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A study of the interface between the crystal phase and the fluid phase has been carried out using self-

consistent-Beld theory calculations. The results are expressed in terms of two interfacial factors: the
surface characteristic scaling factor CI and the characteristic thickness of the interface n . The interfa-
cial structure and interfacial properties can be described employing those two factors. The influence of
various parameters, such as the bulk concentration and energy parameters, on the structure and proper-
ties of interfaces are discussed in terms of CI* and n . As a consequence, the surface free energies of
some metal systems are estimated from the calculated' results. They are compared with experimental
values, and turn out to be in good agreement with them. Finally, the interfacial bond energies for some

inorganic and metal crystals are analyzed, based on the calculated results in the context of the wetting
condition.

PACS number(s): 68.45.6d, 68.35.Md, 65.50.+m, 68.10.Cr

I. INTRODUCnON

Information on the structure of crystal surfaces can
improve our understanding of a number of important
physical processes. Crystal growth is one of the processes
that take place primarily at the crystal-fluid interface,
and hence is strongly infiuenced by the atomic arrange-
ments in this region. To study the interface of crystals,
monomer fluid systems are a good starting point. Many
inorganic and metal systems can be treated as monomer
systems. In other words, monomer systems represent a
large number of real crystal systems. Because these sys-
tems are relatively simple, detailed investigations on them
have been carried out, using Monte Carlo (MC),
molecular-dynamics (MD) computer simulations [1-3]
and density-functional theories [4—7]. The results ob-
tained from those methods reveal important information
at the interface concerning the ordering of the fluid units
in the regions adjacent to the solid surface, surface melt-
ing, etc. However, it is not always easy to interpret those
results and to associate them with measurable properties
(such as the step energy at the surface). Also, MD and
MC techniques involve a large number of parameters and
sometimes require a large computer capacity.

The same purpose may also be achieved by statistical
mechanical calculations based on a self-consistent-field
(SCF) theory [8—10], which provides insight into the
behavior of structural units in interfacial regions. SCF
calculations rely comparatively less on computer capacity
than do MD or MC techniques. The quality of the out-
come of such calculations depends on how rigorously the
partition function is derived. In addition, the results can
easily be interpreted within the framework of an inhomo-
geneous cell model developed recently [11—14].

In the field of crystal growth, the interfacial bond ener-
gies P; are one of the most crucial parameters. The
values of P; at the surfaces [hkl] determine the growth

and

(3)

(the superscripts AA, BB, SS, AB, SA, and SB represent
solute-solute, solvent-solvent, solid-solid, solute-solvent,
solid-solute, and solid-solvent interactions, respectively;
X„(0)is the concentration of the solute in the first Quid

layer adjacent to the crystal phase. ) As an approximation
[12] it is assumed that P; "=P";"and P; =P;" . It then
follows that h, ; =0.

To associate P; with the corresponding bond energy in
the bulk 4, [4; has a form similar to (1), with b, , =0], a
so-called surface characteristic scaling factor CI is intro-
duced [12]. This factor is defined as

~H diss
CI

~~diss
(4)

m m
Here bH&;„=g;,P; and bH~;„=g, ,4;. According
to the inhomogeneous cell model [11,12], Ct is directly
correlated with the concentration in the following way:

Ct' ——lnX„(0)/1nx„,

mechanism of the surfaces and, e.g., the critical tempera-
ture of surface roughening. (The subscript i denotes the
interaction between a structural unit and its neighbors in
direction i) Due. to the inhomogeneity of the interfacial
regions, the interfacial bond energy is in most cases
difFerent from the bond energy in the bulk [11,12]. In the
language of cell models [11],P; can be expressed for a
two-component ( A, B) solution system as

—1(yAA ass)+[1 X (0)]2ya+g

where

y(r y
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( yAA+ EBB)

1063-651X/94/49(1)/583(8)/$06. 00 49 583 1994 The American Physical Society



584 XIANG- YANG LIU 49

X„(z)=X„[1+Dexp( z/n ')—],
where

D =X&& —1 and (=Ct"—1 .

(7)

(7a)

Obviously, C~* and n* are the two key factors which
determine the interfacial structure of monomer systems.
The roughening temperature T" and the surface free en-

ergy of faces Ihkl ] may in principle be estimated if these
two factors are available [11—14]. We notice that the in-

terfacial structure is commonly determined by the inter-
nal structure of crystals and the mother phase. Any
change in these regions may in a subtle way aft'ect the
morphology of crystals. Therefore the values of C&* and
n * are also relevant for the description of the morpholo-

gy of crystals [15].
To calculate the values of C&' and n * in certain crystal-

lographic orientations Ihkl], the SCF calculation is an
appropriate technique. This technique allows all mole-
cules to be freely distributed throughout the system. In
this way, the equilibrium between the interface and the
bulk solution is automatically guaranteed. It follows
from the calculations that profiles of the density for
monomer systems obey the exponential law given by (7).
(This result will explicitly be shown in Sec. III.) Then C&*

and n* can easily be extracted from the calculated re-
sults.

In this study, I use the SCF method to calculate the
factors CI* and n * in various conditions for monomer in-

terfacial systems. The paper is arranged as foHows. In

where Xz is the concentration of the solute in the bulk.
Based on this surface characteristic scaling factor CI*,
three distinct cases can be recognized for the solid sur-
face [12]: (i) the equivalent wetting [CI*= 1, or
X~(0)=X„];(ii) the less than equivalent wetting [Cl*) 1,
or X„(0)(X~]; (iii) the more than equivalent wetting
[CI' (1, or X~(0))X„]. The equivalent wetting case is

an artificial reference state, which happens only in some
very special situations. Normally, the other two cases
occur. The more than equivalent wetting case implies
that the solid surface shows an adsorption of solute units.
Considering the boundary condition of cell models,
X„(z)+X&(z)=1 [13,14], this equivalently corresponds
to a repulsion between the surface and solvent units. In
contrast, the less than equivalent wetting case means that
the solid surface shows a repulsion to solute units (or an
adsorption to solvent units).

To gain sufficient information about the structure of
the crystal-fluid interface, in addition to CI another fac-
tor, the so-called characteristic thickness of the interface
n ', is introduced [13].This factor is defined as

[Xq(n') —X„]/[X„(0)—X„]=e

at z =n *. (z is the distance away from the solid surface,
and normalized by the interplanar spacing d&kI of the
crystal phase in the orientation of the surface). Within
this framework, profiles of the concentration of solute
units at the interface can be described by an exponential
law [13]as

Sec. II, principles of the SCF calculation are briefly ex-
plained. Section III is devoted to the calculations of vari-
ous monomer systems. An estimate of the surface free en-
ergies for some metals is made based on the calculated re-
sults. Finally, some discussions are given in Sec. IV.

II. INHOMOGENEOUS CELL MODELS
AND SCF CALCULATIONS
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FIG. 1. Illustration of the solid-fluid interface. The fluid

phase having M layers of cells parallel to the surface consists of
two components A and B. Each cell is filled with either 3 or 8.
Cells in the solid phase are only filled with solid units.

Within the framework of cell models, both the solid
and the fluid are divided into cells of equal shape and
size. Assume that the fluid phase consists of M + 1 layers
of cells parallel to the surface (see Fig. 1). The layer
number z is counted from the surface and runs from 0
(the first fluid layer adjacent to the solid surface) to M (in
the bulk solution). Every layer has I. cells. Each cell has
m nearest neighbors, a fraction A.o of these are found in
the same layer and a fraction A, , in each of the adjacent
layers. (Explicitly, A,o+ 2A,

&

= 1.)
For a two-component fluid system (A, B), each cell in

the fluid phase is considered to be occupied by a molecule
(or a monomer) of type i (i = A or 8). (This is the so-
called full-occupancy constraint. ) Within the framework
of regular solution theories, di8'erent monomers are sup-
posed to have approximately the same volume.

In a mixture near a surface, a concentration gradient
for every type of molecule is found due to spatial restric-
tions and mutual interactions between molecules and be-
tween molecules and the surface. Every individual mole-
cule is subjected to a local potential which depends on the
distance from the solid surface and on its chemical na-
ture.

In inhomogeneous cell models [12,13], the chemical
potential p; is expressed for species i as

p; =p;(z)+kT lnX;(z)=y, ;+kT lnX;,

where p;(z) and )u; denote the standard chemical poten-
tial of species i in layer z and in the bulk, and X;(z) and

X; the concentration of species i (expressed in mole frac-
tion) in layer z and in the bulk, respectively, k is the
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Boltzmann constant, and T is the temperature. It then
follows that

and

X;(z)=X,G;(z) (9)

G, (z) =exp[ —u;(z}/(kT}] . (9a)

Here G, (z) is known as the weighting factor [8], and u, (z)
is the (relative chemical) potential and is expressed ac-
cording to (8) as

u;(z)=p, (z) —p, . (10}

u'„"'(z)=kT/X„[(X (z)) —X ] .
B

(1 la)

The parameter u'(z) may be interpreted as a "hard-core
potential, " which guarantees the surface region to be
filled by structural units. Actually, it is of both enthalpic
and entropic nature. XAB is the Flory-Huggins interac-
tion parameter, defined as the energy change (in units of
kT} associated with the transfer of a molecule of type A

from a liquid of pure A into a liquid of pure B. For
monomers of equal size, u'(z) is approximately the
same for difFerent types of monomers. According to
the definition of X„B, it can be seen that

(1/kT)g; i4;. [4; has an expression analogous to

p, in Eq. (2}]. E~pl~~~tly, XAB=XBA and XAA=XBB =0.
(XB(z}) is the average concentration of B in layer z, and
is given by

(XB(z))=AiXB(z —1)+AoXB(z)+AiXB(z+1) . (12)

To include the adsorption energy, Eq. (11a) is rewritten
for the first fluid layer as

Explicitly, in the bulk phase (z =M), u, (M)=0. It can
be seen that in case the potential profiles u A (z), uB(z), . . .
are known, the molecular density (or concentration)
profiles X„(z),XB(z),. . . can be calculated for every type
of molecule. In turn, if the molecular density profiles are
known, the potential profiles can be directly calculated.

The SCF theory [8-10] is based on a mean-field ap-
proximation within a layer. This implies that fluctua-
tions of the potential within the layer are neglected.
From this point of view, the potentials are assumed for
solute molecules to be a linear function of the concentra-
tions:

u„(z)=u'(z)+u'„"'(z)

and

III. RESULTS

In this section, attention will be focused on two-
component systems. According to cell models [12], even
for crystals in contact with the melt, the fluid (and the
solid) can also be considered as a two-component system.
The system consists of structural units and vacuum units.
The existence of those vacuum units is due to the free
volume in the crystal and the fluid phase. Therefore in in-
terfacial regions the density of structural units changes.
Equation (5) can be rewritten in this case as

CI'—-in[pI(0)/p, (
—1)]/in(p//p, ) . (Sa)

(See the Appendix. } Here p& and p, are the densities of
the fluid and the solid phase, respectively, p&(0) is the
density of fiuid units in the first fluid layer adjacent to the
solid phase, and p, (

—1) is the density of solid units in the
first solid layer adjacent to the fluid phase.

A. IISuence of macroscopic yroyerties
on the interfacial structure

As mentioned in Sec. I, the structure of solid-fluid in-
terfaces can be characterized by two key factors: CI' and
n' On the .other hand, once profiles of the density X„(z)
are available, C&' and n' can be easily calculated. Plot-
ting ln[X„—X„(z}]vs z, a linear relation is obtained due
to the exponential law expressed by (7) and (7a). Then
C& and n can be directly calculated from the linear rela-
tion. An example of calculated data is shown in Fig. 2.

Note that using the SCF method to calculate X„(z),
some parameters, such as X„,XAB, XBB, and XAB, are

0,00

-2.00

r -4.00

-6.00
I

—8.00

should be fulfilled. This is obviously due to the full occu-
pancy constraint.

To obtain the density (or the concentration) profiles of
monomer interfacial systems, the SCF method is to nu-
merically solve the nonlinear equations (9), (9a}, (11), and
(13). For more details concerning the calculations, see
Refs. [8—10].

uA (0} kTXAs~l+kTQXAB[~XB(0 ~ XB] (1 lb)
—10.00

gX;(z)=1 for any z (13)

where y„z is the Flory-Huggins parameter for the in-
teraction of an A monomer with surface sites of the ad-
sorbent. For molecules of type 8, similar formulas hold.
In addition to Eqs. (9}-(12},for the computation in a
self-consistent manner, the boundary condition

—12.00
0.00 1.00 2.00 3.00 4.00 5.00

FIG. 2. The linear relation between ln[X& —X,(z}]and the
distance z for a monomer system. This relation indicates that
the exponential law is valid for monomer systems, X& =0.80,
X~s = &-47. Xss =0.and X~a = &-47.
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needed. This implies that both CI* and n* are functions
of those parameters. Assuming that those parameters are
related to bulk properties of interfacial systems, the
dependence of CI* and n ' on those parameters will be in-

vestigated in the following.
Let us 6rst consider the inhuence of the concentration

X„, under the condition that these energy parameters
remain constant. In Fig. 3, CI* and n* are plotted as a
function of X„ for systems with y ~~ =y ~~

= 1.47,
yz+=0. In this case CI' remains constant for various
concentrations. Only when X,~1 does CI' decrease
slightly [see Fig. 3(a)j. A somewhat different relation can
be found between n' and Xz. It can be seen from Fig.
3(b) that the (characteristic) thickness of the interface de-
creases almost linearly with X„. The nonlinearity of the
curve occurs when Xz is very close to unity, leading to
n"=0. These results indicate that in almost the whole
range of X„(0—1), the thickness of the interface is

influenced by the concentration, but CI' is not. In case
X„~1, both C[' and n ' have a tendency to approach
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FIG. 4. Profiles of the density [X„iz)—X~ ] plotted vs dis-

tance z away from the solid surface for systems with different

bulk concentrations.
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FIG. 3. The relations between the two interfacial factors CI*

and n and the bulk concentration of solute X&.
g»=y» =1.47, y»-—0. (a) The surface characteristic scaling
factor CI plotted vs X~. CI is almost constant for different
concentrations. (b) The characteristic thickness of interfaces n

*

plotted vs X&. n linearly decreases with increasing X&.

FIG. 5. Dependence of the two interfacial factors n * and CI

on g» and y» for systems with constant X„and g»
{X&=0.98, g&~ =3.5). (a) C&* plotted as a function of g» (or

g&s). In contrast, CI* will increase if g„s increases. (b) n*
plotted as a function of y&s (or y„s). n is almost constant for
different X~s and Xas.
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zero, which causes the nonlinearity of the curves. From
the point of view of cell models, this particular behavior
of C&' and n ' at X„~1is understandable. As mentioned
earlier, even in the case of crystals in contact with the
melt, Xz is smaller than unity ( =pf /p, ). Therefore the
fact that Xz = 1 implies that differences between the solid
and the Quid phase disappear, and the two phases become
one phase. It follows that the interface vanishes, result-
ing in C'/=n'=0. Profiles of the density [X„(z)—X„]
plotted versus distance z away from the solid surface for
systems with various bulk concentrations are given in
Fig. 4. This figure, in fact, shows the dependence of the
interfacial profiles of the density on n '.

In contrast to the concentration, the influence of the
energy parameters X„s, X~z, and Xz~ on the interfacial
structure are quite complex. It can be seen from Fig. 5
that in case that X„and X„~ remain constant, varying

X„s or Xzs indePendently will cause nonlinear changes in
C/' [see Fig. 5(a)]. n', however, remains almost constant
[see Fig. 5(b)]. It is shown in Fig. 5(a) that with increas-
ing Xzs, C/* is monotonically decreasing. On the other
hand, an increase in X„z will cause an increase in C/ .
We notice that for most cases discussed in Fig. 5, the less
than equivalent wetting occurs (C/' ~ 1). An increase in

X~z corresponds to a weaker adsorption (or a stronger
repulsion) between the solid surface and solvent units.
Subsequently, the density of solute in the first fluid layer
will become higher. According to (5), this corresponds to
the increase of C/'. Alternatively, an increase in X„z cor-
responds to a weaker adsorption between the solid sur-
face and solute units. In the competition with solvent
units, Xz(0) decreases accordingly. This is followed by
an increase in C/'. In Fig. 6, profiles of the density

[Xz (z) —X„]are plotted versus distance z away from the
surface for systems with different Xzs. Differently from
Fig. 4, Fig. 6 [combined with Fig. 5(a)] shows the
influence on the solid-fluid interfacial structure of mono-
mer systems due to the change of CI'.

Keeping Xz constant, simultaneously changing X„s
gas and X„~ will cause changes in both C/' and n' (see

TABLE I. Influence of different crystal structures on the sur-
face scaling factor CI and the characteristic thickness n . For
this system, Xz =0.98, Los=0.267, XI=1.83, and y» =3.50.

Crystal structure [hkl ] A. , (hkl) C(

FC cubic
Hexagonal
BC cubic
Simple cubic

[ 100]
[001]
[110]
[100]

0.333
0.250
0.250
0.125

1.88
1.63
1.63
1.40

0.303
0.302
0.302
0.303

20.00

15.00

10.00

(a)

5.00

0..00 I I I I I I I I I
/

I I I I I I I I I
/ I I I
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XAB
AB

1
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4

0.45

Fig. 7). For simplicity, assume that X„s.X~s.X„~=a:b:c
(a, b, and c are independent constants). Then C/' and n'
can be described as a function of X„z. Obviously, n ' de-

pends linearly on X„z [Fig.7(a)], while C/' turns out to be
a nonlinear function of X„~ [Fig. 7(b)]. It is interesting to
see that in case the X„~~X'„~ (curve 1), C; approaches
infinity. Referring to Eq. (7), this implies a phase separa-
tion. It follows that the solid surface and the solution can
probably be separated by pure B layers. In the case of
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FIG. 6. Profiles of the density [X„(z)—X„jplotted vs dis-
tance z away from the surface for systems with different y».
Xz =0.98, X» =3.5s Xas =2.7.

FIG. 7. The influences on CI* and n due to simultaneously
changing g» g ~s and gas Assume that g ~s:gas:g»
=a:b:c. It follows that CI* and n can be expressed as func-
tions of y». (a) CI* vs y»., CI depends nonlinearly on y».
(b) n vs g», n is a linear function of g». Curve 1:
a =c =1, b =0; Curve 2: a =b =0, c+0; Curve 3. a =0.076,
b =0.52, and c = 1; Curve 4: a =0.057, b =0.70, and c = 1.
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FIG. 8. Profiles of the density [X„(z)—X„]plotted vs dis-

tance z for systems with different g». X& =0.98, y»=y»,
Xas =o

interfacial structure are more pronounced than in the
former two cases.

In spite of those effects mentioned above, the lattice
structure also influences CI* and n*. The reason is that
different lattice structures have different A.

&
or ko. For

different structures, C&* and n* are listed in Table I to-
gether with A, It can be seen from Table I that a larger
k, corresponds to a larger Ct*. The interpretation can be
given as follows. According to the definition of A, „ the
surface excess energy or the adsorption energy of a sur-
face is proportional to I, This implies that the enhance-
ment of A, , will lead to an increase in the number of ad-
sorbed solvent units (or 8 units) in the first fiuid layer.
(We note that in this case the less that equivalent wetting
occurs. ) As a result, solute units will decrease in this re-
gion [see Eq. (13)], resulting in an increase of C,*. A, , (or
A,o) is also different for different orientations of the crystal
structure. Therefore analogous results can be expected.

crystals grown from the melt, gas (or vacuum) is con-
sidered as the 8 component (this corresponds to a larger

X„,i). This then implies that bubbles can be easily
formed on the solid surface. This has indeed been ob-
served in many crystal-melt systems [16,17].

Note that in Fig. 7, the simple case with g~z =y~z =0,
g~&~0, is shown by curve 2. This case is comparable to
the hard-sphere —hard-wall system [1,18]. However, in
the system g„z is a variable which determines the char-
acter (or properties) of the systems. In case that surface
reconstruction or similar surface phenomena occur, the
surface becomes additionally flat, and the interactions be-
tween solid and fluid units become relatively weak. This
can be seen as an approximation. (We will discuss this in
detail in Sec. IV.)

In comparison with Figs. 4 and 6, the influence on the
interfacial profiles of the density [X„(z)—Xz ] due to
simultaneously changing C&" and n' (via a change in

X„z) are shown in Fig. 8. Because in this case, the two
factors C&' and n * change simultaneously, changes in the

B. Estimation of the surface free energy of metals

The concept of surface free energy is relevant for crys-
tal growth. Some important issues in this field are related
to its value. However, for most solid-fluid systems, this
value is not always available either from experiment or
from theory. Therefore it is important if the surface free
energy can be estimated.

Conventionally, it is suggested that the surface free en-

ergy 0. is proportional to the enthalpy of dissolution for a
crystal-solution system [19—21] as

mrs =(b,Hd;„, (14)

where s is the area per surface and g a proportionality
constant. In case that crystals are in contact with the
melt, AHd;„should be replaced by the molar enthalpy of
melting hH

According to our inhomogeneous cell model [14], the
coefficient g is expressed for crystals in contact with the
melt, as

g=A, ,Ci*+n* D kT /b, H ln-, py

ps ps

Pf
ps

py D pI
ps 2 ps

1 ——1n 1—PI PI
ps I pS

+2 (, (15)

where T is the melting temperature. Note that pI, p„
and AH /T are bulk properties, and are assumed to be
available. If the interfacial factors CI* and n * can be cal-
culated and measured, g can be estimated from (15).Then
o may be directly obtained from (14). In this sense, g is a
key factor to obtain o..

For metal-melt systems, surface relaxation or surface
reconstruction occurs quite often. Therefore accurately
estimating the influence of the solid phase on the interfa-
cial fluid structure is difficult. This leads to some

difficulties in accurately calculating CI* and n* by the
SCF method. (Note that in SCF calculations, the solid
phase is to a large extent excluded from direct considera-
tion. Therefore it is implicitly assumed in the calculations
that properties of solid units at the surface should not
differ too much from those of solid units in the bulk. )

However, we can still use simplified models to estimate
the values of C&' and n * for metal systems. For this pur-

pose, it is assumed that in a simplified system,

y „z=g~z =0 and g „&&0.This is the case described by
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Metals'
hH, „
kT

kT

bH
Est. Expt.

TABLE II. The proportionality constant g and some other
relevant parameters for three difFerent metal systems.

ture T is lower than the roughening temperature T; the
surface is flat on a molecular scale. Otherwise, the sur-
face will be rough. The roughening temperature T" for a
given crystal face is directly related to interfacial bond
energies P;, expressed in terms of the dimensionless
roughening temperature 8', by

Pd
Ag
CU

40.0
24.2
27.7

0.974
0.907
0.868

3.00 0.314 0.762 0.800
1.87 0.270 0.473 0.457'
2.06 0.281 0.520 0.436'

2kT"
(17)

'Those metals have the fcc structure [19]. Then A, , =0.25.

pf /p, =0.98 [31].
bReference [32].
'Reference [19].
dThe experimental value of g for Pd was determined by Stowell

'The experimental values of g for Ag and Cu were determined

by Turnbull [19].

curve 2 in Fig.7. This corresponds to the system where
the Quid is in contact with a very Qat and neutral solid
surface. In fact, it is a reasonable approximation when
the solid surface is very Qat due to surface reconstruction
or surface relaxation.

In this kind of simplified system, y„s must be known.
As mentioned earlier, in a melt system, Quid units are
considered as component A, and vacuum units as com-
ponent 8. Then yzz is directly related to the evapora-
tion enthalpy bH, „as

y„s =vbH, „lkTm . (16)

Here v is a coeScient. It is found empirically that
v=0. 1. It follows that C&* and n* can be estimated from
curve 2 in Figs. 7(a) and 7(b). Consequently, the estimat-
ed values of the proportionality constant g for three met-
als Pd, Ag, and Cu are listed in Table II, together with
other relevant parameters. In order to make a compar-
ison, the observed values of g determined from three-
dimensional homogeneous nucleation experiments by
Stowell [22] and Turnbull [19]are also listed in this table.

It can be seen from Table II that the estimated values
of g are in good agreement with the observed values,
especially for the value determined by Stowell. In con-
nection with Turnbull's results, there are reports and
comments [22—27] indicating that for various reasons,
Turnbull's values are a bit too low. (This can also be seen
from my estimates. ) In this sense, Turnbull's values
represent the lowest bound of o.. Considering this fact,
my results are quite reasonable.

Here P„, is the strongest bond energy at the surface.
Note that 8" is a dimensionless quantity and has a certain
value for a given surface. Obviously, T" is linearly pro-
portional to P„,.

Previously, the roughening temperature has usually
been estimated based on the equivalent wetting condition
[11,12,28]. This condition implies that in Eq. (17)
$„,=4st, . However, for many inorganic and metal sys-
tems, it turns out that the roughening temperature is un-
derestimated by the equivalent wetting assumption. For
instance, Abbaschian and Eslamloo [29] indicated that
faceted faces occur on Sn crystals when they grow from
the melt. This is in conflict with the obtained estimate
that the roughening temperature of the strongest faces on
Sn crystals is much lower than the melting point. The
growth of garnets from a PbO flux [30] revealed that the
bond energies at the (332) faces are almost four times
higher than those estimated by the equivalent wetting as-
sumption. Obviously for those systems, P )@J,meaning
that the less than equivalent wetting case occurs.

The presence of the less than equivalent wetting in
those systems is to some extent attributed to surface re-
laxation or surface reconstruction. Because of those sur-
face sects, the interactions between Quid units and the
solid surface become weaker. Alternatively, due to the
restriction of the solid surface, fluid units will loose some
amount of entropy at interfacial regions. The loss of en-

tropy cannot be fully compensated by those very weak
solid-fluid interactions at the surface. It then follows that
the free energy per fluid unit at the interface will in-

crease, causing a decrease of the density of Quid units at
interfacial regions. This finally results in the less than
equivalent wetting.

In summary, the dependence of the structure and some
thermodynamic properties of monomer interfacial sys-
tems on various parameters was studied using SCF
theory calculations. As expected, the exponential law
can be applied to this kind of system. As an application,
the surface free energies of three metal systems were es-
timated, which turn out to be in good agreement with the
experimental results.

IV. DISCUSSION AND CONCLUSIONS

It can be seen from the calculated results given in the
last section that if solid-fluid interactions at the surface
are relatively weak, the so-called less than equivalent wet-
ting case will occur. This has been con6rmed by some ex-
perimental facts.

According to recent statistical mechanical models [28],
a crystal surface undergoes a roughening phase transition
at the roughening temperature T'. If the actual tempera-
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APPENDIX

According to principles of statistical thermodynamics
[12], the chemical potential of structural units is ex-
pressed for the fluid and the solid as

pf = kT—lnQf(T) —kT{lnvf+[ —sf+(kT)]/(kT)]

~s
ln —=—

Uf

hH
kT+ k

(A4)

constant, and subscripts f and s represent the fiuid and
the solid phase. At equilibrium, IMf

=p, . It follows that

and

p,, = —kT lnQ, '(T) —kT [lnu, —e, /(kT) ],
where

(Al)

(A2)
ln(pf /p, ) =—

where the melting enthalpy (per structural unit)
bH = c,;—E„and bS'=k [In(Q&/Q, ')+ 1]. Since

ln(u, /vf ) = in(p&/p, ), (A4) can be rewritten as

AH

kT k
+ ) (A5)

Q'(T)=[(2am kT) i /h ]Q(T) .

Q( T) denotes the partition function of a molecule for all
the internal degrees of freedom, U is the free volume of a
molecule, e is the minimal potential energy per structural
unit, m is the mass of a structural unit, h is Planck's

where pf and p, denote the density of the fluid and of the
solid phase, respectively. If we define X„=pf/p tlleii

Eq. (A5) assumes an expression similar to the 't Hooft
equation. Referring to Eq. (5), X„can therefore be re-

placed by p&/p, and X„(0) by p/(0)/p, (
—1). It then

follows that Eq. (5) can be rewritten as Eq. (5a).
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