponent P for 2 & b & 100. For 2 & b & 9,
we quote, for the sake of comparison, the values of P
obtained by the exact RG approach [3]. Thus one can see
that the MCRG results deviate at most 0.12% from the
exact RG findings, which is an unusually good agreement
between the two (MC and exact) different approaches of
solving the problem.

In Fig. 3 we depict the critical exponent P, for the SG
family of fractals, as the function of 1/b. In the same
figure, we have graphically presented (using our data)
the lower and upper bounds (1.2) for the critical expo-
nent P, established in a heuristic way in Ref. [2]. Thus
one can observe that P, being a monotonically decreas-
ing function of b (in the region under study), violates the
lower bound for 12 & b & 100. The violation of the lower
bound can be also observed for the 0—polymer problem
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FIG. 3. Data for the adsorption critical exponent P for the
SG family of fractals. The exact RG results are represented by
open triangles, while the MCRG results are depicted by solid
triangles. The solid curves represent the upper and lower
bounds (1.2) for P, proposed in Ref. [2]. The dashed hori-
zontal line represents the Euclidean value 0.5 of P, whereas
the lower dotted-dashed horizontal line represents the limit-
ing value of the lower bound P = 0.25 obtained for b m oo [3].
The error bars related to the MCRG data are not depicted in
the figure since in all cases they lie within the corresponding
symbols.

ing wall, decreases according to the power law p z
where x = I + d, —df [2]. The assumed power law re-
quires too fast a decrease of the accessible sites. Indeed,
if the assumption were valid, then it would imply that
the corresponding monomer density, for 6 & 12, must be
an increasing function of z, which is physically untenable.

Finally, one can notice in Fig. 3 that the MCRG data
for P definitely cross the limiting value of 0.25 found for
the lower bound [3] when 6 ~ oo, so that P = 0.2444 9
0.0009 for 6 = 100. What happens beyond 6 = 100 is
hard to predict, although one could expect that P will
reach the Euclidean value P = 0.5 in the limit 6 —i cx. .

Such an expectation for the bulk critical exponent v has
been corroborated by the means of the finite-size scaling
arguments [ll], but, at the same time, it was argued that,
the bulk critical exponent p (associated with the total
number of distinct SAW's) should be, in the limit 6 —+ oc:,
three times (133/43 = 3) larger than the corresponding
Euclidean value p = 43/32. Therefore, in addition to
an effort, to extend our data beyond 6 = 100, it would
be interesting to make a finite-size scaling theory of the
adsorption of linear chain polymers on fractals that would
include a prediction about the behavior of the critical
exponent P in the limit b —e oo.

analyzed using the s = 3 —d expansion [8], as well as
in the case of the same problem in the two-dimensional
Euclidean space [9,10]. In the case under study, the pos-
sible reason for the violation of the lower bound can be
found in the assumption that the number of accessible
sites p(z), as a function of distance z from the adsorb-
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