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Vibration modes of a gap soliton in a nonlinear optical medium
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We analyze the dynamics of small internal vibrations in a two-component gap soliton. The general
model considered describes at least three different nonlinear optical systems: a pair of waves coupled
by the Bragg scattering in a medium with a periodic grating, a twisted birefringent 6ber, and a
dual-core asymmetric coupler. In all the cases the material dispersion of the medium is neglected,
but an efFective dispersion is induced by the linear coupling between the two modes. Employing
the averaged Lagrangian variational technique we derive a system of ordinary differential equations
which approximates the dynamics of the gap soliton. We Gnd three oscillation modes, which are
composed of (mixtures of) dilation-contraction of each component's width, and a relative translation
of the two components. At certain values of the parameters the analysis yields spurious instabilities,
which is a novel failure of the averaged Lagrangian variational technique.

PACS number(s): 42.81.Dp, 03.40.Kf

I. INTRODUCTION

In the currently most familiar systems which support
solitons, such as the Korteweg-de Vries equation and the
nonlinear Schrodinger equation, the solitons' existence
results &om a balance between nonlinearity and material
dispersion. By contrast, a system which supports solitons
without a material dispersion term (though not to say no
dispersion at all) is

iut +iu + (o (u)'+ )v(')u+ v = 0)

iv, —iv + ((u('+ o(v) )v+ u = 0.

(la)

[Material dispersion would additively contribute the
terms u and v to Eqs. (la) and (lb), respectively.
Thus changed, the system would be classified as a pair of
coupled nonlinear Schrodinger equations. ] For concise-
ness, we will refer to the fields u and v as polarization
components on account of the relevance of Eqs. (1) to
a bire&ingent optical fiber, though, as detailed below,
the equations also describe other physical systems. A
name for Eqs. (1) does not appear to have been settled
on in the literature, except for the case o = 0, in which
Eqs. (1) represent the one-dimensional massive Thirring
inodel ("MTM") [1—3]. We follow the convention of call-
ing stable solitary waves solitons, even when the system
is not completely integrable, and the solitary waves are,
therefore, not true solitons.

Equations (1) may describe, in addition to the MTM,
at least three different nonlinear optical systems (in their
appropriate limits): a twisted birefringent optical fiber,
an optical fiber with a periodic grating (which seems the
most interesting application), and a nonlinear asymmet-
ric coupler. Note that when Eqs. (1) are regarded as a
model of the twisted birefringent fiber or of the asym-
metric coupler, the meaning of the variables t and x is
reversed: the former becomes a propagation distance and
the latter becomes the so-called reduced time. Below, we
describe these three physical systems in order.

Optical fibers are today the prototypical physical sys-
tem described by nonlinear Schrodinger equations [4].
The Kerr effect accounts for the cubic nonlinearity. A
bire&ingence may cause the fibers to have different group
velocities in each of two polarization modes —the source
of the terms +in and —iv in the nondimensionalized
Eqs. (1) [5]. A third order susceptibility produces the
nonlinearities; the coeKcient of self-phase modulation
may be in the range 2i3 ( o i ( 2 [5]. If the birefringent
fiber is, in addition, periodically twisted, this gives rise
to the linear cross-coupling terms in Eqs. (1). We pre-
sume that the proper dispersion in each polarization, as
well as a phase-velocity difference between the polariza-
tions, are insignificant, along with absorption, inhomo-
geneities, etc. (This dispersionless approximate model of
the twisted bire&ingent fiber was discussed in some detail
in the review paper [11].)

In a periodically modulated nonlinear fiber (i.e., with
a periodic grating), Eqs. (1) describe a pair of counter-
propagating waves coupled through the Bragg scattering
(represented by the linear cross-coupling terms [6—8]) in-
duced by the grating. We assume the usual approxima-
tion, in which the proper dispersion of each wave mode
is neglected. "Gap solitons" in nonlinear fibers with a
grating have recently attracted a great deal of attention
(see, e.g. , Refs. 6—8 and references therein). These are
the gap solitons whose internal dynamics is analyzed in
this work.

A nonlinear dual-core coupler consists of two fibers jux-
taposed so that radiation within each fiber overlaps the
other one, which causes an energy oscillation between
the two cores [9—11]. As usual, the Kerr effect produces
a nonlinearity in each mode. In the &amework of the
model considered, we neglect the proper dispersion of
each core, as in the original paper [9]. There is not neces-
sarily (depending on the implementation) any significant
nonlinear cross-coupling; in terms of Eqs. (1), this means
the parameter o formally ranges up to the limit o m oo.
The group-velocity difference terms, +u and —v, may
be present in Eqs. (1) if the two cores of the coupler are
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different (which is why we speak of the coupler as being
asymmetric). However, in the model of the asymmetric
coupler corresponding to Eqs. (1), we neglect differences
in all other parameters, such as the phase-velocities and
nonlinear coeKcients.

The (classical) massive Thirring model, 0 = 0, is the
only Lorentz invariant case of Eqs. (1). The Lorentz in-

variance is manifest when the equations are written in
the covariant form:

where

t'0 Iy , r0 »
(I 0)' (1 0

The physics of this model is far afield from the subject
of this paper, and current interest in applications is slim,
so rather than give a description here we refer readers to
Ref. 1.

Whereas a pair of coupled nonlinear Schrodinger equa-
tions can support solitons in one of the polarization com-
ponents without the "assistance" of the other, solitons in
Eqs. (1) can only exist through the interaction of both
polarization components. In the small amplitude limit
Eqs. (1) reduce to the single Klein-Gordon equation with
unit mass, (Bi2 —82 + 1)u = 0, which is dispersive. On
the other hand, were the linear cross terms or birefrin-
gence (i.e, . group-velocity difference) absent, the system
would have zero linear dispersion, and the nonlinearity
would cause a pulse to compress and ultimately blow

up. It turns out that dispersion and nonlinearity will

find a balance, supporting solitary waves. When o = 0,
Eqs. (1) are completely integrable, and the solitary waves

are true solitons [2,3]. When 0 g 0, though Eqs. (1) are
not integrable, solitary waves which are continuously de-
formable into the cr = 0 solitons are known in exact form
and are stable [6,7). The solitary waves have a frequency
which is forbidden for the linearized system because of
the Bragg reHection [in the case when Eqs. (1) apply to
the nonlinear optical fiber bearing a periodic grating].
The solitary waves supported by Eqs. (1) are hence vari-

ously called Bragg solitons, gap solitons, and self-induced
transparency solitons. We will generally use the term
"gap solitons. "

Beyond knowing the gap solitons' form in the steady
state, an important subject is their vibrations. Vibra-
tions are interesting, first, in themselves because they are
fundamental dynamical efFects that a solitary wave will

exhibit when it is not precisely at equilibrium. Second,
vibrations are intimately related to the important fact
that, in the nonintegrable case, soliton-soliton collisions
are inelastic: direct numerical simulations demonstrate
that collisions induce internal oscillations in the recoiling
solitons [6]. In order to analyze aspects of inelasticity
in soliton-soliton collisions, it is necessary, as an inter-
mediate step, to understand gap solitons' dynamics in
1solat loll.

Gap soliton oscillations have as yet been little stud-
ied. One can say a few things about oscillations based
on general properties of integrable systems. In the MTM

case (cr = 0), an initially vibrating gap soliton will grad-
ually shed its oscillation energy, until it stabilizes. For
0 g 0, by extension, small oscillations of the gap soliton
will be slowly radiated away too. The inverse scatter-
ing method through which this result is obtained in the
exactly integrable case (cr = 0), is not very useful for
studying the oscillations' form. Aceves and Wabnitz [6]
complemented their discovery of the exact solitary wave
solutions to Eqs. (1) with numerical simulations in which
collision-induced vibrations may be seen. Though vi-
brations were clearly present, they were not the focus
of Ref. 4 and received negligible attention therein. De
Sterke and Sipe [8] studied Eqs. (1) numerically on a fi-

nite interval. The phenomena studied in Ref. 8 depend
strongly on the boundary conditions, which were differ-
ent than ours, and on the presence of a large radiative
(non-soliton) energy component, so the results do not
give the same insight into small perturbations of solitons
as does our work. To our knowledge, there is no other
published work on gap soliton oscillations; as for analytic
study of gap soliton oscillations, there has been none at
all.

Analytic results on internal soliton vibrations are gen-
erally obtained by the averaged Lagrangian variational
technique [12—14], which is as follows. The exact govern-

ing (partial differential) equations may be derived from
a Lagrangian density. The solitary wave is approximated
by an ansatz with a small number of time dependent pa-
rameters, which is substituted into the Lagrangian den-
sity. The Lagrangian is integrated over the spacial vari-
able, leaving only a temporal dependence. From this av-

eraged Lagrangian, one may derive a finite number of or-
dinary difFerential equations which should approximate
the system's actual dynamics. It is then generally useful
to look at the small perturbation limit, and perform a
vibrational mode analysis.

Gap solitons provide a novel test of the averaged La-
grangian variational technique in several respects. The
governing equations (1) contain no explicitly expressed
derivatives of second or higher order (zero material dis-

persion). The dispersion re~nits from the linear cou-

pling of the two components (in combination with the
group velocity difFerence); solitary waves cannot exist if
exactly one of the polarization components is empty. To
our knowledge, the averaged Lagrangian variational tech-
nique has been applied to no system in which either of
these characteristics hold.

We perform herein a small vibrational analysis of
the gap soliton by the averaged Lagrangian variational
technique. The analysis yields three oscillation modes.
In general, the dilation-contraction of each polarization
component's width and the relative translation of the po-
larization components are mixed in each mod. e. However,
in the MTM case (0 = 0), as well as for solitons in the
rest frame (u g 0 is not Lorentz invariant), the mode in
which the polarization components' dilation-contractions
are x radians out of phase decouples Rom the other two
vibrational modes. For wide, Hat pulses, all three oscil-
lation modes are stable; as the pulses narrow, the for-
mal analysis gives instabilities, even in the completely
integrable MTM case (0 = 0). Since MTM solitons are
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known to be always stable, the instabilities are spurious.
To our knowledge, this is the first known "catastrophic"
failur- failure to give qualitatively correct results —of
the averaged Lagrangian variational technique.

The rest of the paper is organized as follows. In Sec. II,
we introduce the soliton's ansatz which is inserted into
the variational equations, and discuss the meaning of its
free parameters. In Sec. III, effective equations of motion
for those parameters are derived &om the Lagrangian
corresponding to Eqs. (1). (The complete form of the
equations is very cumbersome, so the detailed and ex-
plicit expression of the equations is relegated to the Ap-
pendix. ) Next, in Sec. III, we use these equations to de-
velop a general analysis of the small internal vibrations
of the soliton and find the corresponding eigen&equen-
cies. Complex values of the eigen&equencies produced
by the variational technique give spurious instabilities,
which is discussed. In Sec. IV, we analyze in more de-
tail the special case of a small-amplitude, broad soliton.
In this case, we obtain simple expressions for the eigen-
&equencies, which are free of the spurious instabilities.
Another special case, corresponding to the asymmetric
dual-core coupler [Eqs. (1) in the limit 0 = oo] is consid-
ered in Sec. V. Conclusions and summary are in Sec. VI.

II. THE VARIATIONAL ANSATZ

Our choice of ansatz to approximate the oscillating gap
soliton must be guided by the form of the undisturbed
gap soliton. As noted above, gap solitons under Eqs. (1)
are known in the exact form [6]:

t' . i
u = agp(1+ p) sin Q sech

~

(sin Q ——Q ~

x exp i P —7 cos Q+ 40a p ptan
l

x
~

tan —tanh((sinQ)
~

r J'

v = —agp(1 —p) sin Q sech
~

(sin Q + —Q ~2 r
T

x exp i —7 cos +40o. p ptan

x
~

tan —tanh((sinQ)
~

& t

r J

where

21+gpz(1 +p2)p(1p2)1 /2

~—:q(t —px), ( —= q(z —pt),

(2b)

and Q, p, P = const, with ~p~ ( 1, and 0 ( Q ( vr. The
global phase, P, is trivial. The velocity, p, is nontrivial
when 0' g 0, where the system is not integrable and not
Lorentz invariant. The parameter Q determines the gap
soliton's width [ (sin ~z) ~] and amplitude.

That exact solutions are known, both simplifies and
restricts the choice of ansatz. Since we wish our approx-
imation to match the exact solution in the steady state,
we choose an ansatz of the same form as Eqs. (2), but
replace the constants with parameters that can vary with
time, or functions of those parameters. Our choice is

u = g„agp(1+ p) sin(Q + b Q)sech ((+6() sin(Q + 6Q) ——(Q + b Q)2

1
x exp —i l a„+b„(f+6() + —c„sin(Q/2)((+ 6,() —40ap pt'an (t an( Q/2) tanh[((+ 6,() sin Q]j, (3a)

v = —rl„agp(1 —p) sin(Q —AQ)sech (f —b,() sin(Q —b,Q) + —(Q —b,Q)
2

1
x exp —i a„+b„((—b,f) + —c„sin(Q/2)(( —6f) —4+a p p tan (t an( Q2/) tanh[(( —6,() sin Q]), (3b)

where g„, g„,Q, EQ, b.(, a„, a„, b„, b„, c„, and c„
are functions of r. This ansatz lets us independently
vary, for each polarization component, the central po-
sition, pulse width, amplitude, constant phase, carrier
&equency, and &equency chirp. Under the obeisance of
the efFective Lagrangian for Eqs. (1), this gap soliton
model may exhibit transfer of energy between the two
components, independent contraction-dilation of each of
the two polarization components, relative translations of

the polarization components, and internal energy storage
by the frequency chirp. Not supported is radiation and
anything but simple changes in the pulse shapes.

III. EQUATIONS OF MOTION

Substituting Eqs. (3) into the Lagrangian density &om
which the governing equations may be derived,
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c = —'[u*(B, + 8.)u —u(o, + o.)u*
2

+v*(Ot —B~)v —v(0, —8 )v*]

equal to zero,

and

2 P22
4c)Q Q pa

(6a)

+—lul'+ —Ivl'+ lul'lvl'+ u*v+ «*
2 2

(4) P4 + / P4 4P3PS2

(dye y .
2P3

(6b)

integrating the result over the variable x from —oo to
+oo, and taking the variation with respect to each of
the parameters gives a simplified system of equations of
motion. We do not write it in its complete form because
it is cumbersome and does not provide insight by itself.

There is exactly one physically distinct fixed point,
which corresponds precisely to the exact solitary-wave
solution given by Eqs. (2):

g„=q„= 1, Q = const,

a„=a„=w cos Q + const,

b„=b„=c„=c„=Aq = 6( = 0.

Linearizing the general dynamical equations about the
fixed point, we arrive at a system with six degrees of
&eedom, here expressed as one second and one fourth
order equation for &~ and ~ q~' (Qo is the steady-state

value of Q): )aq, , q —q,
' pi&, + pz = (4o~'~'p) (5a)

ps, +p4, + ps
' = (4o~'~'p) (5b)

d~4 d7.z

Note that the derivatives in Eqs. (5) are with respect to r,
time in the gap soliton's reference kame, defined above.
The coefficients p~ are functions of the parameters Q, o,
and p. The complete, explicit forms of the coefficients p~
and the dependence of the other ansatz parameters on Q
and b,q are given in the Appendix.

The essential relationships are as follows. When crp =
0, in which either the gap soliton is quiescent or the sys-
tem represents the (completely integrable and Lorentz
invariant) MTM case, b,q decouples from Q (and from

A(); when o'p g 0, Aq is slaved to Q. The parameters
Ag, (rl„+q„), (a„+a„),(b„—b„), and (c„+c„)are func-

tions of Q (more precisely, of its variation ~ &~'). Note
that time derivatives of Q or other parameters serve here
as independent parameters. The parameters (g„—rI„),
(a„—a„), (b„+b„), and (c„—c„) are functions of Aq.

We examine in detail the MTM (o = 0) soliton first. It
is the simplest limit: the equations are completely inte-
grable, the MTM sobtons are true sohtons, and there is
no nontrivial dependence on any parameter aside &om
Q. The oscillation frequencies may be obtained from
Eqs. (5), taking the right-hand sides of the equations

The model is stable when all the frequencies, u~g, ~q+,
and ug are real. Note that the frequencies are functions
of the single parameter Q; there is no dependence on the
velocity, p, save for the time dilation. This conforms
to expectations, as the system is Lorentz invariant when
0. =0.

The real and imaginary parts of the frequencies are
shown in Fig. 1. There are values of the gap soliton
width at which the vibration frequencies are purely imag-
inary, which implies a formal (and spurious —see below)
instability. We emphasize that these formal instabilities
occur even for the MTM case, o = 0, which is completely
integrable. Since the MTM solitons are known to be sta-
ble, the instability is certainly an artifact produced by
the variational approximation, indicating a failure of the
averaged Lagrangian variational technique in a certain
parametric range.

The first instability appears in the Aq mode at
roughly Q = 0.37r. Past that point, the oscillation fre-

quencies alternate between stability and instability, with
the frequencies going asymptotically to infinity at several
points. The borders between the stable and unstable re-
gions may in principle be determined from Eqs. (6). It
seems very unlikely that the results will hold true past
the point of the first instability.

The lengthiness of the expressions makes it difficult to
find simple heuristic accounts of the vibrational dynam-
ics. We can nevertheless account —within the context
of the averaged Lagrangian variational technique —for
some of the most prominent features of the graphs of the
frequencies: the asymptotes. Dispersion in Eqs. (1) re-

sults from the group velocity difference combined with
the linear cross coupling, and it is balanced by the non-

linearity. In the averaged Lagrangian, the linear cross
coupling gives rise to functions of the phase perturbation
terms (a, constant; b, linear; and c, quadratic), multiplied

by functions of Q, which change sign at Q = (1/v 3)z =

0.58vr and Q = 1 —g8/15'' 0.52vr. The group-

velocity difference terms give rise to phase perturbation
terms a, 6, and c, or their time derivatives multiplied by
functions of the fundamental soliton parameter Q which
do not change sign over the interval 0 ( q ( vr. Thus,
the effect of the dispersion i n the averaged Lagrangian
undergoes a sign change. The nonlinearity is a sum of
absolute values, so it does not directly affect the phase
terms, nor do any other terms counterbalance the sign
changes. So one would expect a transition from stability
to instability in the region of the sign changes, Q —0.52vr

and Q = 0.587r.
A similar analysis may be performed for the general

system, in which o g 0 and the Bragg soliton is moving,

p g 0. The eigenfrequencies of the small vibrations are
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mQp determined by the single sixth order equation

d6 d40= pip. «+(pip4+ p2p. )«d1- d~4

di
+ (P1P5 + P274) d 2 + P2P5d7-2

L

0.1 0.2

I I
li
II
(I

(4+a2 2
)

2

When oP g 0, qq is a function of q qq'.

(7)

4~a'~'p Q —Qo
—pi~ +p2 Q

(8)

where u is a frequency determined by Eq. (7). The
three squared &eguencies give three distinct dependen-
cies of on ', which distinguishes the correspond-
ing three eigenvectors.

2

0.1 0.2

IV. GAP SOLITONS
IN THE SMALL-AMPLITUDE LIMIT

For small values of the parameter Q (small-amplitude
and large width gap solitons), the averaged Lagrangian
variational technique produces only real oscillation fre-
quencies. We encounter no spurious instabilities. The
three squared oscillation &equencies are

16(3++ )
(d~g

45

~80+ 192a2 4 124 ~ l ~Q)
vr + vr + 4

I

—
)675 45

(2x) 48a +20
( 3 j ( 135 )
(6Q2 ) 1+
( 7I'2 )

&4a'+1, „l &Q&
'

0.1 0.2
which works out to approximately

~~q = 2.14 —(1.01+0.66a )Q,
(uq+ ——2.09+ (0.61 —0.84a )Q,
u)q = 0.61Q [I —(0.51 —0.40a )Q ].

(c)

FIG. 1. The vibration frequencies in the massive Thirring
model (o = 0, p = 0): (a) ~~q vs q; (b) up+ vs q; (c) uo
vs Q. In this figure and in Fig. 2, below, the real parts of
the frequencies [which are not associated with the (spurious)
instabilities] are drawn as solid lines above the q axis, and
the imaginary parts of the frequencies are drawn as dashed
lines below the Q axis [the presence of a nonzero imaginary
frequency indicates a (spurious) instability].

The corresponding eigenvectors are de6ned by the re-
lations

(rl„—il„) = —2
&Q

5 dEQa —a
16d~ Q

'

15Q d bQ
sr 2 d~ Q

5 ( d' 16(3 + z') l AQ
4 dh~ 45 Q
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(rI„+ fI„)Q = 2Qp ——const,

vr d Q —Qp
].2Q2 dv. Q

b )
Q Qp

2d~2 Q

(1 + p)"(I —p)'~' .
D

(I + p2)1/2
sin Qsech

[ ( sin Q ——Q i

x exp i —icos

4p 1J Q+ a
tan tan —tanh(r ain Q)

1 f'd 4vr2 d) Q —Qp

Q d~s 9 dr Q

d—(a„+a„) —2 cos Qpd7.

(d4 4fr2 d2 ) Q Qp
48Q2 I d74 9 dr2) Q

+ 0. 1 0.2

The eigenvector of the cunq mode in the small Q limit is

dominated by the oscillations of q, (fI2 —rI2), and (a„—
a„), while the other components, (c„—c„) and (b„+b„),
are smaller by a factor of Q. The &dq+ eigenvector is
dominated by the 6( and (a„+a„) oscillations. The Q
slow oscillation mode ~q has the same dominant terms
as 1dq+, 6( and (a„+a„), but in a different ratio.

V. THE NONLINEAR ASYMMETRIC COUPLER

The asymmetric dual-core nonlinear coupler is de-
scribed by the system of two equations [ii)

iu, +iu, + ~u[2u+ v = 0,

iv, —iv, + [v['v+ u = 0,

(9a)

(9b)

t.

0. 1 0.2 /

/
Il
lg

I)

I)

where z and 8 are, respectively, the propagation distance
and the so-called reduced time. As detailed in Sec. I, we

neglect the proper dispersion in both cores of the cou-

pler, but do take into account the fact that, due to an
asymmetry between the cores, they may have a group-
velocity difference, accounted for by the second linear
terms in Eqs. (9).

Making in Eqs. (1) the substitution

1
'U = 'U

a

0. 1 0.2
7r

t=z, x=8,

and then taking o. —+ oo, one recovers the nonlinear cou-
pler equations (9). The asymmetric nonlinear coupler is,
therefore, a limiting case of Eqs. (1), and we may apply
to it the results herein. In the appropriate limit we have

2
n = ( —) 1

~, , 4ocf p p =
1

~, , and the coupler soliton
JS

FIG. 2. The nonlinear asymmetric coupler (o = oo, p = 0):
(a) tdtht2 vs Q; (b) tdt2+ vs Q; (c) Id' vs Q.
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1/4 1 p 3/4 ( i
sinQsech

~
(sinQ+ —Q ~g1+p2 ( 2 )

T

x exp i P —rcosQ

4p+ tan tan —tanh(( sin Q)'+&'

where the parameters r and ( are functions of z and 3
rather than of t and x.

For the asymmetric nonlinear coupler, the soliton's vi-
brational dynamics are roughly like those of the gap soli-
ton. In our calculations, we simply apply Eqs. (5), taking
0 -+ oo. Figure (2) shows the three oscillation frequen-
cies for a stationary soliton. The graphs of all three oscil-
lation mode frequencies, u~g, ~q+, and ~g, are qual-
itatively similar to the MTM case, with only moderate
quantitative difFerences in the frequencies and the criti-
cal values of Q corresponding to the separatrices between
stability and the spurious instability.

VI. CONCLUSION

The averaged Lagrangian variational technique is a
standard tool for investigating free [12,13] or driven [14]
oscillations of a solitary wave. Applying the technique
to gap solitons governed by Eqs. (1), we found three de-
grees of freedom in which the gap soliton can oscillate.
Throughout, the total energy is conserved, i.e., to first or-
der, (rl„+g„)Q remains constant. A caveat: the analysis
assumed zero energy was radiated in the course of the os-
cillations, so any effects that involve radiative decay are
not captured.

As the parameter Q, which determines the mean width
of the soliton, (sin @2) i, oscillates, so do z (a„+a„),the
time derivative of the global phase; (b„—b„), the anti-
symmetric spacial frequency; (c„+c„), the symmetric
frequency chirp; and b,(, the distance between the cen-
ters of the two components. The first two move in phase
with the Q oscillation, the last two, out of phase.

As b,Q, which determines the difFerence in the widths
of the two components, oscillates, so do (a„—a„), the
phase difference between the polarization components;
(c„—c ), the antisymmetric frequency chirp; (b„+ b ),
the symmetric spatial frequency; and (g„—q„), antisym-
metric increase and decrease in the amplitudes of the
polarization components. The first two oscillate out of
phase with b,Q, the next two, in phase.

Whether or not Q and b,Q couple to each other de-
pends on whether the system is at the MTM limit (cr = 0)
and on whether the gap soHton as a whole is not Inoving.
If either of these conditions holds, Q and AQ are inde-
pendent. EQ moves in a two-dimensional phase space,
while Q moves in a four-dimensional phase space. If both
o f 0 (in which case the system is not Lorentz invariant)
and the soliton is in motion, Q and b, Q are coupled to-
gether, and oscillate within in a six-dimensional phase
space.
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APPENDIX

The equations of motion that arise from the averaged
Lagrangian variational method, in the small vibrational
limit about the fixed point (the fundamental soliton so-
lution) are

0=
0=

0=

0=

0=

0=

0=

qi(&Q/Q) + q2(n.
' n.'), —

qs(a- —a-) + q4(c- —c.)
+qs —(&Q/Q) + qo (r/ —n.)—d 2 2

d7. d7.

q~(a- —a-) + q.(c- —c-)

+qo
d

(&Q/Q) + qio
d (n. —n. ),
d 2 2

d
'qll (a —a ) + q12 —(W —c.) + q13(b + b )d7. d~

+qi4(&Q/Q) + qis(n.' —n.')
+qM4~~'V'p[(Q —Qo)/Q],

d d
qiv ~ (a —a ) + qis ~ (c - c ) + qio(b + b. )d~ d7.

+q2o(&Q/Q) + q2i(rI„' —g„')

+q224~~'v'PK Q —Qo)/Q],
d

~ —„.KQ —Q.)/Ql+ "&(,
d

r3 b,(+ r4(b„—b„), —
d7-

For small Q —small-amplitude and large-width gap
solitons —the system is stable in all of the three degrees
of freedom. For pulses of larger amplitude and smaller
width, the analysis gives formal instabilities. Some of the
causes of the instabilities are evident in a direct exam-
ination of the averaged Lagrangian (see Sec. III), while
the causes of other instabilities are obscured by the com-
plexity of the equations which govern small vibrations.
In any case, the instabilities occur even in the massive
Thirring model, which is known to be always stable, so
it follows that the instabilities are spurious. These spuri-
ous instabilities, represent a "catastrophic" failure of the
averaged Lagrangian variational technique as applied to
soliton systems.

Since this is a newly discovered failure of the averaged
Lagrangian variational technique, it is not entirely clear
what confidence can be placed in the results even in the
range in which there are no apparent problems. Nonethe-
less, Sec. IV outlines in detail one limit (small amplitude)
in which there is no a priori reason to doubt the accuracy.
We leave to a later paper a comparison with numerical
simulations. In any case, the discovery of spurious in-
stabilities in an application of the technique calls for a
deeper justification of the technique in a general form.
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d
0 = r5(c„ + c„)+ rs —(b„ —b„)

d~

+T7—[(Q —Qo)/Q] + rs&&
d7

(d
0 = rg

~
(a„ + a„) —2 cos Qg ~

qdr

+«~'~'p[TI. (&Q/Q) + r»(~.' —~.')]
d d

+ —(.+ .)+".[(Q- q.)/Q]+, —~~,d7.

0 = TI5
~

—(a„+a„) —2cosq,
~~dr )

d d
+T16 (Cu + Cn) + T17

d7-
" dr

The parameters q~ and rz are functions of the fundamen-
tal soliton parameter Q, the velocity of the soliton p, and
the coeKcient of self-phase modulation cr:

n —3Q ~ Q Q Q

6 ' qs 240sin q 2 ' qg 12 dQ sin2 Q

q10 =
24 q11 = 1, q12 = 24.,n2 sinvt'2, q13 ——1,

q14
——2cos Q+ (2 —4a )Q sin Q, q15

——cos Q+ (3 —4n )("& —cosQ),

qls 2( q
—cos Q), ql7 1 qis gq 24 2 q»n, , qlg

sin Q Q(~2 Q2 ) g

2 2 2 (sin Q d 1 l d 1 d Q(7r —Q)
q29 ———2n Q(sinQ+QcosQ) ——n Qcos Q

~

. +cosQ
~3 ( 3 d sin ) d sin d sin

(2 2 4 d 1 2 . 4 d 1 d 1 ) d Q(x2 —Q2)
+Q cos Q —(cot Q —1) + —cos Q . + —sin QI3 3 dQsin 9 d sin d sin ) d sin

q21 ——cos Q + (1 —2n )Q sin Q, q22 = —Q sin Q,

Q 2 d (sinQ
r5 ——Q sin —,rs ——Q, r7 ———2Q

( 7r2 q2 ) 772 3q2

l—cosQ i,

(sin Q d 1 ) d 1 d Q
rs =So. '

Q ~
. +cosQ

~

dQ sinQ dQ sinQ dQ sinQ ) dQ sin Q'

rg ——1, TIO —Q»n Q, Tl1
sin Q 7r2 —Q . Q—Cos Q, T12 = Sill

24 sin Q

(sin Q—cosQ ~, TI4 ——2
~

—cosQ
~

qr15 = 1,
(sin Q

rig = 2QsinQ —4
~

rig —
~ ~

sin —,and r17 = —2Q sin Q.
d (Q(vr2 —Q2) i . Q

dQ ( 24sin Q )
The coefficients pz of Eqs. (5), which are constructed out of qz and r~, are

t
—I ( qlsq17 qllqlg ~ ( —qs q4 t

( q5 —
qsqi /q2

pi = (qsqs —q4q7) '(qlsq22 —Visa»)
'

I
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q13 (q20 q21ql /q2) —(qi4 —qisqi/q2) q19P2= )
913922 —916919

T1 T3 T6 T9T16 —T12T15
P3 =

r2 r4 r5 (rlo rllql/q2)r15

(r7 —rsrl/r2)(r9r16 r12r15) + (r9r17 —r14r15)rl/r2
14

(rip rllql/q2)r15
T13

p5
(rip rllqi/q2)

(The superscript t in the expression for pi indicates ma-
trix transpose. )

The parameters of the Bragg soliton ansatz are inter-
connected via the following relations, which are expressed
in terms of the q~ and T~ parameters de6ned above. Note
that the different eigenfrequencies (where there is more
than one) lead to different relations between the ansatz
parameters, which creates different eigenvectors. There
are five terms slaved to Q, the parameter that describes
in-phase contraction-dilation of the two polarization com-
ponents. Note that the relative translation term Af
couples to Q. Therefore, symmetric dilation-contraction
cannot occur without an antisymrnetric (relative) trans-
lation oscillation of the polarization component centers:

(7i„+7i„)Q
—= 2Q0 ——const,

d Q —Qo4( = —(ri/r2)—
d7-

d2 Q —Qp
(ba —b. ) = (rl/r2)(r3/r4) d,

(r, r3rs d r7 —rsri/r2 d ) Q —Qp(c-+")= —
I , +
Er2r4r5 dr dr) Q

d—(a„+a„) —2 cos Qp ——
d7-

1 3 6 16
4

'T2T4T5T15 d7

+ T7 T8T1 T2 T16

T5 T15

ri7 ri ~ d Q —Qp+
r15 r2) d7 Q

40 cr2p2 p Q —Qp
—~ 81+72 Q

The final equations describe the dependence of four
parameters on the antisymmetric contraction-dilation

When trp = 0, AQ is independent of Q, and the be-
havior of AQ is governed by Eq. (5a). But when a p g 0,
b,Q is slaved to Q. (The number of degrees of f'reedom is
the same in both cases, since, when b,Q is slaved to Q,
Q is described by an equation of order higher than when
the parameters are independent. ) There is a dependence
on the eigenf'requency [of which there are three, defined
by Eq. (7)]:

(~-' —~.') = (qi/q2)(&-Q/Q)
—(q5 —qsqi/q2)qs+ q4(q9 —qlpql/q2) d

( / )
9398 —949' dr

—q3(q9 —qlp'ql/q2) + (q5 q6ql/12) 17 d
( / )

9398 —949V dr

(&- + &.) = (qsqs - q q7) '(q q . q .q
)-'

i

"-'"' "'"'
i

~

's '4
~

q3 ) ( q9 —qioqi/q2 &
dr2 Q

&Q—(q13q22 q16q19) [(114'q22 q16'q20) (q15q22 q16'q21)'ql/q2]
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