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Critical-noise measurement near Fréedericksz transitions in nematic liquid crystals
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We present a dynamic light-scattering experiment on a planarly oriented nematic liquid crystal

in the presence of a symmetry-breaking electric field applied normally to the cell planes.

This

experiment gives direct evidence for the critical behavior of the lowest splay fluctuation mode. A
detailed theoretical analysis of the dynamics of this mode is worked out and compared with the

experimental results.

PACS number(s): 61.30.Gd, 64.70.Md, 78.35.+c

I. INTRODUCTION

Light-scattering experiments are very powerful tools
for the determination of many physical parameters of
nematic liquid crystals [1-6]. Recently they have also
been proposed as a way to measure the surface an-
choring energies [7] and to determine the threshold of
the magnetically induced bend Fréedericksz transition
in a homeotropic sample [8]. The latter measurements
are based on the softening of some lowest-order fluctu-
ation mode in a second-order transition induced by a
symmetry-breaking external field.

In this paper we experimentally analyze a similar crit-
ical behavior in the case of the electrically induced splay
Fréedericksz transition in a planarly oriented sample [9].
This situation is more delicate from the experimental
point of view, since it requires a forward nondepolarized
scattering geometry.

In Sec. IT we give a detailed analysis of the dynamics
of the transversally homogeneous fluctuation modes in a
nematic-liquid-crystal sample with strong planar anchor-
ing in the presence of a destabilizing electric field, and in
particular we determine approximate analytical expres-
sions for the relaxation constant and the amplitude of
the lowest-order critical splay mode. In Sec. III these re-
sults are compared with the experimental data obtained
by measuring the noise power spectrum of the scattered
light under heterodyne conditions: this allows one to de-
termine the critical field and, through the knowledge of
the dielectric anisotropy, the splay elastic constant and a
suitable viscosity coefficient. Our results are summarized
in Sec. IV.

II. THEORY

Let us consider a nematic-liquid-crystal (NLC) cell
confined between the planes z = +d/2 of a Cartesian
coordinate system. The director n undergoes small ther-
mal fluctuations around its uniform planar orientation,
imposed by strong surface boundary conditions, n = %,
being the unit vector parallel to the z axis, and is subject
to a dielectric coupling with the electric field generated

1063-651X/94/49(1)/623(6)/$06.00 49

by the external voltage V applied to the cell. By restrict-
ing ourselves to fluctuation modes that are homogeneous
in the transverse directions =z and y and neglecting terms
of order higher than two in the fluctuations, the free en-
ergy F of the NLC can be expressed as [10,11]

F= %/0‘£0dr, (2.1)

where 0 is the column matrix of the fluctuations of the
director components

(2.2)

6t is the transpose of 0, and L is the matrix self-adjoint
operator

R

K, (K3) being the splay (twist) elastic constant, ¢y the
free-space permittivity, and €, the dielectric anisotropy
of the NLC, that we suppose to be positive.

The eigenvectors of the self-adjoint linear operator £
define the static normal modes of fluctuations: when
properly normalized they form a complete orthonormal
set and, thanks to the equipartition theorem, their square
mean amplitude in thermal equilibrium is inversely pro-
portional to the corresponding eigenvalues. However,
due to backflow effects, the dynamic fluctuation modes,
and their associated decay constants, that are the ac-
tual measurable physical quantities, generally differ from
the static modes, as has been shown by considering some
particular cases (7).

In order to discuss the dynamics of the fluctuations,
we start from the Rayleigh dissipation function for in-
compressible nematic liquid crystals [12,13],
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where the Greek indices take the values z,y, z and sum-
mations over repeated indices are implied; the n, (v, ) are
the Cartesian components of the director (velocity) field;
N indicates the total derivative of n, with respect to the
time; finally the n; (i = 1,...,5) are viscosity parameters
that are related to the Leslie viscosity coefficients by the
relations [14,15]

= a1, (2.5a)
M2 = Q2 + Qs = Qg — a3, (2.5b)
N3 = az + ag , (2.5¢)
N4 = Qq , (2.5d)
N5 = s — Qg . (2.5¢)

By neglecting the inertia of the NLC [16], the equations
of motion of the velocity field are given by

op _ 0 ,
E = %Uﬂa 5 (2())

where 0, are the components of the stress viscous tensor

oD

(TBa = T s
0
(3%)

and the pressure p is implicitly determined by the incom-

pressibility condition
vy
0Ty

(2.7)

=0. (2.8)

The equations of motion of the director field are easily
determined by equating the variation of the free energy
for an arbitrary infinitesimal variation of the director pro-
file to the work done by the generalized frictional forces
associated to the dissipation function D. Therefore in a
linearized treatment, for n, =~ 1, ny,n, < 1, using the
expression (2.1), they read

oD
n, \ _ on,
c(m)-| o 20
Bny
In terms of the normalized parameters
i Kl T\ 2
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p3 = —, pp = (2.10¢c)
1 2m
K,
= —, 2.10d
= (2.104)
where 7; is the rotational viscosity,
V1 =03 -z, (2.11)

Egs. (2.6), (2.8), and (2.9), after linearization, split in
a single equation for the y component of the director
fluctuations, associated to twist deformations

2 .
d ny, dny

"o T or

(2.12)

and to a pair of coupled equations, associated to splay
modes, for the z component of the director fluctuations
and for the x component of the velocity field, that is, the
only nonzero component of the velocity,

9? 2 on, ow
= — — 2.13¢
(6C2 )nz or +“38C ) ( d)
0w 9%n
— = 2.13t
#bacz +“38467 ( )

The normal modes are defined as those solutions of
the dynamic equations satisfying the strong boundary
conditions

ny(( = £7/2) = n.(( = £7/2) = w({ = £7/2) =
(2.14)

that preserve their spatial profile during their temporal
evolution. For the twist modes, from Eq. (2.12) we then
easily obtain

ny (¢, 73m) = fm(C) exp(—Am7) . (2.15)
where, up to a normalization constant,

fm(C) = cos(m() ,
for the even modes (with respect to the plane { = 0), and

fm(¢) = sin(m() ,

for the odd modes. The decay constants A, are given by

m=1,3,5,... (2.16)

m=2,4,6,... (2.17)
A = rm? . (2.18)

In this case, due to the absence of backflow, the dynamic
modes coincide with the eigenvectors of the free energy
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operator (2.3) and their (unnormalized) decay constants
are equal to the corresponding eigenvalues of the free
energy operator divided by the rotational viscosity ;.
Moreover, as is evident, these modes are not affected by
the applied electric field and their square mean ampli-
tude in thermal equilibrium is easily determined from
the equipartition theorem and turns out to be inversely
proportional to the decay constants A,,.

The splay modes, instead, are generally accompanied
by a backflow that reduces the effective viscosity, and can
be divided in solutions that are even (odd) in the director
profile and odd (even) in the velocity profile. Precisely,
from Egs. (2.13), we get

nz((vT;m) = .fm(() exp(——/\m'r) ’
w(CaT;m) = gm(() exp(—‘AmT) s

(2.19a)
(2.19b)

where, again up to a normalization constant, for the
modes even (odd) in the director (velocity) profile we
have

fm(€) = cos(gm() — cos(gmn/2) , (2.20a)

Ambs . <q2 ’\m/"S)
m(C) = sin(gm() — [ ™= + —— } cos(gm7/2) ¢,
9m(0) = 2E2sin(gn0) — (22 + 222 ) cos(gm/2)
(2.20b)
2 2
g, —v
A = 2 — | 2.2
1= (2.20c¢)
1 being the backflow parameter
2
H3
=—, 2.21
m= (2.21)

and ¢,, normalized wave vectors that are solutions of the
characteristic equation

2p(g3, —v?)

cot(gmm/2) = Tam(a2, — pv?)

(2.22)

Since the rotational viscosity v;, the Miesowicz viscosity
coefficient 7, = 1 s [17), and the decay constants (2.20c)
at zero voltage must all be positive quantities, it immedi-
ately follows that the backflow parameter must be greater
than or equal to zero and less than one.

For the splay modes odd (even) in the director (veloc-
ity) profile we have instead

fm(¢) = sin(m() , (2.23a)

gm(C) = %Z—s [(—1)"'/2 — cos(m()] , (2.23b)
m2 — o2

Am = B (2.23¢)

m=2,4,6,... . (2.23d)

Therefore, from Egs. (2.20) and (2.23), we see that
for the splay deformations the profile of the odd director
modes is not influenced by the backflow and experiences
an effective viscosity that does not depend either on the
modal index or on the applied voltage; on the other hand,
the even director modes get distorted by the backflow

and are subject to an effective viscosity that generally
depends both on the modal index and on the applied
voltage.

The first proper mode whose decay constant A,,, by
increasing the applied voltage, becomes equal to zero de-
fines the critical mode for a second-order Fréedericksz-
type transition: it is characterized by a critical slowing
down and is accompanied by a huge increase of its am-
plitude, while the corresponding velocity profile goes to
zero. In our case this happens for the first splay mode
even in the director profile for v2 = 1 and ¢,,, = 1, as one
easily recognizes from Egs. (2.20c) and (2.22), and it cor-
responds to the usual transversally homogeneous splay
Fréedericksz transition. If the elastic anisotropy r is less
than a critical value approximately equal to 0.303 [18,19],
or higher if there is a flexoelectric coupling [20,11], an-
other kind of second-order transition, characterized by a
splay-twist deformation periodic in the transverse direc-
tion y, takes place at lower field values: in this work we
are not concerned with this type of transitions.

For v2 < 1 the decay constant ). of the critical mode
and the corresponding normalized wave vector q. depend
on the backflow parameter u, as shown in Fig. 1. From
this figure it is apparent that, even for very high values
of u, the decay constant A, has a practically quadratic
dependence on the applied voltage. A very good approx-
imated analytical expression can then be obtained by ex-
panding in power series Egs. (2.20c) and (2.22) around
the solution v2 = 1, ¢,,, = 1. At the first order one easily
obtains

1—0v2

Even for p = 0.9 the maximum error that one commits
using this equation is approximately equal to 1%: typi-
cally the backflow parameter u is on the order of 0.3 and
thus (2.24) can be safely used in analyzing the experi-
mental data.

Ao = (2.24)
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FIG. 1. Behavior of the normalized decay constant A. of
the first splay mode as a function of the square of the nor-
malized voltage v, for three different values of the backflow
parameter: pu = 0 (solid line), p = 0.5 (long-dashed line), and
u# = 0.9 (short-dashed line). The inset shows the correspond-
ing values of the normalized wave vector g..
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In thermodynamic equilibrium the splay modes even
in the director profile can be represented as

n.(¢,7;m) = g‘/ 2&;? em(7) [cos(gmC) — cos(gm™/2)] ,

(2.25)

V being the volume of the cell, kg Boltzmann’s constant,
and T the absolute temperature. The normalization con-
stant in Eq. (2.25) has been chosen on grounds of con-
venience. The amplitudes ¢,,(7) are Gaussian zero mean
value stochastic variables whose correlation functions are
given by [21]

(em(0)em(T)) = (i) exp(=Am|7]) | (2.26)
where () indicates thermal average. The square mean
values of these dynamic modes can be computed by mak-
ing use of the even splay eigenvectors of the free energy
operator (2.3)

d [2kgT
mL (¢ mim) = 4| S5 bm(r) cos(mC)

m=1,3,5,.... (2.27)

whose amplitudes b,,, according to Eq. (2.1) and the
equipartition theorem, are uncorrelated zero mean value
Gaussian variables such that

(bmbn> = 4*6_"_""_ ,

= (2.28)

Omn being the Kronecker delta. Then, by expanding at a
given time the even splay director fluctuation modes in
the bases of the static and dynamic fluctuation modes

D onl(¢mim) =) n.(Cmm)

and using the orthogonality of the static modes, we easily
obtain

(2.29)

(ecty =P71Q(P7Y)", (2.30)
where c is the infinite column matrix containing the am-
plitudes c,, of the dynamic modes, P is the infinite square
projection matrix whose elements P,,, are given by

/2
Pon 2 / [cos(gn() — cos(gnm/2)] cos(m() d¢

m —m/2

2
_ (cymevyz ddncoslant/D)

mm (m? — q2)
(2.31)

and finally Q is the infinite square diagonal matrix whose
elements are given by Eq. (2.28). Equation (2.30) shows
that in the presence of backflow the dynamic even splay
modes become generally correlated.

A well approximated expression for the square mean
value (c?) of the amplitude of the critical dynamic mode
can be obtained by retaining in the right hand side of
Eq. (2.30) only the critical static mode

(2.32)

7 (1—q2) ]2 1

(ci) = [4(;5 cos(qer/2)| 1—v2"

In a light-scattering experiment, the amplitude of the
scattered electromagnetic field due to a given fluctuat-
ing mode is proportional to the Fourier transform of the
director profile computed for a wave vector equal to the
scattering optical wave vector [22]. Therefore in the case
of forward nondepolarized scattering, i.e., for zero scat-
tering wave vector, the amplitude of the scattered light
due to the critical mode is proportional to

. /2
dy =& / [cos(geC) — cos(gem/2)] dC

2 J—m/2
in(gum/2
= [wt/—) - g cos(g.m/2)| e1 (2.33)
dc

where the constant of proportionality has been chosen
in such a way that d; = c¢; in the absence of backflow
(u = 0). By using the approximated expression (2.32)
and the first-order series expansion of Eq. (2.22) around
the solution v? =1, ¢,, = gq. = 1, we then get

1

(d?) = e (2.34)

Equation (2.34) is confirmed by an exact numerical
calculation based on Eq. (2.30), as shown in Fig. 2: the
apparent increase of the intensity (c?) of the critical mode
when the backflow u increases is actually mostly due to
the fact that, as shown in the inset of Fig. 1, by in-
creasing p the wave vector g, decreases, and so therefore
does the maximum of the profile (2.20a). However, even
for 1 = 0.9 the maximum increase of the normalized scat-
tered intensity (d%), with respect to the value without
backflow, is only about 1.5%.
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2

FIG. 2. Mean square value (c?) of the amplitude of the
first splay dynamic mode as a function of the square of the
normalized voltage v for the same values of the backflow pa-
rameter g as in Fig. 1. The corresponding normalized values
of the scattered light intensity (d?) [see Eq. (2.33)] cannot
be graphically distinguished from the noise intensity in the
absence of backflow (solid line curve).
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III. EXPERIMENT AND RESULTS

The experimental setup used to detect the critical
splay mode is shown in Fig. 3. The NLC cell is an 8.3 um
sample of 4-cyano-4’-n-pentylbiphenyl (K15 by British
Drug House), having a positive dielectric anisotropy ¢,,
with a strong planar anchoring obtained by a rubbed
polyimide layer deposited on the indium tin oxide (ITO)-
coated glass slides. The undistorted director and the po-
larization of the incident and scattered light lie in the
scattering plane (plane of the figure). A 1kHz ac volt-
age is supplied to the ITO cell electrodes by a signal
generator. The external incidence and scattering angles,
both measured with respect to the cell normal, are equal
to ajn = @out = 40°: this means that the photodiode
used to detect the scattered light is placed in front of
the transmitted beam, and it collects all the light coming
from a cone having a semiaperture of about 0.1° centered
about the transmitted beam’s direction. The divergence
of the laser beam is approximately equal to 0.06°. The
extraordinary polarizations of the incoming and outgoing
beams select only the splay fluctuation modes. In these
conditions the detected scattered light is highly hetero-
dyned and comes predominantly from the first dynamic
splay mode: in fact the internal scattering wave vector is
nearly equal to zero. The scattering cross section is pro-
portional to the square sine of the sum of the internal in-
cidence and scattering angles [22]: for this reason a non-
normal-incidence geometry was chosen. All the measure-
ments were taken at a room temperature of (22 £ 1) °C.

The noise power spectrum of the detected signal is
recorded through a digital fast Fourier transform (FFT)
signal analyzer set at 10Hz full scale and 100 aver-
ages, with a spectral resolution of 400 lines. Under
our heterodyne conditions the power spectrum is propor-

’sr}-—[Pc]-—-|SA|¢———

i f
_]_ Qi
L T Qout PD
P Q LiPHL, , ND NLC A

FIG. 3. Experimental setup. The polarizer P, and the
quarter-wave plate Q act as an optical isolator of the light
emitted by the 20 mW He-Ne laser L. The laser beam is
spatially filtered and focused on the sample through the di-
verging lens Ly, the pin hole PH, and the converging lens L.
The incoming i and outgoing f polarizations of the light are
determined by the polarizer P> and the analyzer A, respec-
tively. The external incidence ai, and scattering aout¢ angles
with respect to the normal to the planar sample NLC are
equal. The undistorted nematic director lies in the scattering
plane (plane of the drawing). The incident light is attenuated
by a suitable neutral density filter ND and detected by the
photodiode PD. A 1kHz ac voltage is supplied to the cell by
the signal generator SG controlled by the computer PC and
the signal detected by the photodiode is amplified and sent
to the digital FFT signal analyzer SA.

tional to the Fourier transform of the correlation func-
tion (d1(0)d;(t)) of the amplitude of the scattered sig-
nal d;. Therefore, according to the results of Sec. II, up
to a proportionality factor, it is very well approximated
by the Lorentzian

4
e (5)

where v is the frequency in hertz, A is the zero-frequency

amplitude,
vV \2
! ( )
Vr

VF being the threshold of the splay Fréedericksz transi-
tion,

S(v) = (3.1)

A= : (3.2)

K,

)
€0€q

Vep=m (3.3)

and finally I is the width, in hertz, of the Lorentzian,

K, 1A%
= | = 3.4
F 2nd2 [1 (‘G’) E) ( )
where 7 is the effective viscosity,
_ 8
n=m|l-(1-3)p (3:5)

Figure 4 shows the variation of the linewidth I' as
a function of the square of the rms applied voltage V.
The experimental points, obtained by a Lorentzian least
squares fit of the noise spectra, show the predicted
quadratic dependence on the applied voltage. The
threshold voltage Vr obtained by the interpolation of
these data is equal to 0.76 V and is in good agreement
with other kinds of measurements [23,24]. Using the
value of the dielectric anisotropy ¢, = 10.6 reported
in [25], we then obtain, according to Eq. (3.3), a value of
the splay elastic constant of K; = 5.5 x 10”7 dyn. Then,

I' (Hz)

TN T T 0 B Y Y B O B B P 1

0 rTrrrrrrrrryrrrrrrrrryrrrrrrrorr
0.0 0.2 4 0.6
V2 (Volt?)

FIG. 4. Linewidth I" of the Lorentzian spectra as a function
of the square of the rms applied voltage V. The points are
the experimental data, the solid line is a linear best fit.
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FIG. 5. Zero-frequency amplitude A of the Lorentzian
spectra as a function of the rms applied voltage V. The points
are the experimental data, the solid line is proportional to
Eq. (3.2), with the threshold voltage VF = 0.76 V determined
from the best fit of the linewidths.

using Eq. (3.4), and the zero-voltage linewidth I'(V =
0) = 1.8 Hz, we get, for d = 8.3 um, the effective viscos-
ity 7 = 7T0cP, that is compatible with the values of the
viscosity coefficients reported in the literature [26].
Finally, Fig. 5 shows the zero-voltage amplitude A of
the spectra as a function of the rms applied voltage V:
the critical behavior predicted by Eq. (3.2) is confirmed.
Of course the experimental points do not show a per-

fect divergence at the critical point, as the nonlinear cor-
rections to the equations of motion limit the maximum
fluctuation amplitude.

IV. CONCLUSIONS

We have theoretically analyzed the dynamics of the
fluctuation modes that are homogeneous in the trans-
verse directions in a NLC cell with strong planar anchor-
ing in the presence of an electric field normal to the cell
plates, determining their profile, decay constants, and
fluctuation amplitudes in thermal equilibrium. We have
shown that the presence of backflow alters the profile
only of the even splay modes and we have obtained very
well approximated expressions for the decay constant and
the fluctuation amplitude of the critical mode, comparing
them with exact numerical calculations.

We have then performed a direct measurement of the
critical behavior of the first splay mode in the electri-
cally induced splay Fréedericksz transition by analyzing
the dynamics of the forward-scattered light in a nondepo-
larized scattering geometry. The experimental data show
a very good agreement with the theoretical predictions
and allow a high-accuracy determination of the critical
fields without the need to apply fields that cause a finite
static distortion. By knowing the dielectric anisotropy
of the liquid crystal we have finally determined the splay
elastic constant and the related effective viscosity.
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