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Persistent correlations in the motion of a Brownian particle interacting with
a finite-size random environment
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We study the long time evolution of a Brownian particle in a finite-size disordered system. The pres-
ence of a random static potential is shown to generate persistent correlations of kinetic energy fluctua-

tions described by fourth-order velocity cumulant functions. We show also that the usual correlations of
velocity fluctuations do not vanish at large time, provided that an external bias is applied to the sample.
An appearance of persistent correlations is noted to reflect a nonergodic character of the velocity fluc-

tuations.

PACS number(s): 05.40.+j

The Brownian motion in a disordered system is the
subject of intense current interest [1]. The presence of a
random static potential is known to model the interaction
of the particle with fixed impurities or defects and to
modify considerably the character of diffusion resulting
in an appearance of long-range temporal velocity correla-
tions. These anomalous phenomena can be revealed by
means of the calculation of second-order velocity correla-
tion functions. However, in some cases it is the high-
order correlator that demonstrates the anomalous
behavior, while the second moment of velocity fluctua-
tions has a finite correlation time. In particular, experi-
mental and theoretical results [2,3] devoted to the study
of low-frequency 1/f current fluctuations in conductors
reflect a similar situation.

The aim of the present paper is to investigate the long
time behavior of high-order velocity correlation functions
for the Brownian particle interacting with a static ran-
dom field in the finite-size disordered medium. We show
that in the thermodynamic equilibrium state there are
persistent correlations of kinetic energy fluctuations non-
vanishing at large time limit. The existence of these
correlations is due to the anomalous contribution of the
corresponding long time fourth-order cumulant function
to the kinetic energy correlator. Here we use the weak
disorder model and suppose that the random static poten-
tial has a finite correlation length. Because of these as-
sumptions, the corrections to damping and diffusion
coefficients connected with impurity scattering are negli-
gible. Due to the nonlinearity of transport processes,
long time peculiarities of kinetic energy fluctuations man-
ifest themselves in the usual second-order velocity corre-
lation functions, provided that an external bias is applied
to the sample. It should be noted that the residual corre-
lations level is inversely proportional to the disordered
system volume L, where d is the dimensionality of the
sample and L is its linear size. Therefore, the persistent
velocity correlations can be observed in small enough
samples (for example, in conducting rings, containing a
large number of chaotically distributed impurities or de-
fects}. The presence of residual correlations nonvanish-
ing at large time is responsible for the principal impossi-

bility of measuring exactly the mean kinetic energy (in a
thermodynamic equilibrium state) or the mean velocity
(in a nonequilibrium state) of the classical particle in-
teracting with a quenched disorder in a finite-size system
by a time averaging procedure. A minimal error of these
quantities s measurement is just proportional to the rela-
tive level of residual correlations. The effect of analyzed
persistent correlations tnay also be detected by the direct
measurement of time dependence of corresponding corre-
lation functions.

The Brownian motion of a classical particle with a
mass m =1 interacting with a thermal bath in the pres-
ence of a random environment is usually described by the
following equation [1]:

rj(t)=VJ [Q(r(t))+@(r(t),t)}+EJ,
where r (t) is a particle displacement (j=1,2, . . . , d) and
E is an external bias applied to the sample. The random
static potential Q(r) modeling the interaction with the
disordered medium and the thermal bath potential 4(r, t)
in a finite-size system with periodic boundary conditions
may be expanded in a Fourier sum,

Q(r) QkI —d 12~ ~ ~ Xei k r(, t) (2)4 (r, t) ~ C „(t)

where a wave vector k is quantized in units of 2n/L, L
being a linear size of the system (for example, if the
dimensionality of the sample d = 1, then L is the cir-
cumference of a ring). If the thermal bath response to the
particle influence is taken into account, the full variable
of the thermal bath 4k ( t) can be represented in the form

[4]

4k(t)=4k(t)+ fdt, yk(t, t, )e

Here

is the response function (retarded Green's function) of the
free thermal reservoir, g(r)=1 for r) 0, g(r)=0 for
v&0. We suppose that unperturbed variables 4k(t) of
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the dissipative system and components Qk of the random
potential are independent random variables (which may
be assumed to be Gaussian) with covariance

(@k(t),&' k(t] )) 7
= Wk(t t] ),

(Qk Q —k)g™k
and zero mean values (Qk)(2=0, (&k(t))&=0. Here
( ) r and ( )& are thermal averaging and averaging over

I

while

v, (t) +G. [ u]=g (t)+g, (t)+E, ,

where

the possible environments, respectively,
( ) = ( ( ) & ) r is double averaging.

According to the formalism developed in Refs. [4,5],
Eq. (1) can be written in the form of the non-Markovian
Langevin equation

i]i. r[t)
GJ[v]= I "J—ik, f dt, '. [W (kt

—t, )+M&] +y„ fit, e['"""e
0

(4)

=L-d"~tk 'Xe'"' ' —L ~ik ~ dt
e

(5)

(r,.(t), r (t') ) =2D5,"min(t, t'), (9)

where D = T/y is a thermal diffusion coefficient (m = 1).
The impurity scattering of the Brownian particle is de-

are the collision term and the random forces, respective-
ly, the latter being due to the interaction of the Brownian
particle with disordered medium [ g(t) ] and thermal bath
[g(t)]; fk(t) is an auxiliary deterministic force additive
with respect to potentials 4k(t) and Qk. It should be
noted that for Gaussian variables Qk and 4k(t) the
Furutsu-Novikov theorem [6] is fair; therefore, the ran-
dom force g (t) and gj(t) has a mean zero value

((J(t))~=0, (g~(t))z =0. Let the dissipative system be
characterized by temperature T and a small but finite
time scale 7 p. Then the response function [[uk(~) and the
correlation function Wk(r) in the quasiclassical limit can
be approximated by the following expressions:

yk ( r ) = ( Ck /rp)exp( ~/rp)rl( r—),
Wk(r) = T(Ck/rp)exp( —

lrl /rp)

If the correlation time is rp « ( vr kp ) ', where

uz =(T/m )'~ is the thermal speed of the Brownian par-
ticle, kp will be the maximum wave vector of the thermal
bath, the particle relaxation being, in the main, deter-
mined by the thermostat reaction to the particle
inhuence. Due to the finiteness of the correlation time ~p,
the collision term G[v] will be the nonlinear function of
the particle velocity u (t),

G [u] =-y[1 —u (t)/vp ]v(t),

with y=L 'gk C[„vp=y [L 'gk Ckr'p] '. Here y
is a damping coefficient and the parameter up kp7p,
v (t) «vp. The contribution of impurities to this col-
lision term has been neglected. In view of expressions (5)
and (6), we find the correlation function of the thermal
Auctuation forces

(g(t), g(t') ) =(yT/rp)exp( —]]t t'~/rp) . —

The interaction of the particle with the dissipative system
results in the usual diffusion with the displacement corre-
lation function

scribed by the random potential Q(r). For the sake of
simplicity we restrict ourselves to a one-dimensional case
(d =1) and assume that Q(x) is equal to the superposi-
tion of chaotically distributed potential wells Q; (x) [7].
If, for example, Q, „(x)=Qpexp( —2x /r, ), then the
correlation function of the random environment can be
written in the form

Mk = (Qy Q k ) =Mpexp( —k r, /4)

Mp=(m/2)n;r, Qp,
(10)

Therefore, the relative contribution of impurity scatter-
ing to the particle relaxation is also negligible:
y;~~/y-l, (yr, /ur) &&1. It should be mentioned that
the time dependence of random forces g (t) is a conse-
quence of the time evolution of Brownian particle dis-
placements rj.(t). We may suppose that this evolution is
mainly connected with the usual thermal diffusion, de-
scribed by (9). Taking into account terms of order A, , we
obtain from (5) the correlation function of random forces

(g(t) g(t ) ) L
—dgk2M e Dk (&

—t')e' d—
Here V& =E/y is a drift velocity of the Brownian parti-
cle. The components of random sources having the wave
vectors k &(Dr) '~ give the dominant contribution to
the random force correlator (11). As this contribution is
proportional k +, the equilibrium velocity correlation
function (V=O) demonstrates a power law asymptotic
behavior at L = 0D(~&&1/y &&~p),

(u(t+r), u(t) ) -~ (12)

However, the corrections to the diffusion coefficient due
to impurity scattering are small: D; /D
—A, (yr, /ur) «1.

If the sample size L is finite, then the correlator (11)ex-
ponentially decreases at times ~~=L /4m D. With al-

where n, is the impurity concentration and r, is the finite
correlation length of the disordered medium.

In the frames of a weak disorder approximation, the
parameter

=n;r, Q, /, T «1 .
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In the quenched disorder model the time evolution of
K( t, t' } is completely determined by the time dependence
of the particle displacement x(t). Therefore, the term in
(13) with q = —k does not vanish at large times. Taking
into consideration the particle difFusion at the relaxation
time (v T Ir, -1/y ) and using the standard rule of a tran-
sition from a sum to an integral,

(1/L)dg~ fddkl(2')
k

we obtain a more exact expression of the kinetic energy
correlation function (d = 1) in the long time limit
(t »t'),

k Muexp( —k r, /2)
K(t, t')=(1/nL) fdk.

(y2+Tk )
(14)

Note that the terms of the higher powers of A, give small
corrections to K(t, t') In the lower tem. perature domain
(T & T, =my r, ) the level of persistent correlations al-
most does not depend on the temperature T of the dissi-
pative environment. At the same time the value of these
correlations is proportional T at higher temperatures
(T»T, ),

n2Q4 6, T&T
K(t, t') =(~/2)'"

(m y'r,'/T )', T» T, .
(15)

Due to the nanlinearity of collision term G [v] (7), the

lowance for terms order A, we also come to the con-
clusion that the equilibrium velocity correlation function
(v(t), v(t')) vanishes at large times. As a result, the
second-order cumulant function of particle kinetic energy
fluctuations [or fluctuations of the velocity square u (t)]
equal the fourth-order velocity cumulant function in the
limit t t —»I/y. But this cumulant function is deter-
mined by the corresponding cumulant function of ran-
dom forces g(t),

K(t, t')=(u (t), u (t'))

=(1/y')( g(t), g(t), g(t'), g(t') ) .

Here we suppose that y & uT /r, . Notice that by virtue of
the nonlinear coordinate dependence, the random force
g(t) is non-Gaussian, even though the random potential
variable Qk itself is Gaussian. To calculate this cumulant
function, we have to use the Furutsu-Novikov thearem
[6]. The form (5) of the random saurce allows us to ex-
cept pairings between components Qk and variables
exp(ikx(t)) belonging to the same random force g(t).
The maximum contribution to K(t, t') gives pairings of
components Qk and Qk, connected with random forces
g( t) and g( t '), respectively. As a result, we get the ex-
pression for the cumulant function K(t, t'),

K(t, t')=2@ 4L 'ggk'q'M„M,
k q

X(expIi(k+q)

X[x(t)—x(t')]]) .

(13)

long time tail of the kinetic energy correlation function
(15) will be manifested in the nonequilibrium second-
order cumulant function of the particle velocity
(t t'—~m },

(v(t), v(t') ) =9(v'(t), v'(t') )( Vd/v(') )

2 4V2
=9(~/2)'"

2Ly r Uo

6, T&T,

(T, /T), T» T„ (16)

where Vd =Ely is the drift velocity T.hus, in a steady
state both the fourth-order velocity cumulant
(u2(t), v (t')) and the secand moment (u(t), u(t')) sur-
vive at large time t —t'~ 00.

It is important to to note that the anomalous behavior
of the kinetic energy correlation function (15) leads to the
violation of the Sloutsky condition [8],

lim (1/8) f (u (t), u (t+r))de=0,
g~ ao 0

that is, to the second-order nonergodicity of velocity fluc-
tuations of the Brownian particle in a finite-size disor-
dered medium. As a result, the relative root-mean-square
error of the measurement of the mean square ( v ) by
time averaging procedure (8~ 00 ),

(1/8) f u (~)d~,

tends to the nonzero value o =K(t, t')/vT(t t'~oo ), —
which is proportional to the relative level of kinetic ener-

gy residual correlations. In the presence of an external
bias the fluctuations of the particle velocity v(t) have the
nonergodic character, the mean drift velocity (u ) being
an unmeasurable quantity.

When the damping coeScient y=—10' s ', m =—10
g, the correlation length r, -=7X10 cm, n, r, =—10, the
maximum value of the impurity potential Qu -——30 K, and
the thermal bath temperature T=—300 K, then the param-
eter A,

2=—0.1«1, yr, =—vT, T-=T„and the relative level
of kinetic energy residual correlations
o =K(t, t') Iur =6(r, IL }. —For a micron-size ring
(L-=10 cm) the persistent fluctuations account for
about 7% of the thermal noise. The relative level of
nonequilibrium residual correlations of Brownian particle
velocity is

(u(t), v(t') ) /vT=-2. 4X 10 (r, /L ) —= 1.6X10

if the maximum wave vector of the dissipative environ-
ment ko—= 10 cm ', the thermostat correlation time
so= 10 ' s, the electr—ic field strength E —= 100 V/cm, and
the drift velocity Vd =eElmy —=2X10 cm/s. Note that
the value of the correlation length r, —=3vT/y is optimum
for an experimental observation of this efFect.

Finally, we note that the contribution of impurity
scattering to the low-frequency spectrum of nonequilibri-
um velocity fluctuations may be prominent if we go
beyond the scope of the quenched disorder model and
take into account the slow walk of impurities or defects.
As in the case with 1/f noise, the spectrum of residual
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correlations is proportional to the square of the external
bias E and to the inverse volume of the sample I.
Therefore, we suppose that the above-mentioned general-
ization of our results will allow us to clarify the nature of
experimentally observed excess I/f noise accompanying

transport processes in a 6nite-size inhomogeneous sys-
tern.

We acknowledge many helpful discussions with G. N.
Bochkov, G. F. Efremov, and L. G. Mourokh.
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