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Monte Carlo study of the effect of an applied field
on the molecular organization of polymer-dispersed liquid-crystal droplets
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We have studied the effect of an applied field on a system of particles interacting with a Lebwohl-
Lasher potential, enclosed in a polymer-dispersed liquid-crystal droplet with radial boundary condi-
tions. We have used Monte Carlo simulations on a wide temperature range for systems of N = 304
and 5832 particles with positive susceptivity anisotropy, and we have calculated order parameters,
the molecular organization, and powder-type deuterium NMR line shapes for eight different field-

strength values. The effect of the field on the molecular organization is discussed.

PACS number(s): 61.30.Gd, 61.30.Jf, 64.70.Md

I. INTRODUCTION

Polymer-dispersed liquid crystal droplets (PDLC) con-
sist of submicrometer or micrometer size droplets of low-
molecular-weight liquid crystals embedded in a polymer
matrix [1]. They are attracting considerable attention
in view of their applications in display technology and
in other optical devices such as, for example, switch-
able windows [1—7]. From a fundamental point of view
they offer a stimulating Geld of investigation concern-
ing the behavior of mesophases in a restricted environ-
ment [8—10]. Various kinds of boundary condition at the
liquid-crystal —polymer interface have been realized with
a suitable choice of the polymer and of the preparation
method. The more common boundary conditions, each
one with a different influence on the molecular organi-
zation inside the droplets, are the following: (i) radial,
with the molecules at the polymer interface oriented nor-
mal to the local surface, thus pointing toward the center
of the droplet; (ii) toroidal, where the particles at the
interface lie in planes perpendicular to the z axis while
having orientations tangential to the droplet surface; and
(iii) bipolar, where the molecules at the surface are again
tangent to the sphere but are directed along the meridi-
ans towards the poles.

The surface boundary conditions will tend to influ-
ence the orientation of molecules near the surface and
the aligning effect may propagate inside the droplet. In
general there will be a competition between the molecular
orientation induced by the surface boundary conditions,
the effects of ordering of the liquid crystal itself due to
the molecules trying to arrange parallel to each other,
and the disordering efFect of temperature. The result-
ing molecular organization for a certain boundary con-
dition will depend on a number of factors, including the
strength of the surface interaction, the temperature, and
so on. Thus it is not easy to predict the actual molecular
organization with available theories and even, especially
for the smaller sizes, to investigate it experimentally [6,7].

We have shown in a series of recent papers [11—14] that
Monte Carlo (MC) simulations can be a particularly ef-

fective tool to predict the combined effect of these factors
without resorting to continuum theory, whose applica-
bility on such small scales is not obvious. In particular
we have investigated, using Monte Carlo simulations, the
molecular organization in droplets with radial [11,12] and
tangential [13] boundary conditions.

The changes in texture and molecular organization
produced by the application of an external Beld have been
the subject of various theoretical [14,15] and experimen-
tal studies [7,16—20]. In particular Dubois-Violette and
Parodi have predicted that a nematic droplet with radial
boundary conditions and positive susceptivity anisotropy
will undergo a first order transition to an axial structure
as the field strength increases [15]. In a preliminary work

[14] we have also started to investigate the effects of the
application of an external field to the droplets. Here we

present a detailed investigation of the molecular organi-
zation and the calculation of the thermodynamic observ-
ables for this last case.

The paper is organized as follows: In Sec. II we de-

scribe the model used in our work; in Sec. III the details
of the simulations are presented, while Secs. IV and V
are devoted to a description of the results. Finally a dis-
cussion and conclusion are presented in Sec. VI.

II. MODEL

We consider a lattice model of PDLC, where the par-
ticles are treated as interaction sites ("spins") with con-
tinuously varying orientation but with positions fixed,
because we intend to concentrate on orientational phe-
nomena and because, as we know from a number of sim-
ulations used to study liquid crystals [11—14], this kind
of model has several features that are important in our
case. The first and most important one is that these
models can succesfully reproduce the nematic-isotropic
transition and the orientational order as a function of
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temperature. Moreover a large number of particles can be
treated, while using more realistic potentials only much
more limited samples can be simulated. Another advan-
tage associated with the reduced computational burden
arises when, as in the present case, simulations over a
large temperature range are required for a number of ex-
ternal conditions, here Geld strengths.

In our studies the particles, placed at the sites of a
cubic lattice and taken to be cylindrically symmetric, in-
teract through the following attractive nearest-neighbor
Lebwohl-Lasher (LL) pair potential [21]:

Geld and nonadditivity problems, especially in the case
of polar molecules and writing the molecular level equiv-

alent of the interaction as a sum of independent terms is

not necessarily allowed. On the other hand, in the case
of nonpolar compounds the Geld contribution to the to-
tal energy of the system can to a good approximation
be written as in Eq. (2.1), since the dielectric constant
is essentially determined by a sum of the microscopic
polarizability anisotropy Aa contributions [25]. In that
case an identification of the field term in Eq. (2.1) with
molecular quantities would give

U~ = —) e;,P 2(c os P;,), (2.1) e( = —AoE .
~p

3
(2.4)

where e;~ is a positive constant e for nearest-neighbors
particles i and j and zero otherwise, P;~ is the angle be-
tween the axis of the two spins, and P2 is a second-rank
Legendre polynomial. It is a well studied model that
represents the prototype for the nematic isotropic orien-
tational phase transition. In the bulk it reproduces the
weak first order transition, observed for real nematics, at
a reduced temperature T* = 1.1232 [22]. The LL model
and its transition properties have recently attracted a
renewed interest from various groups [23,24].

In order to simulate model droplets we take a jagged
sphere obtained &om a cubic lattice by considering all
the molecules falling within a given range from the chosen
center.

The different boundary conditions are imposed in gen-
eral by assuming a layer of outside particles with a Gxed
orientation determined by the specific type of surface as-
sumed. In the present case radial boundaries have been
simulated by having these outside molecules pointing to-
ward the center.

We have chosen to mimic the effect of an external elec-
tric or magnetic Geld by summing an additional second-
rank term to the model Hamiltonian:

N

U~ = —) e;~P2(cosP;~) —e() P2(cosP;), (2.2)

Here P; is the angle between the field direction and the
molecular syminetry axis and ( determines the strength
of coupling with the Geld B, which is assumed to be ho-
mogeneous across the drop. The parameter ( would de-
pend in a real situation on the anisotropy of the electric
or magnetic susceptivity and on the field intensity. For a
magnetic Geld

(2.3)

where B is the magnetic induction and Ae is the molec-
ular magnetic polarizability anisotropy [25] and it is as-
sumed that the macroscopic diamagnetic anisotropy Ay
is the average of independent molecular contributions.

For alignment in an electric Geld the interaction of the
system with the Geld is described macroscopically by the
dielectric anisotropy Ae at that &equency. The micro-
scopic interpretation is complicated in general by internal

In practice it will be somewhat easier to use electric
rather than magnetic fields. The efFect of an electric field
of 1 V/pm has been found to be equivalent to that of a
10-T magnetic field for the liquid-crystal mixture E7 [7]
in the sense that at macroscopic level

~ E2= XB2
Pp

(2.5)

where Ae is the dielectric constant anisotropy. Here we

consider a positive coupling term f so that the field has
the effect of favoring alignment of the particles parallel
to its direction.

This Harniltonian has been used some years ago to in-

vestigate the field efFect on bulk nematic by Monte Carlo

[26,27] and to study, using mean field theory, very differ-
ent effects such as laser self-focusing in liquid crystals [28]
and the effect of the cholesterol in lipid membranes [29].
Thus we hope that our results can be indirectly useful in
these other Gelds as well.

III. SIMULATIONS

We have performed a complete set of
Monte Carlo simulations for eight different values of
((0,0.01,0.05, 0.1,0.15, 0.2, 0.3, 0.5) and for two different

sample sizes: X = 304 and N = 5832 (15 temperatures
have been studied for the large and 60 for the small sam-

ple). A number of other cases have been studied for
lower field strength (( = 0.001,0.005, 0.02, 0.03, 0.04) and
N = 5832 particles at selected temperatures. Several
runs (f = 0.01,0.05, 0.1,0.2, 0.4) have been performed
with N = 1476 to look at droplet size effects.

The simulations for different couplings are completely
independent &om each other. The calculation starts &om
a perfect hedgehog system at low temperatures or, when
available, &om an already equilibrated configuration at
the nearest lower temperature. The Metropolis proce-
dure [30] is then used to update the lattice for a certain
number of cycles, i.e., of sets of N attempted moves.
Each particle is selected at random for a trial move at
every cycle using a random shuffhng algorithm [31]. A
new trial orientation of the chosen particle is then gen-
erated by a controlled variation from the previous one
using the Barker-Watts technique [32]. We have checked
that a rejection ratio not too far &om 0.5 is achieved with
a feedback algorithm implemented.
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As usual a number of simulation runs are performed
to reach equilibrium, where the thermodynamic observ-
ables Huctuate around their mean values. For the smaller
systems we have discarded about 15000 cycles at each
temperature, while 10000 cycles have been employed to
produce the average observable results. For the larger
size systems (N = 5832) we have discarded at least
30 000 equilibrium cycles before starting production runs
of about 15000 cycles. During the production run vari-
ous observables have been calculated in addition to the
internal energy, needed for the Monte Carlo procedure.
The property of interest A is evaluated at every cycle.
After a certain number of cycles (typically between 1000
and 2000) an average A is calculated thus providing
an effective coarse graining of the trajectory. A further
grand average is then computed as the weighted aver-
age over M such supposedly uncorrelated segments. The
attendant weighted standard deviation from the average
o g is also calculated and gives the error estimates shown
ln the Bgules.

IV. RESULTS

A number of properties are calculated, as we shall
see in detail later on; in general they can be divided in
single-particle and multiparticle (typically configurations
or two-particle observables) ones. More specifically, one-
particle tensor properties of second- and fourth-rank are
calculated.

do not present a marked dependence on the lattice size:
the shape of the curves is quite symmetric with a clear
indication of the absence of a phase transition. By com-

parison we recall that MC data for the bulk Lebwohl-

Lasher model show a strong size dependence [33]. In

that case the C& curve is not symmetric with a well pro-
nounced peak that rapidly grows and sharpens as the
number of particles increases. For a sample with more

than 5000 particles the bulk (i.e. , periodic [22] or Clus-

ter Monte Carlo [33]) boundary conditions give a heat
capacity maximum well above 20 in dimensionless units.
The smoothening of the transition is thus due not only
to size effects, but also to surface conditions [34—36]. In

Figs. 1(a) and 1(b) the results for the two system sizes

and for two values of the Be}d strength are reported.
We can observe that the main effect of the external Beld

is a shifting of the maximum of the curve toward higher
temperatures [see Figs. 2(a) and (b)] as we could expect
from a stabilization of the ordered phase upon increasing
the strength of the Beld. The behavior is different for the
two sample sizes, with a more discontinuous character
for the larger one. An increase of the field also causes
a further smoothing out of the pseudotransition that be-

comes continuous as the supposed isotropic phase is itself
ordered by the field. This indication is confirmed by the
observation that the Cv maximum is slightly lower for

the higher field strengths examined.

B. Order parameters

A. Heat capacity

The energy of the system is calculated from Eq. (2.2).
The results are not reported for reason of space, but are
used to obtain the dimensionless specific heat t &, shown
in Fig. 1, by differentiating the average energy with re-
spect to temperature. As observed in our previous pa-
pers on nematic droplets [11,12], the heat capacity results

We calculate second- and fourth-rank orientational or-

der parameters (P2)q, and (P4)~, obtained from a diago-

nalization of the ordering matrix as described in detail in

Ref. [22]. This gives an indication of the order with re-

spect to the instantaneous director and it does not have

an immediate significance [11] for droplets with radial
boundary conditions and in the absence of an external
field when, especially at the low temperatures, the effect
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FIG. 1. The temperature dependence of the speci6c heat
Ci, for two selected field strengths (a) t = 0.01 and (b)
t' = 0.50 for two system sizes W = 304 and N = 5832.

FIG. 2. The field-strength dependence of the temperature
at which the maximum of the heat capacity occurs, reported
for the two system sizes studied [plates (a) and plate (b)].
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N

( 2)R = g) P2(u; B), (4.1)

of the ordering of the molecules at the interface domi-
nates.

Increasing the Geld strength the rnolecules tend to align
with respect to the field direction which then becomes
coincident with the director. Thus we also consider an-
other order parameter: (P2)R, expressing the molecular
alignment with respect to the field direction [14]:

1.0—

0.8—

0.6—

0.4—

0.2—

R

1
P

~ o ~
p

Q ~0 p ~ P go ~+~+O++ & ~ iep . ~~ +Up8 P b'+~+-+~9(
g

(a)

N

(P2)R = —).P.(u, ', ), (4.2)

where u; is the orientation vector of the ith particle axis
and B is a unit vector along the field direction [in the
present study we have chosen the field along the z axis
so B = (0, 0, 1)]. We expect (P2)R to be vanishingly small
when the field applied is very low, while it should become
closer and closer to the value of the usual order parameter
(Pz)~ as the field increases.

To express disordering from the perfect hedgehog or-
ganization, correspondent to the configuration expected
at low temperature and in absence of an external Geld,
we have calculated a radial order parameter (P2)R [11]
defined as follows:
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where N is the number of particles contained in the
sphere and r; is the radial vector of the ith particle. It
is a quantitative indication of the radial ordering, which
has a maximum when all the particles are along their ra-
dial vector and its temperature dependence has a typical
order parameter behavior.

Increasing the field strength, also at low temperature,
the molecular organization is more influenced by the sec-
ond term in Eq. (2.2).

The results for the order parameters (Pz)R and (Pz)R
are shown in Fig. 3 for the eight values of ( for which
we have performed a complete simulation. We do not
present the plot of (P2)g because, except for the lowest
values of (, it is essentially undistinguishable from that
of (Pz)R.

The radial order parameter (Pz)R [(Fig. 3(a)] shows
a standard behavior for low (: it starts Rom a value
close to one at very low temperatures and goes to its
minimum at temperatures correspondent to the isotropic
phase. Increasing the field this behavior becomes pro-
gressively less evident up to the highest Geld strength
considered (( = 0.5) for which the curve is essentially
Bat. All the curves join in the isotropic phase where the
value of the order parameter is limited &om the number
of particles.

The order parameter with respect to the field direc-
tion (P2)R [Fig. 3(b)] shows the opposite behavior. It
is not well defined for low ( and assumes, of course, a
more usual trend for high (. The (P2)R curves are well
separated also in the (pseudo)isotropic phase because the
Geld induces an additional ordering also in this region of
temperatures, that is, in turn manifested in (P2)R . The
curve for ( = 0.01 is apparently anomalous, with an ini-
tial increase of the order parameter as the temperature

FIG. 3. The (a) radial (Pq)a and (b) field (Pq)R order pa-
rameter for various external field strengths ( as a function
of reduced temperature T' = kT/e The difFer. ent values of
field strengths are ( = 0.001 (8), ( = 0.05 (o), ( = 0.10 (~),
( = 0.15 (CI), $ = 0.20 (+), ( = 0.30 (D), $ = 0.40 (0), and

( = 0.50 (&&).

increases. However, at this low strength (Pz) B is not very
meanigful, since the system is essentially unaffected by
the Geld.

To look at the field dependence of the order parame-
ter (P2)R we have analyzed the results at two selected
temperatures, one below (T* = 0.4) and one above
(T' = 1.4) the heat capacity maximum. We report these
results, for three different system sizes, in Fig. 4 and
we can observe, at the lower temperature [Fig. 4(a)], a
saturation with the field strength while at T' = 1.4 [Fig.
4(b)] order increases linearly with the field.

It is also clear that the size effects are important here
and that the radial boundary condition has a stronger
influence on the ordering as the system is smaller.

Of particular interest is how the order parameters
change across the droplet. We have investigated the
variation of the order parameters &om the center of the
droplet to the surface. To do that we have divided the
sample in a set of concentric shells in an onion skin fash. —

ion [13]. More specifically, we have defined four spher-
ical shells for the smaller system and twelve shells for
the larger one. Then the orientational order parame-
ters (P2)p, (P2)R, and (P2)R have been calculated for
these difFerent regions and are shown in Fig. 5 for the
N = 5832 droplet at various Geld strengths and at tem-
perature T' = 0.4.
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FIG. 4. The second-rank field order parameter {P2)B ob-
tained from MC simulations of three difFerent lattice sizes
N vs the field strength (. The results at (a) low tempera-
ture T* = 0.4 and (b) temperature above the heat capacity
anomaly T' = 1.4 are reported.

(P2)~ is very small near the center, showing that lit-
tle radial order exists at low values of Beld strength. As
r is increased and the radially ordered boundary is ap-
proached (P2) p increases and saturates as predicted by
Schopol and Sluckin [8]. This behavior is compatible with
a central ordered core in the direction of the field as in-
dicated by (P2)~ in Fig. 5(b). The size of the ordered
core increases as the field strength increases up to the
highest value of ( considered for which the majority of
the particles inside the droplet are aligned with the field
direction. In this case (P2)~ increases only as the shell
on which it is calculated approaches the surface. Once
again the field order parameter (P2)~ shows the opposite
behavior.

G(r, Id~2) = GOO( ) (2L + 1) GI, (r) Pl, (cos pq2),
d(dy dCd2

(4.3)

C. Orientational pair correlations

Another useful way of looking at changes in molecular
organization across the droplet is through the two par-
ticle angular correlations coefFicients Gr, (r). In general
these describe a set of expansion coefficients of the rota-
tionally invariant pair correlation function [27],

FIG. 5. Order parameters (a) {P2)s and (b) {P2)n against
distance from the center r (in lattice units) for a RBC droplet
with N = 5832 particles and for difFerent field strengths at
reduced temperature T' = kT/e = 0.4. In {a) the values of

( from top to bottom are 0.005, 0.010, 0.020, 0.030, 0.040,
0.050, 0.100, 0.150, 0.200, 0.300, 0.400, and 0.500. In (b) the
values of ( are the same, but in reversed order.

where u; is the set of Euler angles needed to specify the
orientation of molecule i and a~2 is the relative orienta-
tion of the two particles at distance r. The coefficients

Gl, (r) are two-particle order parameters

dldI dId2 G(r) Id12) Pl, (cos p12) (4.4)

and Goo(r) is the radial distribution, which for a lattice
simply counts the number of neighbors in progressively
larger shells [22]. In a uniform system the various Gl, (r)
give the correlation between the relative orientation Pq2

of two arbitrary particles separated by a distance r. Here
we wish to investigate the correlations between the ori-
entation of particles at a distance r from the center with
those at the center itself. In practice for the calculation
of pair correlations, M = 8 particles nearest the droplet
center are selected as origins and the pair correlations
with all the other particles within a certain range are
calculated.

More in detail we use the following algorithm.
(i) Choose the M particles closest the drop center as

origins.
(ii) Now choose an origin on particle i and consider

spherical layers of a certain resolution Ar.
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G~(r) = (P~(cos &»)).
1

M N

= —) ) PL, (cos P'i) 6(r 'i r) (4.5b)
(~')

with rank L = 2 and 4. The fuzzy delta function A(r,~—
r) is defined to be 1 when r;~ belongs to the layer centered
at r and zero otherwise. As we can guess &om the above
formulas, the calculation is quite time consuming and
represents a relevant percentage of the total time spent
in the simulation.
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(iii) Count the number of particles n„, within the layer
(this is done beforehand).

(iv) Calculate for each particle j falling within the layer
the Legendre polynomial PL, (cos P;~) with respect to the
origin particle i and accumulate its contribution to the
average.

(v) Repeat for all the particles in the sample.
(vi) Repeat for all origins and obtain the total average.

Thus

&max

G2 —— G2(r)dr
0

(4.6)

Here we have calculated the first two angular pair cor-
relation coefficients G2(r) and G4(r) for all the temper-
atures, even if only G2(r) is shown for reasons of space.
The overall results for G2(r) are presented in Fig. 6 for
two selected temperatures. In a uniform system with
periodic boundary conditions the pair coefficients GL, (r)
start from one and tail off to essentially (PL) in the ne-
xnatic phase [23]. Here the particles at the boundary
point towards the center so the particle chosen as the
origin will not be correlated with those at that distance.
Given that G2 starts from one we would expect a rapid
decay of G2 in the absence of an ordered domain in mid-
dle and viceversa.

Looking at our results we see that the effect of the
external field on the correlation functions is greater at
low temperature [see Fig. 6(a)] where there is an effec-
tive competition with the boundary conditions that try
to produce a radial ordering inside the droplet. Thus for
very low field strengths the molecular organization at low
temperatures is similar to the point-defect configuration
and G2(r) decays quickly to zero, confirming the absence
of long range correlation between the particles at the cen-
ter and those at a certain distance from it. Increasing the
field strength the radius of the aligned core increases and
correspondingly the correlations between the molecules
at the center and the other particles inside the droplet
remain important up to longer distances.

The change in behavior is not linear with (, but there
is, at least at low temperature, a jump for values of g
less than 0.03. To provide a semiquantitative indication
of this effect, we have also calculated the areas under the
G2(r) curves:
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8 10 12 The results for T' = 0.4 are reported in Fig. 7 and con-
firm a saturation of Gz with (. Going back to Fig. 6(b),
we have that at high temperature (T' = 1.4) the system
is disordered, as seen previously from other observables,
and the correlation functions decay rapidly to their min-
imum in all cases. The residual order induced by the
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FIG. 6. The second-rank pair correlation coelficient Gs(r)
between a particle at the center and one at separation t in lat-
tice units as obtained &om the MC simulation with N = 5832
particles at T' = 0.40 (a) and 1.40 (b). The results for vari-
ous field strengths, f = 0.00 (O), g = 0.01 (R), g = 0.02 (d),
$ = 0.03 (+), f = 0.05 (o), ( = 0.10 (~), ( = 0.15 (0), and
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cient G2(r) plotted against the field strength ( at T' = 0.4
and 1.4.
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external field is apparent [Fig. 6(b) and Fig. 7] for the
higher field strengths. At low temperature the change of
G2 with ( is rather steep, with the field-induced molec-
ular reorganization, taking place between ( = 0.01 and

( = 0.1. Given the inevitable smoothing effect associ-
ated with simulation of a relatively small sample this is
an indication of compatibility with the first order transi-
tion predicted in [15],although a steep continuous change
cannot be ruled out.

V. MOLECULAR ORGANIZATION
AND DEUTERIUM NMR LINE SHAPES
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parently rather stringent conditions have been shown to
hold in various experimental studies [6,7].

In order to calculate simulated line shapes from the
Monte Carlo configurations we have assumed a system of
fictious deuterated molecules with axis of effective molec-

As mentioned before, Monte Carlo simulations allow us
to generate as output, apart from numerical results for
the averages of thermodynamic observables described in
Sec. IV, full sets of coordinates and angles representing
instantaneous configurations of the lattice. The snap-
shots of some of the configurations found are shown in
Fig. 8. Two sections, an equatorial (left) and a vertical
(right) one, are reported and from these it is possible to
observe qualitatively how the molecular organization is
influenced by the application of the external field.

It is interesting to observe the similarity with the con-
figurations obtained by Lavrentovich et aL [37,38] in their
experimental studies of the positive dielectric anisotropy
material 4-cyano-4'-n-pentyl-biphenyl (5CB) in electric
fields. These data were, however, obtained with much
larger droplets ( I & 20 pm) and in that system the
ordering along the field is probably eased also by the
electric conductivity anisotropy. Configuration data are
also useful for calculating ofF line other quantities of in-
terest. In particular from the configurations, given as a
set of direction cosines, we have calculated polydomain
deuterium NMR line shapes for our system of fictitious
molecules.

Deuterium NMR of deuterated liquid crystals has been
frequently used in studying PDLC droplets [4,6,7], par-
ticularly when the droplets are so small that standard op-
tical methods are not viable. The use of H NMR allows
focusing on the molecules inside the droplet (the only
deuterated ones) thus giving in principle a direct han-
dle on their properties. Each deuteron with quadrupole
coupling constant vq and angle 0 between the effective
quadrupole axis and molecular axis provides a couple of
transitions at the frequency
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Mq(cosP; ) = +—

ItqP2 (cos Pj)Pz(cos 0) ~ (5 1)

where P, is the angle between molecule and field axis, and
uniaxial symmetry of the tensor and of the molecule is
assumed. If the effect of the NMR spectrometer magnetic
field on the configuration is negligible, as is the case at
least for submicrometer droplets [19], then field effects
due to the applied external field can be examined.

Moreover, if molecular diffusion can be assumed to be
negligible at the chosen experimental conditions, then
the deuterium NMR spectrum becomes a powderlike one
and can give information on the director distribution or
more generally on the molecular organization. These ap-
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FIG. 8. Snapshots of typical droplet configurations for five

diferent field strengths at temperature T* = 0.4. For each
case an equatorial and a vertical section are reported.
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