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Stochastic resonance as crisis
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Based on approximate methods of nonlinear oscillations and experimental studies, we show the evi-

dence that stochastic resonance in DuSng's equation can be considered as an example of crisis.

PACS number(s): 05.45.+b

Stochastic resonance is a phenomenon which occurs in
multistable [1-9]and monostable [10] systems driven by
a sum of a noise signal and a weak periodic signal. Under
appropriate conditions a weak periodic signal can be
amplified by a noise signal. This amplification can be ob-
served by the measurement of the signal-to-noise ratio
[6-9], stochastic amplification factor, [10,11] or spec-
trum correlation function [12]. Stochastic resonance has
been studied both theoretically and experimentally in a
variety of contexts such as, for example, meteorology [2],
optical systems including lasers [3,4], electronic circuits
[5,6,9], a magnetoelastic ribbon [7], sensory neurons [8],
etc. In all these examples the theory describing stochas-
tic resonance is statistical.

Recently, Carroll and Pecora [13] and Ippen, Lindner,
and Ditto [14] showed that stochastic resonance can be
observed when chaos, rather than noise, is used as a non-
periodic component of a driving force. In this case, sto-
chastic resonance occurs in a completely deterministic
system and can be described using a dynamical, rather
than statistical approach. Although not all systems for
which stochastic resonance appears can be envisaged as
exhibiting crises, in [13] authors showed that crises may
give rise to stochastic resonance behavior. First, Carroll
and Pecora [13]studied the system forced only by chaotic
force and considered crisis due to the collision of stable
manifold of an unstable periodic orbit with the unstable
manifold of a chaotic attractor. Previous scaling results
available on chaotic intermittency near the crisis point
[15] gave them a quantitative handle which replaces the
traditional stochastic description. They then considered
the effect of a small added periodic signal and deduced
the onset of stochastic resonance phenomenon.

In this paper we show that the dynamical description
of stochastic resonance is also possible in the systems
driven in a traditional way, i.e., by a sum of a noise signal
and a weak periodic signal. We give experimental and
approximate analytical evidence that stochastic reso-
nance can be caused by noise-induced crisis. In our case
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where 5 is a noise intensity and [v;„,v ~] is an interval
of considered frequencies. Equation (1) is a single-well
system which is the first example of a monostable system
exhibiting stochastic resonance phenomenon [10]. We
took it in this form to allow comparison of our results
with that of [10]. In our system we considered bandlimit-
ed white noise instead of ordinary white noise to allow
some analytical approximations [16,17] which will be de-
scribed later.

First consider Eq. (1) without random signal [f( t) =0].
In this case one can find an approximate 2m/Q periodic
solution in the form

x(t) =Cocos(Qt+Po), (3)

where the constants Co (amplitude of oscillations) and $0
(phase difference between oscillations and periodic forc-
ing) can be estimated by intersecting Eq. (3) into Eq. (1)
and applying, for example, the harmonic balance method
[16,17]. It is well known that the typical relations be-
tween Co, Po and Q have the form shown in Figs. 1 and 2.
Although the application of the described method re-
quires numerical calculations in the theory of nonlinear
oscillations it is called an analytical one [16,18]. For Q
between 0& and 02 three different periodic solutions of
the formula (3) are possible. Two of them, which are in-
dicated by solid lines in Fig. 1, are stable. The third one
(dashed line) is unstable [18]. At points Q, and Q2 our
system exhibits crises as one of the stable solutions col-
lides with an unstable one. As the result of crises we ob-
serve increment or decrement of the amplitude Co. It has
to be noted here that this described simple form of crises
is also known as a jump phenomenon [18]. In the rest of

it will be the simplest form of crisis, i.e., the collision of
stable and unstable periodic orbits. We consider a partic-
ular yet representative case of Duffing's equation driven
by band-limited white noise plus a weak periodic force,

x+ax+x+x =f(t)+ A cosQt,

where a, A, and Q are constants. f (t) is a zero-mean sto-
chastic process with a spectral density

5/(v, „—v;„), vE(v;„,v )

(2)
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force from a frequency synthesizer. The resultant fluc-

tuation x(t) was collected by a 12-bit data-acquisition
system in a microcomputer and ensemble averaged to
yield (x {t)). To estimate Cc the fast Fourier transform
transformation of (x (t) }was taken.

It is immediately evident from Fig. 3(a} that S (5) at
Srst increases rapidly with noise intensity, but then passes
through a maximum and decreases again, albeit more
slowly. As the periodic frequency 0 is beyond the natu-
ral frequency of the system —

Pc is close to n but as 5 in-

creases —
P() decreases and at resonance and passes

through sr/2 and later decreases much slowly as shown in

Fig. 3(b). This behavior of the stochastic amplification
factor and phase difference (b() [19] indicates the presence
of stochastic resonance phenomenon.

If one considers C() and Po curves for different 5 like
those of Fig. 1 it is possible to obtain Co(5) dependence
as shown in Fig. 4. This plot allows us to describe the re-
sults of Fig. 3(a) in the following way. The initial in-
crease of S (5}is an effect of the noise-induced increment
of C() on the lower branch of the resonant curve, while its
further increase is the result of crisis at 5=0.37 and a
jump to the upper branch of the resonant curve. The de-
crease of S (5} for higher values of 5 can be understood
as the effect of the noise-caused decrement of C() on the
upper branch of a resonant curve. In a similar way one
can describe the behavior of P() at stochastic resonance.

Good agreement of our analytical model results with
the experiment as well as with the theoretical prediction
obtained by Stocks, Stein, and McClintock [10] from the
fluctuation dissipation theorem (dashed line in Fig. 3}
proves that the described stochastic resonance is an ex-
ample of crisis. It has to be noted here that although the
results of [10] were obtained for the random force of the
white noise form they can be compared with our results
as we considered relatively large interval of frequencies v
in our band-limited white noise {4}.

In conclusion, the application of approximate analyti-
cal methods of nonlinear oscillations allows one to exam-
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FIG. 4. Co versus noise intensity 5:0= 1.35.

ine stochastic resonance as a dynamical phenomenon.
We found evidence that stochastic resonance in Duffing's
equation can be considered as an example of crisis. We
also applied the same approach to the other stochastic
resonance cases in this equation and found that also
subharmonic stochastic resonances, when the response
component of 0/n frequency is amplified, are caused by
crises. These results will be published later.

We hope that the present results can be generalized to
the other systems and give additional support to the idea
of Carroll and Pecora [13] that stochastic resonance is a
particular case of crisis.

It should be added here that the dynamical model of
stochastic resonance phenomenon as well as the linear
response of Dykman et al. [5] allows to explain it by the
same mechanism both in multistable and monostable sys-
tems while in the most statistical approaches [6,10] two
different physical mechanisms have to be applied.
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