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Solvent Stokes-Einstein violation in aqueous protein solutions
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The Stokes-Einstein equation is applied to the water self-diffusion coefficient D in human serum albu-

min protein solutions. A linear trend for D as a function of T/g is found for all the protein concentra-
tions investigated. However, the indication of a violation of the Stokes-Einstein equation is found in the
protein concentration dependence of the effective hydrodynamic radius of water. The deviation of the
experimental NMR water self-diffusion and viscosity data from the hydrodynamic Stokes-Einstein rela-
tion is found to be consistent with an enhancement of the solvent structure in the vicinity of the protein
surface.

PACS number(s): 66.10.Cb, 66.20.+d, 51.10.+y, 51.20.+d

INTRODUCTION

The diffusion coeScient D of a particle moving in a
fluid is in a strict connection with its shear viscosity g.
For many fluids this relationship is expressed by the
Stokes-Einstein formula
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where r is the radius of the diffusing particle and C is a
constant depending on the theoretical arguments used for
the derivation of Eq. (1) [1—6].

In the most well-known approach, that of Einstein, the
hydrodynamic Stokes formula for the viscous drag force
on a moving sphere is used and the constant C assumes a
value which ranges from 6~, under no-slip boundary con-
ditions, to 4m, under slip boundary conditions for the
fluid on the particle surface [1].

This approach should, in principle, only apply to
diffusing particles that are much larger than the mole-
cules comprising the fluid. However, the Stokes-Einstein
formula works also in the case of small diffusing particles
and self-diffusion in many liquids. Moreover, some
theoretical derivations of Eq. (1), which extend its validi-

ty to both these cases, exist [2,3]. They start from the
Green-Kubo formulas, which relate D and g to the auto-
correlation functions of the velocities and forces, respec-
tively, and evaluate the constant C, which now assumes
different values and meanings with respect to the hydro-
dynamic approach. In particular, the constant C results
in being dependent on the structure of the Quid and then
on the relative interactions among its particles.

It is often used to define an effective hydrodynamic ra-
dius r' so that Eq. (1) is rewritten in the hydrodynamic
form with no-slip boundary conditions as

Author to whom correspondence should be addressed.

kT
6vrgr * (2)

where now the difference of C from 6~ is included in r',
which of course does not represent the real size of the
diffusing particle anymore, but contains information
about the fluid structure.

If Eq. (1) is satisfied, the effective hydrodynamic radius
r*, is, of course, constant, even if some fluids exist (for
example, some glass-forming liquids [6]) in which r' is
temperature dependent and then violate the Stokes-
Einstein equation.

In this work we focus attention on the solvent self-
diffusion and viscosity of water-protein solutions. We
present experimental data of water D and solution viscos-
ity in the temperature range from 0 to 40'C for two pro-
tein concentrations. We find an efFective hydrodynamic
radius of water, which results in being dependent on the
protein concentration and in this sense violates the
Stokes-Einstein equation. The experimental results are
interpreted in terms of an enhancement of the solvent
structuration in the vicinity of the protein surface.

EXPERIMENT

Aqueous protein samples were prepared by dilution in
a phosphate buffer of dry human serum albumin (HSA)
powder (fatty acid free), purchased from Sigma Chem.
Co., and used without further purification. HSA is a
globular protein of 69000 daltons with a stable tertiary
structure for temperatures lower than 70'C, at which
denaturation occurs; in particular, in the temperature
range investigated, no significant structure changes are
observed by circular dichroism. The buffer was com-
posed of KH2PO4 and Na2HPO4 and had a pH of 6.96 at
20 C and a total concentration of 4.24X10 M. The
protein concentration of each sample was determined by
weight and the pH of the most concentrated solution was
6.99 at 20'C.

Water self-diffusion measurements were performed on
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a home-built 10-MHz low-resolution NMR spectrometer
[7] with the static magnetic field gradient technique [8]
by comparing the zero gradient spin-echo amplitude with
the amplitude of the echo at different field gradient
values. The field gradient was calibrated using pure wa-
ter at 25'C as a reference [9]. Temperature control was
performed by inserting the sample into a nitrogen flux at
a predetermined temperature, which was made constant
by an on-off heating controller. Spin-echo curves, as a
function of the square of the gradient intensity, were
fitted by a single exponential least squares fit routine.
The observation time of the diffusion process, i.e., the in-
terval in which the molecules are exposed to the gradient
field, was taken as constant (36 ms) in the overall temper-
ature range.

The solution's shear viscosity coefficients were ob-
tained by the Ostwald method, measuring the flow time
of a axed volume of liquid under the gravitational force.
The temperature was controlled by taking the viscosime-
ter immersed in a thermal bath. Water at 25'C was used
as a reference [10]. The mass density of the two protein
solutions, as a function of the temperature, was calculat-
ed from the water density by assuming a specific volume
for the protein of 0.74 cm g

' [l l].

RESULTS AND DISCUSSION

Figure 1 shows the water self-diffusion coefficien as a
function of the ratio between the temperature and the
solution viscosity for the solvent buffer and for two
different protein concentrations. The trend of the experi-
mental data is linear in agreement with Eq. (1), but the
increment of the line slope with the protein concentration
is indicative of a decreasing in the hydrodynamic radius
of water (see the figure inset). This substantial violation
of the Stokes-Einstein formula can be understood by con-

sidering a strong contribution of the solute-solute interac-
tion to the solution viscosity. In fact, many terms con-
tribute to the viscosity of the solution: the molecular size
of both the components, and the solvent-solvent, solvent-
solute, and solute-solute interactions. In addition, the
presence of a solute particle should also locally modify
the strength and the shape of the interaction among sol-
vent molecules [4,6,7,12]. On the other hand, the solute-
solute interaction does not contribute to the self-diffusion
coefficient of the solvent molecules, whereas the size of
the solute molecules contributes only indirectly through
the modification of the solvent structure. The fact that
the interaction among solute particles contributes only to
the solution shear viscosity and not to the solvent self-
diffusion has the obvious effect of reducing the apparent
hydrodynamic radius of the water molecules. This is not
a surprising result, since the difFusing water molecules
essentially sense a local viscosity, due to the surrounding
solvent molecules, which should be difi'erent from that of
the overall solution in which the direct interaction among
the solute particles may play a significant role.

If the presence of the solute does not influence the
structure of the solvent, then the viscous force which a
diffusing water particle experiences is that of a pure sol-
vent. In Fig. 2, we show the water self-difFusion
coefficient ineasured in different protein solutions as a
function of T/rib„tr„, where gb„tr„ is the buffer shear
viscosity coefBcient. Also in this case a linear behavior is
observed in agreement with Eq. (1), but with a difFerent
trend for the line slope when compared to that shown in
Fig. 1. The hydrodynamic radii obtained from Eq. (2) are
shown in the inset of Fig. 2, where an increment of the
apparent hydrodynamic radius of water with the protein
concentration is observed. Since in this case no contribu-
tion from the solute-solute interaction is expected, the
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FIG. 1. Self-diffusion coeScient of water vs the ratio between
the temperature and the solution shear viscosity of (i) water
bufFer (open circle), (ii) HSA 2.S% (gram of protein per gram
water) (solid triangle), and (iii) HSA 4.3% (gram of protein per
gram water) (open triangle). The solid line represents the linear
best St. In the inset the effective hydrodynamic radius of water,
calculated from Eq. (2), is plotted (solid squares) as a function of
the protein concentration (the continuous line is only a visual
guide).
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FIG. 2. Self-difFusion coefBcient of water vs the ratio between
the temperature and the buffer shear viscosity of (i) water buffer

(open circle), (ii) HSA 2.8% (gram of protein per gram water)

(solid triangle), and (iii) HSA 4.3% (gram of protein per gram
water) (open triangle). The solid line represents the linear best
fit. In the inset the efFective hydrodynamic radius of water, cal-
culated from Eq. (2), is plotted (solid squares) as a function of
the protein concentration (the continuous line is only a visual

guide).
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violation of the Stokes-Einstein relation as a function of
the protein concentration should be completely ascribed
to the changes of the solvent structure as due to the pres-
ence of the protein solute.

Very recently violations of the Stokes-Einstein equa-
tion in glass-forming liquids have been interpreted in
terms of a smooth space variation of the viscosity near a
spherical particle. In that work the authors assume an
exponential dependence of the viscosity on the distance
from the particle surface and evaluate the drag force by
solving the appropriate Navier-Stokes equation [6]. They
assume a lower value of the viscosity near the protein
surface with respect to the bulk, and this results in a
reduction of the drag force. Conversely, if the fluid near
the surface is more viscous than the bulk, the drag force,
and then r ', should increase.

We have recently connected the self-diffusion proper-
ties of water in protein solutions to an enhancement of
the hydrogen bonding near the biomolecule surface,
which decays exponentially with the distance from the
protein molecule [7,12]. By assuming an overlap between
the hydrogen bond forming probability functions associ-
ated with different biomolecules when the protein con-
centration is increased, we were able to accurately repro-
duce the experimental data. In addition, such an incre-
ment of the H bonding in the protein solution was ob-
served by near infrared spectroscopy [13]. We could now
argue that the violation of the Stokes-Einstein equation
shown in Fig. 2 can be connected to a local increment of
the shear viscosity near the protein surface as due to the
H-bond probability enhancement induced by the
structural and motional constraints applied by the
biomolecule to the solvent H-bond network [7,14]. In
fact, biomolecules move much more slowly than water
molecules, and this makes them apply motional con-
straints to the solvent molecules. These constraints are
expected to propagate along pathways of two H-bonded
water molecules and to be reinforced in clusters and
patches of four H-bonded water molecules. Therefore,
near the biomolecule an increment of the probability of
finding water clusters with high density of formed H
bonds is expected [7,12]. This increment of the water

structure near the protein surface could be responsible
for the local increment of the solvent viscosity with
respect to the bulk and then could explain the increment
of the effective hydrodynamic radius of water [6]. More-
over, by increasing the protein concentration, an even
more significant structuration of the solvent water is ex-
pected, due to the overlap of the protein induced H-bond
probabilities [7,12]; thus the effective hydrodynamic ra-
dius r* should become concentration dependent. On the
other hand, the possibility that the apparent increasing of
r' could be due to obstruction effects cannot be ruled
out. In fact, the presence of large and slow moving pro-
tein molecules could force the diffusing water molecules
to follow longer paths than in the case of free diffusion,
with a consequent reduction of D, without any change in
the viscosity [15,16]. However, the interpretation of ex-
perimental diffusion data as a function of the protein con-
centration by the obstruction model would require the as-
sumption of higher hydration water fractions than those
experimentally determined [12,16,17], indicating that
such an effect might only partially be responsible for the
decrease of D.

In conclusion, in the present work we have put into
evidence the violation of the Stokes-Einstein relation in
the self-diffusion of water in the presence of globular pro-
teins. We believe that this violation is mainly due to a
long range water structuration propagating from the pro-
tein surface, even if some contribution from a geometric
blocking effect on water diffusion by the large protein
molecules cannot be ruled out.

Finally, it is worthwhile to remark that the linear
behavior of D versus T/rl in both Figs. 1 and 2 implies a
practical temperature independence of the viscosity near
the protein surface, which is, however, different from that
of the bulk. However, this situation could not necessarily
persist in the supercooled region where the strong
cooperative behavior of the H-bond network should play
a very crucial role and the formation of a high connected
H-bond structure is favored [18];in that case, a behavior
similar to that observed in some glass-forming liquids
could be observed [6].

[1]L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed.
(Pergamon, New York, 1987).

[2] D. Kivelson, S. J. Knak Jensen, and M. K. Ahn, J. Chem.
Phys. 58, 428 (1973).

[3] R. Zwanzig, J. Chem. Phys. 79, 4507 (1983).
[4] H. G. Hertz, Ber. Bunsenges. Phys. Chem. 75, 183 (1971).
[5] D. L. Goodstein, Phys. Rev. B 15, 5210 (1977).
[6] J. A. Hodgdon and F. H. Stillinger, Phys. Rev. E 4$, 207

(1993).
[7] R. Lamanna and S. Cannistraro, Chem. Phys. Lett. 164,

563 (1989).
[8] E. L. Hahn, Phys. Rev. 80, 580 (1950).
[9] R. Mills, J.Phys. Chem. 77, 5 (1973).

[10]CRC Handbook of Chemistry and Physics, 67th ed. (CRC,

Boca Raton, FL, 1987}.
[11]Handbook of Biochemistry and Molecular Biology, edited

by G. D. Fasman (CRC, Boca Raton, FL, 1983).
[12]R. Lamanna and S. Cannistraro, Nuovo Cimento D 13,

261 (1991).
[13]R. Lamauna, M. Delmelle, and S. Caunistraro, Chem.

Phys. Lett. 172, 312 (1990).
[14]P. Noto, M. Migliore, F. Sciortiuo, and S. L. Fornili, Mol.

Simulation 1, 225 (1988).
[15]J.H. Wang, J.Am. Chem. Soc. 76, 4755 (1954).
[16]M. E. Clark et al. , Biophys. J.39, 289 (1982).
[17]R. Lamanna and S. Cannistraro (unpublished).

[18]R. Lamanna and S. Cannistraro, Phys. Rev. A 46, R7367
(1992)~


