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Topological solitons in polyethylene crystals
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A soliton model is presented to describe the dynamics of a single polyethylene (PE) chain sur-
rounded by a crystal environment. The model is based on realistic intramolecular and intermolecular
interactions and it generalizes the phenomenological (sine-Gordon) model proposed previously for
studying the molecular mechanism underlying the dielectric relaxation of PE crystals. In the present
model we obtain several types of topological soliton solutions that describe twisting and elongation
(or compression) of the PE chain. It is shown that these solitons can propagate smoothly along the
chain and that their interactions are inelastic.
PACS number(s): 46.10.+z, 03.40.Kf, 61.72.Bb, 63.20.Pw

I. INTRODUCTION

Over the past several years, it has become increasingly
apparent that spatially localized, large amplitude non-
linear excitations contribute significantly to the physical
properties of condensed-matter systems. In particular,
soliton models have been widely used to describe non-
linear physical processes including DNA dynamics [1],
the poling process in crystalline polyvinylideneQuoride

[2], dielectric relaxation in polyethylene (PE) crystals [3—
5], phase transitions in paraffin chains [6], and resonant
energy transfer in molecular biology [7].

At low temperature, crystalline polyethylene chains are
packed in an orthorhombic array. Each of the repeat
units contains two all-trun8 planar zigzag chains. The
role of various types of conformational defects created
at higher temperature in these long polymer chains has
been studied experimentally by examination of the bulk
dielectric relaxation [8] and by spectroscopic investiga-
tions [9]. Theoretical studies of the relevant molecular
dynamics at the microscopic level include calculations of
conformational defects [10, 11] and molecular dynamics
simulations [12—15]. In particular, some time ago Mans-
field and Boyd [10] postulated the existence of tmistons,
smooth 180' twists of a PE chain accompanied with a
CH2 unit length contraction or extension of the chain
extending over many CHz groups (far away Rom the
twisted region the chain approaches crystallographic reg-
ister asymptotically). The structure and conformation
energy of the twiston have been calculated on short PE
chains consisting of 22 CH2 groups and later analyzed
phenomenologically in terms of solitons [3,4]. In fact, due
to the symmetry of the crystal structure, there are many
equivalent ground states in the efFective interchain poten-
tial. The twiston configuration connects two such ground
states, thus it can be naturally described by generalized
topological soliton models. However, earlier mathemat-
ical models for twistons [3, 4] have employed an over-
simplified approximation for the intermolecular energy
and have Dot explicitly taken into account the coupling
between the chain twisting and translation. Recently, a
more accurate intermolecular potential has been obtained

and a hierarchy of twiston models has been brieBy out-
lined [16].

In the present paper an alternative twiston (topological
soliton) model is rigorously derived from realistic intra-
and intermolecular interactions (Sec II). In Sec. III we
obtain a ~-twiston solution in the soliton model and ob-
serve good agreement with the results of direct molecular
dynamics simulations. In addition, we demonstrate that
a type of large amplitude excitation, namely, a 2' twist of
the chain with reduced translational mismatch, collapses
to a highly localized defect in the realistic system. More-
over, a kinklike solution describing pure translational dis-
location of the CH2 groups is obtained analytically and
numerically. The energetics of these soliton solutions is
examined in detail. Section IV is devoted to the dy-
namics of the solitons. It is shown that the solitons can
propagate smoothly along the PE chain with very minor
discreteness effects and that the interactions of two soli-
tons are inelastic. In particular, we find that the head-on
collisions of a soliton and an anti-soliton lead to annihila-
tion unless their initial velocity exceeds a threshold value.
Sec. V contains some concluding remarks.

II. MODEL

We consider the dynamics of a single PE chain con-
strained in the crystal environment [16]. For convenience
of notation, let us first set up a right-handed reference
kame XYZ, as shown in Fig. 1. The Z axis goes through
the central long axis of the chain; the Y axis is per-
pendicular to the plane of the carbon atom chain. For
the sake of simplicity each CH2 unit is considered as
a rigid group. In Fig. 1 the CH2 units are numbered
0, 1,2, ... &om the bottom to the top. The Cartesian coor-
dinates X = (x,y, z„) and the cylindrical coordinates
(r„,P, z„) of the nth carbon atom have the following
relation:

X = (r„cos(P„),r„sin(P ), z ).
In cylindrical coordinates, the dynamics of the refer-

ence PE chain are described by a Lagrangian:

1063-651X/94/49(6)/5804(8)/$06. 00 1994 The American Physical Society



49 TOPOLOGICAL SOLITONS IN POLYETHYLENE CRYSTALS 5805

0+3

treated as a constant (its equilibrium value is r p 0.4236
A.). Then the efFective interchain potential (or substrate
potential) is quite well approximated by

HCH

$
n 4 HCH

HCH ~

(n.z„)
U(P„,z„) = Up(P„) + Ui (P„)cos

~k')
where

(6)

Up(P ) = —Az cos[2($ —P )] —A4 cos[4(g —P )],
(7)

4

)HCH

HCH go

FIG. 1. Reference frame XYZ for a planar zigzag
polyethylene chain. De6nitions of bond length, bond angle,
and torsional angle are indicated.

Ui (P„)= Bq sin(P„—P), (8)

Uintra = ) (Ubs + Ubb + Uts))

with Az ——0.32, A4 ——1.48, Bq ——1.52 (here the energy
unit is kJ/mol CHz), P 51', and P, = 0.03847(
2.204') is a constant phase such that the efFective po-
tential U(P, z) = Up(g) + Ui (P) cos(mz/c) has minima at
(P, z)—:(0, 0) and (m, c). The potential U(P, z) is plot-
ted in Fig. 2. This approximation to U; t„retains the
essential multiminima shape which has previously been
neglected in phenomenological twiston models.

Now let us turn to the intramolecular interaction
U; t, , which is approximated by a simple sum of the
energy of C-C bond stretches, C-C-C bond bends, and
C-C-C-C torsions:

Uintra Uinter s

where T represents the kinetic energy

(2)
where

1T = —m) (r'„+ r„p„+zz), (3)

m being the mass of a CHz unit; U; t, is the intramolec-
ular energy [12-15]and

Eb. = ' (1„—lp),
2

Ebb = (cos 8„—cos Hp),
Kbb 2

2
Kes. 2

s — sin 7n ~

2
(12)

Uinter = ) Ue(r», P», z»). (4)

U, is the effective potential for each CHs group on the
central reference chain due to the whole crystal environ-
ment. It can be obtained by summing up the van der
Waals interactions of a CHz group with all atoms on the
surrounding PE chains fixed at crystal register. U, has
the following general form [16]:

The definitions of the bond length l„, bond angle 8„,and
torsional angle r are indicated in Fig. 1. These energ&es
can be expressed in terms of the cylindical coordinates.
Let (d, g, u„) be the displacements of the cylindrical

(sz„i
U, (r, g, z ) = Up(r, g ) + U~(r, g ) cos~0')

(5)

U(g, z)
(kJ/m

2.5

where c = 1.274 jt. is the spacing along the Z axis between
two adjacent CH2 units at equilibrium. Due to the sym-
metry of the crystal environment, Up(r, P) is a vr-periodic
function of P; Ui(r, g) is 2m periodic in P. Although
Up(r, P) and Ui (r, P) can be approximated by Fourier se-
ries [16],the resulting forms are not simple enough to be
used in an analytical treatment. However, because the
vacation of the coordinates r is rather small, even in
a twisting region (see the following sections), r„may be

-2
0

»t„
Cy

& (lay)

FIG. 2. The potential energy U(g, z) given by Eqs. (6)—
(s).
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polar coordinates of the nth CH2 unit &om their equilib-
rium values, i.e.,

1- (-1)"d„= r„—rp,
2

ZL71 = Z~ —AC.

(i3)

Suppose that d„,bQ„= g +q —Q„, and bu„= u„+q —u„
vary slowly with n, so that the continuum approximation
may be used when expressing the potential energies of
Eqs. (10)—(12) in terms of cylindrical coordinates. By
letting d„= d, bQ„= bg, and bu„= bu, and keeping all
second order terms we obtain

U;„t, ———) [ Kgd„+ K2(g„+g —g„)

where

+Ks(u~+y —u~)

+K4(d„+, + d„)(u„+& —"„)],

16Tp 64T() 2Kq =
2 Kb, + 4 (1 —cosHp) Kbbl2 8 l4

—3712.655 kJ/A mol,

(i7)

(18)

Kbs /'16r
pd2

c 2 8crp
(14) lpszn Hp

(19)

Ebb =
l 4 (1 —cos8p) d + 4 (1+cos8p) bu

Kbb f 64rp z z 4c 2 2

sin'(Hp) d bu l, (1

Kt, 1024c2rps + 256c4r p4

l sin Hp
(i6)

All the parameters involved above are available from
Refs. [10—15]. For convenience, they are presented here
in Table I. Finally the intramolecular energy is reduced
to

c2 4c2
K3 —

2 Kbs + 4 (1 + cos Hp) Kbb
l() lp

1860.655 kJ/A mol, (2o)

4crp 16crp
K4 =

2 Kb, —
4 sin (Hp) Kbbl2 '

lp

= 2223.384 kJ/A. mol. (2i)

m) (d„'-+ rp2$2+ u„')

Combining Eqs. (2), (3), (6), and (17) we obtain a
discrete Lagrangian model to describe the dynamics of a
single PE chain:

TABLE I. The intramolecular energy and model parame-
ters.

Bond stretch energy

Eb, = ~b' (1 —lp)

Kb, = 2.65 x 10 J/A mol, lp = 1.53 A

Bond bending energy

Ebb =
2 (cos 8 —cos Hp)

Kbb ——1.3 x 10' J/mol, Hp ——112.75

Torsional energy

Kt, ——0.7578 x 10 J/mol

r'mu„)— '-~- —Up(&-) —U~(4-) cos
l c

where U; q, is given by Eq. (17) and the functions Up
and Uq are given by Eqs. (7) and (8). In the following
section we look for large amplitude localized excitations
(solitons) in this model.

III. STATIC SOLITONS

Because the intramolecular force constants K;,i
1,2, 3, 4, in Eq. (17) are at least two orders of magni-
tude higher than those of the intermolecular potential
in Eqs. (6)—(8), a continuum approximation (n ~ z/c)
can be applied to the Lagrangian model (22). Therefore,
we Brst consider a system described by the following La-
grangian density:

Geometrical parameters

c = 1.274 A, rp = 0.4236 A

Mass of a CH2 unit

&= —(4+rp&~+u~)
2

——(Kgd + K2c Q, + Ksc u, + 2K4cdu, )

—U(@,u),

whose equations of motion are

(23)

m = 14.1 g/mol

Coefficients in the torsional potential given by Eq. (36)
ao ——9.279, aq ———12.156,a2 ———13.120,
a3 ——3.060, a4 ——26.261, a5 ——31.495
(energy unit kJ/mol)

mdqq+ Kqd+ K4cu, = 0,
mrpQ~, K2c g„+BU/Beg—= 0,

mu„—Ksc u„—K4cd, + BU/Bu = 0.

(24)

(25)
(26)

Consider the static solution of Eqs. (24)—(26) by set-
ting the derivatives of d, g, u with respect to time equal
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to zero. Then from the first equation

d(z) = — u, .
1

Substituting this equation into Eq. (26) yields

—Ksc u„+ BU/Bu = 0,

(27)

(28)

where Ks ——Ks —K4/K'q = 529.145 kJ/mol is an ef-

fective force constant. It is easy to see that Eqs. (25)
and (28) are two coupled nonlinear Klein-Gordon equa-
tions. As pointed out in Sec. II, the substrate potential
U(@,u) has many equivalent ground states. Therefore,
these equations may support kinklike solutions (topolog-
ical solitons) which connect two ground states of the sub-
strate potential.

Due to the strong coupling between the two equations,
it seems impossible to obtain exact analytical solutions.
However, approximate solutions can be obtained due to
the analogy with the well-known sine-Gordon and double
sine-Gordon equations. Neglecting the coupling with u
and the very small phase P„ the rotation displacement
g approximately satisfies the equation

ical solution of the discrete model, Eq. (22), obtained
using a molecular dynamics simulation with damping.
The agreement between analytical and numerical results
is fairly good.

Equations (30), (32), and (33) describe a localized twist
(twiston) of the PE chain. In particular, @ (z), which
goes from zero to ~ and occupies about 14 CH2 units,
describes the rotation of the PE chain around its long
central axis; u(z) represents the translational mismatch
accompanied with the twist (hereafter this type of solu-
tion is named a z twiston). It is easy to check that the
solution [Q (z), u(z)] indeed connects two ground states,
(0, 0), and (m, +c) of the potential U(g, u). In other
words, the chain goes back to crystal register asymptot-
ically far away Rom the twisted region.

Furthermore, the energy of the twiston described by
Eqs. (30), (32), and (33) is calculated to be 82.53kJ/mol,
while the numerical solution of the discrete model gives
an energy of 81.21 kJ/mol. These two values are in ex-
cellent agreement with each other, showing again the va-

lidity of the analytical solution based on the continuum
approximation.

Another type of large amplitude excitation in the sys-

K2c @„—+ 2A2 sin(2') + 4A4 sin(4@) = 0, (29)

which has an exact z-kink (antikink) solution of the form

@ (z) = z/2+tan rl sinh~
(2gz —z, )
(c/K2/A2 ) (30)

where rl = gl + 4A4/A2 and zo denotes the center of the
kink. Substituting Eq. (30) into Eq. (28), we may obtain
an equation for the longitudinal displacement u(z),

0

8o %01

%.02-

-0.03-

—Ksc u„+ sin[51' —g (z)] sin(vru/c) = 0,

which appears to be a sine-Gordon equation with modu-
lated substrate potential. Since g (z) approaches 0 and
x at z = koo, respectively, the ground states of the sub-
strate potential associated with Eq. (31) are u = 0 and
+c. Therefore the solution of Eq. (31) can be approxi-
mated by

3

0
2c

u(z) = +—tan [exp'(z —zo)], (32)
-1
1.4

where p is a parameter characterizing the width of the
kink, which can be estimated by a variational method
[17]. Here for the sake of simplicity, 7 is approximated
by ~ gB~/Ks. From Eqs. (27) and (32) we obtain the
displacement

8
&o 08
bQ

K c2
d(z) = +

Kqx cosh'(z —zo)]
(33)

0.5-
4

0.2-

Thus d(z) has a bell shape which decays exponentially
away &om the soliton center. Note that p « 1 and K4
Kq, so the displacement given by Eq. (33) is rather small
indeed. This is consistent with our ass»mption in Sec. II
that the variation of the coordinates r is negligible.

The analytical solution given by Eqs. (30), (32), and
(33) is presented in Fig. 3 and compared with a numer-

01
0.00 50.0 100

n (CH unit)
150

FIG. 3. The twiston solution given by Eqs. (30), (32), and
(33) based on the continuum approximation (dashed line),
which is in good agreement arith the numerical solution of
the discrete model, Eq. (22) (solid line).
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tern (24)—(26) is a 27r twist with virtually no translational
mismatch. Setting u = 0 and d = 0 in Eq. (25) yields

K—2c g„+2A2 sin[2(g —P, )] + 4A4 sin[4(g —P, )]

+Bi cos(g —51') = 0. (34)

The ground states of the substrate potential associated
with Eq. (34) are 2kvr, k = 0, +1,+2, .... Thus Eq. (34)
admits 2'-kink solutions, which describe a 360 twist of
the PE chain. The energy of the 2m twiston is found to
be about 152.02 kJ/mol, less than double the energy of
the vr twiston.

In addition to these twistons, another static soliton-
like solution of Eqs. (24)—(26) can be obtained by setting
g = 0. In this case, u(z) approximately satisfies a sine-
Gordon equation

mBi sin(51') . fmul—K3c uzz + sin = 0)
c Ec)

whose kinklike solutions are wellknown. However since
Ks )) vrBi sin(51')/c, the width of this kink will be very
large. Numerical calculations show that the 2c kinks,
which are related to a 2c elongation or compression of
the chain, spread over about 30 CH2 units and that their
energy is about 80.36 kJ/mol. This is slightly less than
the energy of the x twiston.

In order to check the above results that are obtained
&om the soliton model, we have performed molecular dy-
namics calculations for a complete model using the more
accurate interchain interactions [16], the bonded inter-
actions of Eqs. (10) and (ll), and the realistic torsional
potential [12—15]
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Using molecular dynamics simulation with damping, it
has been found that the 7r twiston in the complete model
has an energy around 72 kJ/mol, which is in good agree-
ment with that found in the soliton model. Moreover,
the configuration of the x twiston obtained in the more
realistic model is found to be virtually the same as in
the soliton model of Eq. (22). Similar agreement is ob-
served for the 2c kinks that describe the 2c elongation or
compression of the PE chain.

However, when using a 2x twiston configuration as
an initial condition in the molecular dynamics simula-
tions, we find that it converges to an extremely localized
twist containing two gauche conformations as indicated
in Fig. 5. The realistic torsional energy, Eq. (36), has
local minima at the gauche conformations g(7 = 120'),
and g'(7 = —120'). The energy difFerence between the
gauche and trans (7 = 0) conformations is rather small,
only about 2.825 kJ/mol (see Fig. 4). The gttg defect
in Fig. 5 (see the lower graph) has an energy of about
78.46 kJ/mol, much less than that of the 2x twiston
in the soliton model. Here we would like to point out
that gauche defects are the most populous ones in high
temperature PE crystals due to their low conformational

5

E, „(~)= ) a; cos*(~). (36)

0

The coeKcients a; are presented in Table I, and this tor-
sional potential is shown in Fig. 4. Note that a simple
quadratic approximation of Eq. (36) about the minimum
yields Eq. (12).
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FIG. 4. The mere realistic torsienal petential given by
Eq. (36).

FIG. 5. The 2s-kink solution of Eq. (34) (dashed line).
The solid lines vrith circles are the numerical simulation re-
sults based on the complete model (see text). Note that
the torsional angle (showu in the lower graph) contains two
gauche conformations, vrhich represent tare sharp tourists ef the
PE chain.
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3
0

-3
0

0

200 5 200

FIG. 8. Head-on collision of a vr twiston and an anti-vr

twiston at initial velocity v = 35c/ps. They pass through
each other (only g„ is shown here).

FIG. 9. Head-on collision of a x twiston and an anti-7r

twiston at initial velocity v = 33c/ps. Annihilation of the
twistons is observed.

that all the collisions are strongly inelastic, generating a
lot of small amplitude waves. Note that the inelasticity of
such collisions is a common feature of some nonintegrable
soliton systems [19].

Some possible results of these collisions may be antic-
ipated qualitatively &om a purely topological point of
view. Here we summarize the numerical simulation re-
sults for equal-velocity head-on collisions.

(i) For the first type of interaction [Fig. 7(a)], there ex-
ists a threshold volocity vi = 34c/ps, such that if the in-
coming velocity of the twistons is larger than this thresh-
old value, the twistons will pass through each other (Fig.
8) with reduced final velocity (as part of their kinetic
energy is lost through radiation). On the contrary, if
their incoming velocity is lower than the threshold, the
collision will result in mutual annihilation (Fig. 9).

(ii) For the second type of initial condition [Fig. 7(b)],
the twistons can emerge from the collision if their initial
velocity is higher than a threshold value v2 = 40c/ps,
while at lower initial velocities they form a 2c kink, which
is related to a pure elongation or compression of the PE
chain.

(iii) For the third type of interaction [Fig. 7(c)], the two

colliding twistons may pass through each other if their
initial velocity is larger than a threshold vs = 15c/ps.
However, a 2' twiston is formed at lower velocity colli-
sions.

(iv) As to the fourth type of collision, the two twistons
are strongly repulsive to each other and mutual annihi-
lation is impossible topologically. The twistons always
reflect each other inelastically.

We have also examined the interactions of two 2c kinks
(that correspond to chain compression or elongation).
Since these solitons are described approximately by a
sine-Gordon equation [cf. Eq. (35)], their interactions
are expected to be more elastic than the twiston inter-
actions. In particular, it is found that a 2c kink and an
anti-2c kink may pass through each other easily. The
critical initial velocity for passing is found to be about
v~ = 5c/ps.

Because 2' twistons collapse to highly localized (im-

mobile) defects in realistic PE chains, we have not studied
their dynamics in the context of a soliton model.

V. CONCLUDING REMARKS

Topological solitons may represent a general class of
large amplitude excitations in crystalline polymers. Due
to the periodicity of the crystal structure, the interchain
interactions can be effectively approximated by periodic
functions [16], while the strong intramolecular interac-
tions (bond stretch, bond bend, etc.) can be expanded in
terms of suitable displacements of the atoms. Therefore,
a continuum model of the chain motion would naturally
be related to generalized nonlinear Klein-Gordon equa-
tions. In the simplest cases, the well-known sine-Gordon
or double sine-Gordon equation may be employed as a
phenomenological model to describe the twisting dynam-
ics of fiexible polymer chains (see, e.g. , [2, 4, 6, 16]).

Here we have presented a twiston (soliton) model for a
single PE chain surrounded by the crystal environment.
Based on this model, three types of topological solitons
have been found analytically and numerically. In par-
ticular, the vr twistons describe a 180 twist of the chain
with one CH2 unit length mismatch, similar to that origi-
nally proposed by Mansfield and Boyd [10]. A 27r twiston
is stable in the simple sohton model, but collapses to
a highly localized gttg defect when the torsion poten-
tial takes the realistic form [12]. In addition, a stable
soliton exists for pure elongation or compression of the
chain. Surprisingly, perhaps, the energy of this object
is comparable to that of the better known vr twiston. In
comparison with the original calculation of Mansfield and
Boyd [10], the present soliton model yields a significantly
higher energy for the vr twistons. This appears to be al-
most solely due to the use here of a larger force constant
for the torsion K2. We note that our value of K2 is con-
sistent with the more realistic torsion potential [12, 13).
Using the smaller value of K2 [3, 10] in our model yields
an energy for the ~ twiston close to that found earlier.

The propagation of a vr twiston from one chain end to
the other results in a CH2 unit length translation; thus
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the creation and motion of z twistons have been sug-

gested as a justification for the surface roughening in the
a phase of PE crystals [9]. Surface roughening may also
be produced by propagation of the 2c kinks. Not only are
these kinks of comparable energy to the m twiston, but by

collision, two z' twistons can annihilate (the twist) to pro-
duce these 2c kinks. Therefore, the existence of 2c kinks
may provide an alternative explanation for the surface
roughen~~g observed experimentally and numerically in
the n phase of PE crystals.
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