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Formation of shocks and breakup of wave patterns in anisotropic excitable media
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Strong state-dependent diffusion anisotropy in nonlinear excitable media leads to spontaneous forma-
tion of shocks representing sharp edges of curved propagating wave fronts. These shocks cause breaking

of waves and destruction of wave patterns.
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Realistic excitable media, such as cardial tissue or sys-
tems with catalytic surface reactions, are often anisotrop-
ic [1,2]. An interesting question is whether anisotropy
could produce new dynamical phenomena or lead only to
some elongation of spatiotemporal patterns which are al-
ready present in an isotropic medium. In the simplest
case of a single diffusive species with a constant diffusion
tensor, the anisotropy can easily be eliminated by rescal-
ing the coordinates and, obviously, no new dynamical
behavior could be found (except for some special effects
related to wave propagation in nonstationary or inhomo-
geneous anisotropic media; see [3,4]). However, anisotro-
py in nonlinear reaction-diffusion systems cannot general-
ly be removed by rescaling the coordinates: when several
species diffuse and their directions of fast and slow
diffusion do not coincide there is no scaling transforma-
tion which makes the system isotropic. Even in excitable
media with a single diffusive component the anisotropy
can be state dependent, so that the principal axes of the
diffusion tensor rotate under the variation of state vari-
ables and have different orientations in different parts of a
wave. In this paper, I show that sufficiently strong com-
plex anisotropy leads to dynamical instabilities revealed
by the appearance of shocks on the propagating wave
fronts which can result in the breakup of target wave pat-
terns.

In anisotropic media, the normal propagation velocity
V, of flat fronts depends on the propagation direction. If
anisotropy is so simple that it can be scaled out, the angu-
lar dependence of ¥V, can be obtained by applying the
stretching transformation and further taking a projection
in the normal direction, since such a transformation does
not conserve angles. In two-dimensional media this
yields the following universal dependence:

Vola)=V (g sin’a+cos’a)!”? (1)

where a is the angle between the tangent at the front and
the direction at the fast propagation, while the parameter
=V pax/Vmin)? is determined by the ratio of the maxi-
mal (at a=m/2) and minimal (at a=0) propagation ve-
locities. In excitable media with complex anisotropy,
there is no universal angular dependence of the propaga-
tion velocity and, if we write ¥Vy(a) in the form (1), the
parameter g will be angle dependent. We consider the
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evolution of wave patterns in a medium with arbitrary an-
gular dependences V(a) and g(a).

Within the eikonal approximation [5,6] any propaga-
ting wave in a two-dimensional excitable medium is
specified by its front curve. Each element of the curve
moves in its normal direction with velocity V =V (k,a)
depending on its curvature k and, in anisotropic media,
on the angle a. The motion of curves can be described in
terms of the natural equation k =k (/,¢) giving curvature
k as a function of the arc length / of the curve measured
from a certain fixed point on it. The dynamical equation
for motion of closed fronts in excitable media is [6— 8]

ok /9t +9/dl

]
k [ kvdg+av/al|=0. )

This equation has also been used in the problems of crys-
tal growth [9], and has recently been investigated in con-
nection with completely integrable equations of nonlinear
waves [10]. According to the definition of curvature, it
can be expressed as a derivative k =da /dl. Substituting
this into (2) and integrating over /, we obtain

da /3t + [fo’kag ]aa/az+aV/al=C(t) . (3)

If a curve has reflection symmetry, we can measure the
internal coordinate on it, i.e., the arc length /, from the
point of intersection of the curve with the symmetry axis.
It can be shown that under this agreement the integration
function C(¢) in equation (3) is equal to zero. In our no-
tations the front which is orthogonal to the symmetry
axis has a=0.

When curvature is small, the normal propagation ve-
locity of a curved front is approximated by V(a,k)
=Vola)—Dk, where Vy(a) is the velocity of the flat
front moving in the same direction. Although the
coefficient D can also depend on a, for simplicity we
neglect such a dependence. Substituting this expression

into (2), and taking into account that dV,/dl
=(dVy/da)(8a/dl) and kdl =d a, yields

da /9t +Q(a)da /3l =Dd%*a/dl? 4)
where

Q(a)=dV,/da+ anVo(a)da ) (5)
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Here we have neglected a small term proportional to cur-
vature k.

Equation (4) belongs to a well-known class of equations
describing the formation of shock waves [11]. If we en-
tirely neglect the curvature effects by setting D =0 in this
equation, it can easily be integrated. It has a family of
characteristics / =I(£,t) such that the angle a remains
constant along any of them. These characteristics satisfy
equation d//dt=Q (a), and represent straight lines on
the plane (a,l). The general solution of (4) with
the initial condition a=f(l) at t=0 is given by
1 =E+Q(f(£))tand a=f(&). If the initial curve is a cir-
cle of radius R, then f(I)=1/R, and the solution takes
the form

I=aR +Q(a)t . (6)

If characteristics of Eq. (4) intersect, its solution is mul-
tivalued. The solution ceases to be single valued and de-
velops a caustic when the derivative da/dl becomes
infinite at some point /;, on the curve or, respectively,
when the derivative d/ /da vanishes at a certain angle a,.
Using (6) we obtain

9!/ /9a=R +tQ'(a) . (7

Therefore, 3/ /da may become zero only if Q'(a)
=dQ /da is negative at some angle a. The singularity of
the front first appears at time moment ¢,=R /c, where
¢ =—minQ'(a).

When the dependence of ! on the angle a along the
curve, given by solution (6), is known, the coordinates
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FIG. 1. (a) and (b) Expanding concentric wave fronts (target
patterns) in the medium with complex anisotropy: ¢ =a
+bsin’a, with (a) b =0.5 and (b) b =S5; other parameters are
chosen as a =2, V;, =1, and D =0. The initial shape of the
wave front at t =0 is a circle of radius R = 1; the wave fronts at
time moments ¢ =1, 2, and 3 are shown. The outer loops
(“swallow tails”) of the fronts are unphysical and should be cut
off.
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(x,y) of the curve on the plane can be found to be

x(a,n= [ %3l /3a)cosada,
0 « (8)
Y@, n=V,(0) = [ (3] /3a)sina da .

Note that the characteristics, which represent straight
lines in the plane (a,l), are curved on the coordinate
plane (x,y). Moreover, they are not orthogonal to the
fronts and hence are not tangent to the velocity vectors
V. This is a particular case of the general property that
the vectors of phase and group velocities are directed
differently in anisotropic media [11]. Since characteris-
tics are not straight lines, they can cross and thus pro-
duce shocks.
We see that function

Q'(a)=Vy(a)+d?V,/da® )

plays an important role in the evolution of curved fronts.
Substituting (1) into (9), it can be shown that Q'(a) is al-
ways positive if ¢ =const. Hence caustics do not develop
in the media where anisotropy can be scaled out. On the
other hand, if anisotropy is complex and the deviation of
the function g(a) from a constant is strong enough to
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FIG. 2.
medium with complex anisotropy given by g =a +b sin®2a,
with (a) b=0.4 and (b) b =5, other parameters the same as in
Fig. 1. The outer loops (“‘swallow tails”) shown by thin lines in
(b) are unphysical and should be cut off.

(a) and (b) “Square-shaped” target patterns in a
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make the minimum of Q’(a) negative, the caustics (or
shocks) will appear on the expanding fronts.

The actual form of g(a) depends on the particular ex-
citable reaction-diffusion system, and no general expres-
sion for it can be given. As an example, we take
g =a+b sin’a, so that parameter b characterizes the de-
viation from the simple constant anisotropy. The above
analysis predicts that in this case the minimum of Q'(«a)
becomes negative and hence the caustics develop when
b>b,, where b, =[1+(1+a?)!"?]/2. Figure 1 shows
the evolution of expanding concentric wave fronts, com-
puted using (6) and (8) with this choice of g(a). We see
that for the smaller value of the parameter b the pattern
is elongated but the fronts remain smooth [Fig. 1(a)].
However, when a larger value of b is chosen, two caus-
tics, looking like “swallow tails” in Fig. 1(b), appear after
some time on the expanding front.

The multivalued parts of solution a(/,t) are not physi-
cally meaningful. Whenever they appear, they should be
replaced by a discontinuous single-valued solution. It is
constructed by cutting off the outer loops of the front
curve [i.e.,, the swallow tails in Fig. 1(b)]. The edges
where the tangent direction changes by a finite angle Aa
represent shocks of the wave front. The magnitude of the
angle jump increases for stronger deviations from the
simple anisotropy.

Until now we neglected the term D (3%*a/d!?) in Eq.
(4). Although this term is indeed small for the main part
of the spreading front (provided that R >>D /V,), it be-
comes important inside the shock regions where the solu-
tion is discontinuous if D =0. Its principal effect consists
of smoothing the jump (as in the theory of hydrodynami-
cal shock waves [12]). The width of a shock can then be
estimated as 8/ ~D /cAa; the curvature k =da /9! of the
front in the shock region is about ky~cAa?/D. Hence
this curvature grows when the deviation from the simple
anisotropy is stronger and both Aa and ¢ = —minQ'(a)
increase.

Equation (4) is based on the linear approximation
V =V —Dk, which is valid only when Dk <<V¥,. For
larger curvatures, the normal propagation velocity V de-
creases faster with k and, when a certain critical curva-
ture k, is reached, wave propagation becomes impossible
[13]. If the curvature of the wave front locally exceeds
the critical curvature k, about D /V_, it breaks up in this
region and two free tips appear. This means that the
front shocks in the excitable media with strong state-
dependent anisotropy should break up at the locations of
the shocks.

In a recent experiment with a surface chemical reac-
tion, “‘square-shaped” target patterns were observed, and
this geometrical property has been attributed to the pres-
ence of state-dependent anisotropy [14]. When the reac-
tion parameters were changed, the waves started to break
at the edges. Each of the closed wave fronts, forming a
target pattern, disintegrated into segments, some of
which later collapsed while the others moved away from
the observation window. To reproduce this behavior
qualitatively, the evolution of concentrical expanding
wave fronts was computed using (6) and (8) with ¢ =a
+bsin?2a. Under this choice, function g(a) has four
maxima at different angles a. We see that when the devi-
ation from the simple anisotropy is still small [Fig. 2(a)],
the target pattern approaches a rectangular shape but the
fronts remain smooth. When the deviation is larger [Fig.
2(b)] shocks appear on the expanding fronts which can
lead to their breakup.

Thus it can be concluded that the strong complex an-
isotropy of diffusion can essentially influence the proper-
ties of patterns and the course of pattern formation in ex-
citable media.

The author is grateful to R. Imbihl and F. Mertens for
communicating their experimental data prior to publica-
tion.
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