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Polarization properties of Maxwell-Gaussian laser beams
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Gaussian beam solutions of Maxwell's equations are constructed in terms of the solutions of the
paraxial scalar wave equation. Explicit expressions for the field components of Hermite-Gaussian
laser beams are given and their polarization and propagation characteristics are discussed. Experi-
mental evidence for the polarization structure of Hermite-Gaussian laser beams is presented.
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I. INTRODUCTION

Laser beams are wavelike electromagnetic disturbances
that have a predominant direction of propagation and a
finite cross section transverse to the direction of propaga-
tion. These beams are commonly modeled by Hermite-
Gaussian beams [I—3]. This is usually done within the
framework of the scalar and paraxial approximations.
For most applications which do not involve the polar-
ization properties of laser beams, this framework is quite
adequate. However, a scalar representation fails to de-
scribe the polarization properties of laser beams cor-
rectly. Indeed, a scalar description of finite cross-section
laser beams is inconsistent with Maxwell's equations even
for linearly polarized laser beams. The transverse char-
acter of the electromagnetic field, expressed by two of
Maxwell's equations T E(r, t) = 0 and '7 B(r, t) = 0,
implies that the spatial variation of the field in directions
transverse to the direction of propagation is coupled to
the polarization properties of the field. Thus it is well

known that spatial variation of the field in transverse
directions gives rise to a longitudinal field component [4—
is].

The coupling of transverse spatial variation of nonpla-
nar wave fronts to polarization was investigated in an
interesting paper by Fainman and Shamir [6]. They an-

alyzed the cross polarization in a spherical wave front
from a point source. They also recorded experimentally
the cross polarization of a linearly polarized fundamental
Gaussian beam passing through a pin hole. Several other
workers have also discussed the polarization properties
of the fundamental Gaussian laser beam [7,8]. They
show that the fundamental Gaussian beam will always
exhibit cross polarization even without passing through
a pin hole. The general problem of beamlike solutions
of Maxwell's equations has also been treated by several
workers [9,10] in terms of electromagnetic potentials.

In this paper we present a simpler and more direct ap-
proach based on the solutions of the paraxial wave equa-

tion. Using this approach we establish the general field

(polarization) structure of paraxial beamlike solutions of
Maxwell's equations. These expressions are then used

to describe explicitly the polarization and propagation
characteristics of the fundamental as well as higher order
Hermite-Gaussian laser beams. Finally, we present an
experimental confirmation of the polarization structure
of Hermite-Gaussian laser beams.

We begin by summarizing the properties of the solu-

tions of the paraxial scalar wave equation in Sec. II.
We then construct paraxial beam solutions of Maxwell's

equations from the solutions of the paraxial scalar wave

equation in Sec. III. Polarization properties of Hermite-
Gaussian laser beams are then discussed in Sec. IV.
Finally, in Sec. V, we present an experimental confir-

mation of the polarization properties Hermite-Gaussain
laser beams.

II. THE SCALAR WAVE EQUATION

The scalar wave function g(r, t) in free space satisfies

the source free wave equation

1 027' —— Q(r, t) =0,
C2 gg2

where V' is the three dimensional Laplacian operator
and c is the wave speed. For electromagnetic waves c
is the speed of light. For quasimonochromatic waves of
angular frequency ~, propagating predominantly in the
z direction, the wave amplitude has the form

(2)

where Q(r) describes the variation of the wave amplitude
in transverse directions (x-y plane). Propagation con-

stant k is related to the wavelength A and the angular

frequency ~ of the wave by

*Present address: U.S. Air Force Academy, Colorado
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For paraxial beams, the energy is concentrated near the
axis of the beam and the transverse profile of the beam,
as described by Q(r), varies little with z over propagation
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1 BQ(r) A Bg(r)
k Bz 2m Bz

1 B (Bg(r) ) A B (Bag(r) ) B@(r)
k Bz ( Bz ) 2z. Bz ( Bz ) Bz

(4)

(5)

Substituting Eq. (2) into Eq. (1) and using Eqs. (3)-
(5) we find that g(r) satisfies the paraxial wave equation

B'y(q B'y(q .„W (6)

distances of the order of a few wavelengths. For smooth
transverse profile Q(r), the slow variation of beam profile
during propagation ixnplies that the following inequalities
hold

Scalar wave equation (6) admits other paraxial beam
solutions with other symmetries also. For example, in
the presence of cylindrical symmetry about the z axis,
Eq. (6) admits Laguerre-Gaussian beaxn solutions [1—3].
There are also the so called Bessel beam or the non-
diffracting beam solutions [3]. In practice, symmetries
other than the rectangular symxnetry are difBcult to re-
alize. The presence of Brewster surfaces and other non-
symmetric optical elexnents in laser resonators naturally
leads to rectangular symmetry. For this reason we con-
sider only the Hermite-Gaussian solutions explicitly in
this paper. From the general results derived in the paper,
solutions refiecting other symmetries can be constructed.

This equation relates the variation of the beam pro-
file Q(r) in the transverse and longitudinal directions.
Solutions of this equation in free space are labeled by
two indices. The well-knowa. solutions with rectangular
symmetry (separable in Cartesian coordinates) are the
Hermite-Gaussian solutions given by [1—3]

„(r) = H (~2z/w(z))H„(~2y/xp(z))
2

—i(m+n+1) 8(z)+iA:p /2q(s) (7)

8(z) = tan '(z/zp),
1 1 . 2

q(z) R(z) kxp2(z)
' (9)

Here H (x) is a Hermite polynomial of degree m and
argument x and p = gz2 + y2 is the radial distance &oxn
the beam axis. The phase angle 8(z) and the complex
beam parameter q(z) are given by

III. PARAXIAL BEAM SOLUTIONS
OF MAXWELL'S EQUATIONS

%e now proceed to determine the form of paraxial so-
lutions of Maxwell's equations. For quasimonochromatic
waves propagating in the z direction we write the electric
and the magnetic fields of the wave as

E(x t) = E(r)e' "'
—= ['xEx(~& + '~E2(r) + 'sEs(r)l"' ' ' (13)

B(i,t) = B(r)e'l"*
—:[exBx(r) + e2B2(r) + esBs(r)]e'l"' l, (14)

where E(r) and B(rg describe the transverse spatial pro-
file of the beam and eq, e2, and e3 are three unit vectors
along the x, y, and z axes, respectively. For the fields
in Eq. (13) and (14), Maxwell's equations in f'ree space
become

where xp(z) is the beam spot size in the plane that inter-
sects the beam axis at z and R(z) is the radius of curva-
ture of the phase &ont that intersects the beam axis at
point z. The dependence of xp(z) and R(z) on z is given
by

ikE, (r)+ V' E(r) =0,
ikBs(r") + V B(r) = 0,

ikes x E(r) + V' x E(r) = ikcB(r),
.k

ikes x B(rg + V x B(r) = —i —E(r ).
C

(i5)
(i6)
(i7)

xp(z) = xppgl + (z/zp)',

R(z) = z + zp/z,

(io)

(»)
where mQ is the minimum beam spot size which is at-
tained in the z = 0 plane. Parameter zQ is half the con-
focal parameter of the beam. In terms of the minimum
spot size mQ and the propagation constant k it is given
by

zo
kQJQ

2

The paraxial beam solutions given by Eq. (7) are char-
acterized by the beam spot size xp(z) and the phase &ont
radius of curvature R(z). They maintain their form dur-
ing propagation. Spot size xp(z) sets the length scale over
which beam profile changes significantly in the transverse
directions for a fixed value of z and zp sets the length scale
over which beaxn profile changes significantly as the wave
propagates.

i (BEx
k ( Bx By )
i (BBx BB2)
k q Bx By )

(i9)

Next, substituting Eqs. (19) and (20) into Eq. (17) and

By eliminating E(r) or B(r) &om these equations, we
see that each Cartesian component of the field vectors
satisfies the scalar wave equation. For paraxial beam so-
lutions, each field component satisfies the paraxial wave
equation (6) and has the form of Eq. (7). However, vari-
ous field components cannot be chosen arbitrarily. They
are coupled via Eqs. (15)—(18). We now establish the
general field structure of paraxial electroxnagnetic beams.

In the paraxial approximation of Eqs. (4) and (5), Eqs.
(15) and (16) allow us to express the longitudinal field
components Es(r) and Bs(r) in terms of the transverse
field components as
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1 /B E2(r)cBi(r) = —E2(r) +
2k2 ( By2

B2E2(r") )
Bz )

using the inequalities (4) and (5), we can express the
magnetic field components in terms of the electric field
components

cB2(r") = f(r) +
1 (B2f(r)

1 B2g(r)
2k2 Ox' '

B'f(r) I

(31)

1 B'Ei(r)
k2 QzQy

1 ~B2Ei(r) B2E,(r) l
2 ( y x )

(21)

1 B~E2(r)
k2 Beery

i (BE2(r)
k( Bx

BE,(rq l
By

(22)

1 B2Bi(r)
k2 BzBy

P

1 B Bi(r) B Bi(1

(24)

Similarly, using Eqs. (19) and (20) in Eq. (18), we can
express the electric field components in terms of the mag-
netic field components

B'B,(~q B'B,(q l
Bz2 By2 )

i f Bg(r) Bf(r) )
By )

It is easily checked that Eqs. (27)—(32) satisfy the parax-
ial Maxwell's equations (19)—(26) up to terms of order
(k/) 2, where E is some characteristic length associated
with the transverse variation of the beam profile.

For Hermite-Gaussian solutions given by Eq. (7), the
length 8 is of the order of the beam spot size m for vari-
ations in the transverse dimensions and for variations in
the longitudinal direction it is of the order of zp. Then,
in order of magnitude, the terms involving the first and
the second order derivatives in Eqs. (27)—(32) are of or-
der f/( kvu), g/( ku)iand f/( kw) 2g/(k t)o. If kur )) 1 (or
ui )) A), that is, if the beam is many wavelengths wide,
these terms are small and the solutions have the form
of a perturbative series in powers of the small parame-
ter (kui) = A/(2mut). Equations (27)—(32) are similar
to the results derived by other workers [9,10], but the
physical significance of f(r) and g(r) here is different. In
the next section we construct explicit examples of these
solutions for Hermite-Gaussian laser beams.

1 B2B2(r)
BzBy

(25)
IV. HERMITE GAUSSIAN

ELECTROMAC NETIC BEAMS

. c BB2(r) BBi(r))
k ( Bz By )

(26)

1 (B'f(r) B'f (r) l
4k2 ( Bz2 By2 )

1 B~g(r)+ (27)

An inspection of these equations shows that the electric
and magnetic field components can be expressed in terms
of two independent solutions f(r) and g(r) of the paraxial
wave equation. Then the electric and the magnetic field
components can be written as

Electromagnetic beams generated by most lasers have
rectangular symmetry. We therefore consider Hermite-
Gaussian electromagnetic beams to describe laser beams
and discuss their polarization and propagation character-
istics.

From Eqs. (27)—(32) we see that finite cross sec-
tion electromagnetic waves must have a longitudinal field
component. In this sense pure transverse electromagnetic
beams do not exist. However, since the longitudinal field
component is smaller by a factor 1/kui compared to the
dominant transverse field component, it is still possible
to have electromagnetic beams that have dominant trans-
verse polarization. We now examine the forms of linearly
and circularly polarized electromagnetic beams.

4k2 ( Bx~ By2

1 B2f (r)
2k2 t92;t9y

'

i f Bf(r) Bg(r) 5

k ( Bx By

B'g(r) )B, )I
cBi(r)= —g(r)+ k, I

1 (B'g(r)
4k2 ( By2

1 B2f(r)
2k2 t9xOy

'

(29)

(30)

A. Linearly polarized electromagnetic beams

E( "(r)=A „@ „(r),
( „) t'A „)B'g „(r)

( 2k~ ) BxBy

( „) (iA „IBQ „(r)
k ) Bx

(34)

(35)

Vhthout loss of generality, we take the direction of
dominant polarization to be the x direction. Then, by
choosing f(r) = @ (r) and g(r) = 0, we find that Eqs.
(27)—(29) for the electric field components take the form
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where A. is a constant related to the power carried
by the wave and @ „(r) represents a Hermite-Gaussian
beam solution of the paraxial scalar wave equation given
by Eq. (7). Magnetic field components corresponding
«Eqs. (33)—(35) are obtained by the relations cBi ——

Ez, cB2 — E—i, and cB, = (i/k)BE, /By. In writing
Eq. (33) we have dropped terms involving second order
derivatives of g „(r") since, according to Eqs. (4) and

(5), they are smaller by the factor 1/(kw)2 compared to
the leading term. Similarly, for the longitudinal and the
cross-polarization fields we have kept only the leading
terms.

Using the properties of Hermite polynomials [12] we
arrive at the following expressions for the fields:

EI "(r")=A „g „(r),

E, "
(~Q =

(k
",[4miig~ —i,~—i(r) 2m@~—i,~+i(~g4 kwp

—»0 +i, -i(")+0 +i, +i(r3]
"

[2 0--, () —4' +, (")] (38)
2kwp

E(mn) (g

Similar equations hold for the components of the mag-
netic field. These equations explicitly indicate the rel-
ative magnitudes of various field components. A more
quantitative measure of the relative strengths of field
components is obtained by comparing the powers associ-
ated with different field components. The total power Pp
associated with the beam is given by

1
Pp = —tpcRe E(r) E'(r)dxdy

2

= —eoc[A „~ 2 +"m!n! .

This equation determines the constant A „ in terms of
the total beam power Pp. The power P; associated with
diferent field components is then given by

Pp
Pg ———,2' (40)

Io (2m + 1)(2n+ 1)
(2 4(kwe)4

S', (2m+ 1)
2 (kwe)'

It follows &om these equations that the power associated
with different field components is independent of z. This
means the power associated with each field component
remains constant during propagation. Equations (40)—
(42) together with Eqs. (37) and (38) also show that an
electromagnetic beam predominantly polarized in the x
direction has a small cross-polarization component in the
y direction in addition to a small longitudinal component.
The longitudinal 6eld component is smaller by a factor
of 1/kwe and the cross-polarization field component is
smaller by a factor of 1/(kwe)2 compared to the domi-
nant polarization component. From these considerations
it is clear that, in general, for Gnite cross-section beams
(kwo finite), both the cross-polarization and longitudi-
nal Geld components must be kept for consistency with
Maxwell's equations. In the special case m = 0 = n, the

U'sing the fields given by Eqs. (36)—(38) and certain re-
cursion relations for Hermite polynomials [12], we find
that the Poynting vector for a Hermite-Gaussian beam
can be written as

S = —Cpc IA I I& (")I
ei + e2 g + es

x „y
(44)

The quantity outside the square brackets is simply the
beam intensity (W/m2). The vector inside the square
brackets denotes the direction of energy flow. If we recall
that the radius of curvature R(z) is negative for a con-

verging wave and positive for a diverging wave [1—3], it
follows from Eq. (44) that for a beain approaching the
focal region, energy flow occurs toward the z axis and for
a beam leaving the focal region energy flow occurs away
from the z axis (see Fig. 1). If the longitudinal compo-
nents of the fields are ignored, energy flow occurs only
in the z direction. Such a beam is not only inconsistent
with Maxwell's equations, but also fails to account for
the focusing properties of laser beams correctly. Rom
Eq. (44) we find the equation for the family of rays is

p = poV (z/ze) + 1, (45)

where p = $2:2+ y2 and po is the distance of the ray
Rom the beam axis at the beam waist z = 0. Figure 1

shows the direction of the Poynting vector S, the asso-

FIG. 1. Energy Bow in the focal region for a Gaussian beam
propagating to the right. Directed line segments represent ray
trajectories and curves orthogonal to them represent wave-

fronts.

expressions for the fields given in Eqs. (36)—(38) reduce
to the results derived in Refs. [5—7] for the fundamental

Gaussian beam.
The presence of longitudinal field component Es

"
(r)

is also required for a correct description of energy flow in
the beam. Energy flow in a beam is described in terms
of rays, which are geometric curves such that the tan-

gent to a ray at a given point indicates the direction of
the Poynting vector (local energy fiow). For Hermite-

Gaussian electromagnetic beams, rays should converge
as they approach the beam waist (focal region) and di-

verge as they leave the focal region. When the longitudi-

nal field component is kept, the Poynting vector has this

property. The Poynting vector averaged over an optical
cycle is

S(r) = —&pc'Re[E(r) x B'(r)].
2



5782 W. L. ERIKSON AND SURENDRA SINGH

ciated ray trajectories, and the wave &onts in the focal
region for a wave propagating to the right.

The cross-polarization component Ez
"

(r) is even
smaller than the longitudinal Beld component. If the po-
larization properties of the wave are not of interest, the
cross-polarization component may be ignored. However,
for a correct description of the polarization properties,
this component must be kept. For example, if the beam
passes through a linear polarizer whose transmission axis
is crossed with respect to the dominant direction of po-
larization, the cross-polarization component is the dom-
inant component in the transmitted beam.

It is interesting to compare the distributions of Belds
in a plane transverse to the direction of propagation. In
general, the transverse distributions of fields evolve dur-
ing propagation. It is interesting to note that this evolu-
tion does not involve a change in the energies associated
with diferent Beld components. This follows from Eqs.
(40)—(42), which show that the power associated with
each field component remains constant (independent of
z) during propagation. Expressions (37) and (38) for the
cross-polarization and the longitudinal components are
complicated in general. In the far zone z )) zp, however,
simple expressions can be derived. In this limit, the fields
for Hermite-Gaussian beams take the form

although derived from the asymptotic expressions (49)—
(51), are valid for all values of z. It follows that the in-

tensity distributions for the fundamental beam are form
invariant as the beam propagates. These distributions
for the fundamental beam agree with the results of Refs.
[7,8] and are shown in Fig. 2. For higher order beams,
the intensity distribution associated with the dominant
polarization component remains form invariant. How-

ever, in general, the intensity distributions associated

&' "'()
@(rnn)

( g

@(rnn) (g

=A „g „(r),
1 (2zy l

2i ( z
~X „y „(rq,

kuip (u)(z) )

(46)

(47)

(48)

where g „(r) is given by Eq. (7). These expressions
for the field components, with the help of Eq. (39), lead
to the following transverse intensity distributions for the
Belds:

I( ) Pp
2~+nmtn'vripz (z)

xe'(X)H„'(Y).-( '+ '),

12(-")(~q = ' x'Y'lI ")
(~q,

(kipp)4

I(rnn)( g
2 ~zf(rnn)

( g
(kipp)z

(49)

(50)

(51)

Here we have used the abbreviated notation, X
v 2 x/tu(z) and Y = ~2 y/ip(z). Figures 2—4 show
these distributions for some lower order electromagnetic
beams. For the fundamental Gaussian beam (m = 0 = n)
polarized along the x axis, these equations lead to

1(00)
( g

—(X'+Y'}
vripz (z)

I( )(r")= X Y e ( +
(kwp) 4 vru)z (z)

I(00)(q 0 gz (x +Y )

(kwp)z zurz(z)

(52)

(54)

These intensity distributions for the fundamental beam,

FIG. 2. Transverse intensity profiles for a Gaussian TEMoo
wave polarized in the x direction and propa0, ataing in the z

direction. The pro61es are (top to bottom) for the dominant
polarization (x component), the cross-polarization component

(y component), and the longitudinal component (z compo-

nent). Ã = ~2 x/ur(z) and Y = v 2y /rp(z) are the scaled

coordinates, where ur(z) is the spot size at location z. Vertical
axes in the three profiles are not to scale.
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FIG. 3. Evolution of the in-
tensity profiles associated with
the cross-polarization (top pro-
files) and the longitudinal field

(bottom profiles) components
for a TEMPO beam. These
profiles are shown for (left to
right) for z = 0, z = zo, and
z = 5zp. X = ~2 z/w(z) and
Y = v 2 y/w(z) are the scaled
coordinates. Vertical axes in
the two rows are not to scale.

I( o)(q X2 —(X +Y )
7l 6) Z

(yp) 1 2Pp

(k p)' w'( )

xY (1 —X ) cos 8+X sin 8
—(X'+Y')

7

(ip) 2 2Pp

(kwp)' z wz(z)
xY' (1 —X ) cos 8+X sin 8

—(X+Y )

(56)

For a TEMpi (m = 0, n = 1) beam polarized in the z
direction we obtain

W

1(Pi)(q P Y2 —(x'+Y )
7rul2 Z

(5s)

with the cross-polarization and the longitudinal compo-
nents evolve during propagation. For some low order
modes, the intensity distributions valid for all values of z
are given below. For a TEMip (m = 1 and n = 0 ) beam
polarized along the z axis we have

I2
(pg) 1 2Pp

(kwp)4 ~wz(z)

xX (1 —Y ) cos 8+Y sin 8
—(X+Y )

)

I( ')(q — X Y -(x*+&')
(kwp)2 z w2(z)

(60)

I(1i)
( g g2y2 -(X +Y )

7l QJ Z

4Pp

(kwp)4 zw'(z)
x (1 —X ) cos 8+X sin 8

x (1 —Y) cos 8+Y sing e

(62)

(11) 2 4Pp

(kwp) 2 z w2 (z)
xY (1 —X) cos 8+X sin 8

(X'+Y')

Finally, for a TEMii (m = 1 = n) beam we find

i 1

Pl a,

-4

~4
e~&

0
-2 Y

0 -2
X

4-4

-4 0-2 Y

0 -2
X

4-4

-4

.all
tf

I

2

0
-2 Y

0 -2
X

4-4

FIG. 4. Evolution of the in-
tensity profiles associated with
the cross-polarization (top pro-
files) and the longitudinal field
(bottom profiles) components
for a TEM~q beam. The pro-
files are shown (left to right)
for z = 0, z = zo, and
z = Szo. X = v 2 x/w(z) and
Y = ~2 y/w(z) are the scaled
coordinates. Vertical axes in
the two rows are not to scale.
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Phase angle 8 = tan (z/zo) was introduced in Eq. (8).
In the far zone z )) zo, the phase angle 8 m ir/2 and we

recover the distributions given by Eqs. (49)—(51). For
both TEMqo and TEMoq beams, the dominant polariza-
tion component has two lobes and its form stays constant
as the beam propagates. The longitudinal component for
TEMoq has four lobes and its form also remains constant
as the beam propagates. Intensity distributions for the
cross-polarization and the longitudinal components for
TEMyp and TEM~~ modes evolve as the beams propa-
gate. These are shown in Figs. 3 and 4. In the far zone
z )& zo, the forms of I2 and I3 stabilize. In this zone the
cross-polarization component has a four-lobe structure.
This is a general property of the cross-polarization com-
ponent in the far zone, independent of the beam indices.
This can be seen from Eq. (50), which shows that Iz
must vanish along the lines z = 0 and y = 0. The exact
location and the detailed structure of these lobes may
depend on the mode indices. Note that the intensity dis-

tribution I2
"

(r) for the cross-polarization component
is what will be seen at the output of a crossed linear po-
larizer. Unlike the cross-polarization component, the in-
tensity distribution for the longitudinal component does
depend on the beam indices even in the far zone.

negative helicity. The intensity of this orthogonal cir-
cularly polarized component is again smaller by a fac-
tor 1/(kazoo) compared to the intensity of the dominant
circular polarization component. For a circularly po-
larized TEMoo beam, the cross-polarization component
once again has four lobes as was the case for a linearly
polarized beam. This small component is what will be
seen at the output of a crossed circular polarizer.

The fundamental Gaussian beam given by Eqs. (52)—
(54) is common to both Hermite-Gaussian and Laguerre-
Gaussian sets of modes. The form of the transverse in-

tensity distribution for the fundamental beam remains
unchanged during propagation. For all higher order
modes, belonging to either the Hermite-Gaussian or
the Laguerre-Gaussian family, the intensity distributions
change in general as the beams propagate. For com-
pleteness we also give the polarization structure of Bessel
beams [3]. These beams are said to be nondiffracting in
the sense that their transverse Geld distribution does not
depend on z. We consider only the fundamental Bessel
beam. The electric 6eld components of such a beam will

be given by

B. Circularly polarized wave

We now look at the form of a circularly polarized beam.
For a circularly polarized beam of positive helicity we
take f(r) = Q „(r) and g(r) = iQ „(r). Then various
fields components are

&i "'(r) = "&-(r)
2

E2 "(r) =i "g „(r),
2

Esl "l(r) =i "[2m/ i„(r) —g +, „(r)
2ktUp

+2ing „ i(r) —iQ „+i(r)],

(64)

(66)

where A „is related to the total beam power Po by Eq.
(39). In the far zone z )) zo these equations lead to
the following intensity distributions [I~(r) = 2Ii(r) =
2I2(r)]:

I~(r) = H'(X)H'(Y)e l
2~+"m!n!iris2(z)

(67)

Is(r) = (X + Y )I~(r).
I wo 2 (68)

For a circularly polarized fundamental Gaussian beam
with m = 0 = n, the intensity distributions are shown in

Fig. 5. Note that I& has the form of a Gaussian. The(oo)

longitudinal component has a circular symmetry about
the direction of propagation. In writing down Eqs. (66)—
(68) we have dropped some small terms that would pre-
dict that a circularly polarized wave of positive helicity
has a small admixture of a circularly polarized wave of

I IG. 5. Intensity profiles for a circularly polarized TEMOO

wave propagating in the z direction. The pro61es are (top
to bottom) for the transverse and the longitudinal {z compo-
nent) field components X= ~2 x /is(. z) and Y = ~2 y/i0{z)
are the scaled coordinates. Vertical axes in the two profiles
are not to scale.



POLARIZATION PROPERTIES OF MAXWELL-GAUSSIAN. . .

Ei(p) = AJp(o. p),
Ao, 2xy

2k2p2

Es(~) = Ji(~~)
kp

(69)

(70)

(71)

where a is determined by the wave frequency u and prop-
agation constant k via the relation

a' = (ur/c)2 —k'. (72)

Here J„(x)is the Bessel function of order n and argument
x. Since the transverse structure of this beam, given
by Eqs. (69)—(71), does not depend on z, it propagates
without difFraction. Using Eqs. (69)—(71) in Eq. (43),
it can be seen that the Poynting vector for such beams
always points in the z direction.

V. EXPERIMENT

Some of the predictions regarding the polarization
structure of electromagnetic beams are readily tested
with laser beams. Most lasers produce linearly polarized
TEMOO beams. This is usually due to the presence of po-
larizing elements such as a Brewster window in the laser
cavity. In our experiment, an Ar-ion laser operating at
4SS.nm was used. The laser had a gain tube with Brew-
ster windows at both ends and operated in the TEMpp
mode. Light coming out from the Ar-ion laser was passed
through a linear polarizer. When the transmission axis
of the polarizer coincided with the polarization direction
of the incident beam an intense round spot could be seen
on a screen. The intensity profile of the laser beam was
photographed using a solid state charge coupled device

(CCD) camera. A picture of the linearly polarized laser
beam was taken with the laser operating at less than 10
mW and the beam attenuated through a neutral density
filter (optical density 2). Figure 6 shows the recorded
beam profile. It has the general structure corresponding
to the distribution (52). When the polarizer is crossed
with respect to the direction of polarization of the in-
cident beam four lobes could be seen by the naked eye
on a screen placed in a plane transverse to the direc-
tion of propagation if the intensity was sufficiently high.
Note that according to Eq. (41), the cross-polarization
intensity is down by a factor of 1/(ktpp) ~ (A/tpp) com-
pared to the dominant polarization component. The ra-
tio of the cross-polarization component power to the total
beam power, for our laser beam, was 10 correspond-
ing to the beam waist spot size tpp —25@ and wavelength
A = 488 nm. To observe the cross-polarization compo-
nent, the laser was operated at 110 mW and the beam
was transmitted through a pair of crossed polarizers. The
transmission axis of the first polarizer coincided with the
polarization direction of the incident light. The intensity
of the beam transmitted through the crossed polarizers
was recorded, once again, using a CCD camera. Because
the polarizers are crossed with respect to the polarization
of the incident beam, only the cross-polarization compo-
nent is transmitted. The bottom row in Fig. 6 shows the
cross-polarization intensity distribution. The four-lobe
structure predicted by Eq. (53) is clearly seen. It was
not possible to get absolute intensity measurements since
the polarizers were found to have intensity dependent
absorption. This same eKect was also observable with
unaided eye using an Ar-ion pumped rhodamine-6G dye
laser with only about 20—30 mW of yellow orange power
due to the increased sensitivity of the eye at these wave-

lengths. Thus the experiments provide clear evidence
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FIG. 6. Experimentally measured beam
pro6les for a linearly polarized Gaussian
TEMpp wave. The top row shows the trans-
verse intensity profile (perspective and con-
tour plots) for the dominant polarization
component. The bottom row shows the mea-
sured intensity profile (perspective and con-
tour plots) for the cross-polarization compo-
nent after the beam has passed through a pair
of crossed polarizers.
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for the polarization structure of Hermite-Gaussian laser
beams.

In conclusion, we have discussed the polarization and
focusing properties of paraxial laser beams. In partic-
ular, we have shown that a laser beam of finite trans-
verse cross section with dominant polarization in the
x direction has a small longitudinal component and
a small cross polarization component in the y direc-
tion. The amplitudes of the longitudinal and the cross-
polarization field components are smaller by factors A/mo
and (A/tiip)2, respectively, compared to the amplitude
of the dominant polarization component. Because laser
beams have finite transverse extent (A/ufo finite) both
the cross-polarization and the longitudinal field compo-
nents must be kept for consistency with Maxwell's equa-
tions. The longitudinal component is required for a cor-
rect description of the focusing properties of laser beams
and the cross-polarization component is required for a

correct description of the polarization properties of laser
beams. Explicit expressions for the Geld components of
a Hermite-Gaussian laser beam are given. From these
considerations it is clear that a pure transverse linearly
polarized electromagnetic beam is the geometrical optics
limit (kuio —i oo) of Eqs. (36)—(38). In general, for a
correct description of focusing and polarization proper-
ties of laser beams both the longitudinal and the cross-
polarization field components must be kept.
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