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Integrated Stokes parameters are used to describe solitonlike pulse propagation and its state of polar-
ization in birefringent optical fibers. A qualitative analysis on the Poincaré sphere is developed to de-
scribe the evolution of the state of polarization of the soliton as a whole. Simple analytic equations
describing the pulse evolution are derived in the approximation of the average profile. It is shown that
two qualitatively different regimes of propagation are possible, depending on the material parameters
and on the initial conditions. The approach takes into account the radiation processes. The results of
the analytical approach are compared with exact numerical calculations.

PACS number(s): 42.81.Dp, 42.81.Gs

I. INTRODUCTION

The propagation of solitonlike pulses in birefringent
optical fibers has been the subject of intensive investiga-
tions during recent years [1-10]. Birefringence in opti-
cal fibers can be induced deliberately or can be residual
due to imperfections in the drawing process. In both
cases the birefringence must be taken into account when
considering pulse propagation along the fiber. It was
shown by Evangelides et al. [3] that the same state of po-
larization applies to the soliton as a whole. The averag-
ing of the residual birefringence, due to random variation
in the principal axes, has also been considered in [3] using
the Stokes-parameter formalism. In this paper we are in-
terested in the details of pulse propagation in regular
polarization-maintaining fibers to clear up basic processes
of propagation.

The Stokes-parameter formalism was first shown to be
an appropriate method to study the nonlinear two-core
fiber by Daino, Gregory, and Wabnitz [11]. They con-
sidered the coupler response to continuous waves (cw)
when the dynamical system has a finite number of de-
grees of freedom. Then the classical theory of dynamical
systems can be applied to the problem to make qualita-
tive analysis of solutions on a two-dimensional surface
(Poincaré sphere). The use of the Stokes parameters to
study’ the propagation of solitons in fibers has been con-
sidered by Evangelides et al. [3]. In the case of pulse
propagation, the dynamical system has an infinite num-
ber of degrees of freedom, and full analysis has to be done
in an infinite-dimensional phase space. However, in the
case of solitonlike pulses, the approximation of the aver-
age profile can be applied to the problem. We show that,
in this special approximation, an equation for the
differential soliton Stokes parameters can be reduced to
equations for integrated Stokes parameters, and the
whole problem can be reduced to a dynamical system
with a finite number of degrees of freedom. This allows
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us to consider solutions of the system as trajectories on
the Poincaré sphere.

The approximation of the average profile is a conse-
quence of the Hamiltonian structure of the initial equa-
tions. In fact, the effect of the fiber birefringence can be
considered as a Hamiltonian perturbation to a single non-
linear Schrodinger equation (NLSE). This means that, in
the first place, solitons are robust relative to this pertur-
bation, and that the changes birefringence causes to the
pulse do not destroy the soliton itself [12]. Therefore, we
can consider solitonlike pulses as perturbed solitons of a
single NLSE, as they only change slowly upon propaga-
tion. The modifications that the pulses suffer on propaga-
tion are due to energy transfer taking place between each
linearly polarized mode. The pulse profile itself is rough-
ly defined by the NLSE. The changes of the polarization
state of the soliton are the most important effects in this
problem. The polarization state of the pulse as a whole
can be described by integrated values which change slow-
ly in the course of soliton propagation along the fiber.

Pulse propagation in optical fibers is mainly governed
by two parameters: the linear beat length between modes
and the nonlinear beat length. Another independent pa-
rameter is the input pulse width. Up to now the exact ex-
pression for the nonlinear beat length was unclear al-
though it had been shown by Blow, Doran, and Wood [2]
that it plays an essential role in the dynamics of soliton
propagation in birefringent fibers. In this work we derive
an analytic expression for this important physical param-
eter in terms of the ratio between cross- and self-phase
modulation and the soliton period. The pulse can propa-
gate in different regimes which depend on the relative
values of these three parameters. The combined parame-
ter which we call the “evolution parameter” is related to
the Hamiltonian and governs the regime of propagation.
The aim of this paper is to investigate these regimes qual-
itatively using the integrated Stokes parameters which
characterize the state of polarization of the pulse as a
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whole. The results of this analysis are presented as closed
trajectories on the Poincaré sphere.

Another important effect which we take into account
in our analysis is the radiation of small amplitude waves
by solitons during the propagation along the fiber. Radi-
ation emission is a general property of nonintegrable sys-
tems, and it accompanies the solitonlike pulse propaga-
tion. One of its origins resides in the higher order disper-
sion of the fiber [13]. The radiation originated in this
way (which can be described by the theory “beyond all
orders” [14]) is usually negligible and can be ignored.
Another reason for radiation is the oscillatory behavior
of the solitonlike pulse itself. The intensity of this radia-
tion is much higher, and it depends on the amplitude of
the oscillations. Therefore, although the dynamical sys-
tem which we describe is Hamiltonian, there could be
losses of energy from the leading pulse. This effect
influences the propagation dynamics of the pulse in gen-
eral and its state of polarization in particular. The
influence of the radiation is also described qualitatively in
our theory.

If the initial conditions are not solitons but pulses of a
general form, they are either dispersed on propagation (if
the pulse amplitude is smaller than half of that corre-
sponding to the fundamental soliton [15]) or broken up,
leaving most of the energy in a few highly compressed
single solitons if the initial signal is a multisoliton pulse
[2]. Dispersed radiation does not carry information and
can be ignored. In the case of a multisoliton pulse, our
analysis is applicable to each solitonlike pulse produced
after the breakup of a multisoliton pulse. For simplicity
we assume that the pulses are well separated.

II. STATEMENT OF THE PROBLEM

Pulse propagation in a birefringent optical fiber can be
described in terms of two coupled nonlinear Schrédinger
equations. In a reference frame traveling along the z axis
with the common group velocity, this set of equations is
of the form [3]

iUg+BU+ LU, +(|UP+ A|VHU+(1—4)VU*=0,
iVe—BV 4LV, +(4|UP+ VIV +(1— 4)UV*=0,
1)

where U and V are the slowly varying envelopes of the
two linearly polarized components of the field along the x
and y axes, B is half the difference between the propaga-
tion constants, A4 is the normalized ratio of the nonlinear
susceptibilities, £ is the normalized longitudinal coordi-
nate, 7 is the normalized retarded time, and the asterisk
denotes complex conjugate. We ignore in (1) the
difference between the group velocities of each com-
ponent. This can be done for optical pulse durations in
the picosecond range and for relatively small linear
birefringences [6]. The set of equations (1) has been stud-
ied extensively in plasma theory. Some exact results are
presented in [16,17]. The particular case for 4 =1, =0
is integrable (using the inverse scattering method [18]).

The set of equations (1) has at least two integrals, the
action (total energy of the pulse)

5743
o=[" (uP+|vidr, )
and the Hamiltonian
H=[" (=BUUP=V)+4(U,P+V, )
—HUP+ v —4lUPv?
—L1—ANUW*+U*V)}dT . 3)

Equations (6) can now be written in a canonical form
[19,20],

_8H . _ 8H
sU*’ ¢ svr

Equations (3) and (4) define a Hamiltonian dynamical sys-
tem on an infinite-dimensional phase space of two com-
plex functions U, ¥V which decrease to zero at infinity and
can be analyzed based on the theory of Hamiltonian sys-
tems. This means that the behavior of the solutions is
defined to a large extent by a singular points of the sys-
tem [stationary solutions of Egs. (6) below] and depends
on the type of these points (as determined by the stability
of its stationary solutions).

We are interested in pulselike solutions of (1) which are
close to the soliton solutions of a single NLSE. By
representing the field components in the form

U=u(&,1,q9)e%, V=v(1,q)e, (5)
Egs. (1) become
iug—(qg—PBu +iu, +(ul>+ Alv

iU )

+(1—Awu*=0,
ve—(g+Bw+1tv, +(Alul*+[v*p

¥l
+(1—A)u2*=0, (6

where q is the soliton parameter, 27 /q is proportional to
the soliton period, and 2@ is proportional to the ener-
gy of a soliton.

Equations (6) have two simple stationary solutions,
viz., linearly polarized soliton waves along the slow axis,

—_ V2q—5B)
cosh[V2(g—B)r]’
and linearly polarized soliton waves along the fast axis,
w=0. b= V2(q+B)
’ cosh[V2(g+B)r] ~
In the absence of linear birefringence (8=0) or nonlinear

birefringence (4 =1), the pulses (7) and (8) degenerate
into a soliton of a single NLSE,

v=0, )]

(8)

Valter=—Y2 9
e cosh(V'2g 1) ©)

This solution can be linearly polarized along any direc-
tion in the (u,v) plane.

The solutions (7) and (8) can be conveniently represent-
ed on the energy-dispersion diagram [see Fig. 1(a)]. The
energy Q on this diagram is given by Eq. (2). The energy
of the NLSE soliton (9), Q versus g, is shown by the
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FIG. 1. (a) Energy dispersion diagram for linearly polarized
solitons. (b) Growth rates for the fast linearly polarized soli-
tons.

=)}

dashed line. Intuitively, we can say that any input pulse,
whose propagation is governed by the perturbed NLSE,
evolves in such a way that its energy stays in the interval
defined by the stripe between the top and lowest lines in
Fig. 1(a), provided that the initial conditions are soliton-
like pulses. This stripe is the area of allowed motion for
these pulses in this dynamical system. Any given soliton-
like pulse can be shown on this diagram by its representa-
tive point which specifies the energy and the ¢ parameter
of the solution. Note that the solution does not necessari-
ly have to be a stationary one.

The linearly polarized solitons along the fast axis
(upper branch in this diagram) are known to be unstable
in a certain range of parameters [2]. We have numerical-
ly calculated the perturbation growth rates at 4 =2 us-
ing the technique described in [22]. The results are
represented in Fig. 1(b). The perturbation with the larg-
est growth rate has a real eigenvalue for ¢ /8> 1.53 and
has a complex eigenvalue for —0.2 <q /B < 1.475 [In Fig.
1(b) we represent only its real part]. For the values of
q /B outside these two intervals, the fast waves are stable,
or at least their perturbation growth rates are too small
to be found by our numerical technique. There are other
stationary soliton states above the upper curve [21] but
they are beyond the scope of this particular paper.

The linearly polarized solitons along the slow axis
(lower branch in this diagram) are known to be stable [2]
at least in the interval 0< 4 < 1. This is also intuitively
expected because there are no other stationary soliton
states below this curve at (0 < 4 <1) to which they could
converge during propagation.

A convenient way to solve the above equations is to use
the Stokes parameters [3], which are defined by

so=lul*+v]?,
si=lul?=vl?,

s;=u*v+tuv*,

s3=—i(u*v—uv*).
All these four parameters are real functions of £ and 7.
They vary along the fiber as well as across the pulses.
Hence we call them differential Stokes parameters. Using
them and taking into account the fact that all the fields

must decay to zero at infinity, Egs. (6) can be written in
the form

dié' f‘:sodﬂr=0 )

4
dg
d © _ © ©

Ef_wssz—ZBf_ws3dT+2(l~A [ 7 sisidr,

[ sidr=—20—4)[" s,5,d7,
" ” §8))

j%fjws3d7=-2/3f:os2d7 ,

where the dependence on 7 has been eliminated due to
the integration, and all the magnitudes are real ones.

Equations (11) are integrodifferential equations which
can be even more difficult to solve than the original set.
However, if we are interested in integrated values
S;= f ? 5:d7, then these equations can be simplified.
Moreover, if we are interested in soliton propagation,
then the integrated values provide most of the informa-
tion we need in the problem. The first equation, for ex-
ample, is nothing other than the conservation of the total
energy of the solitary pulse. The third and the fourth
equations in (11) show that the integrated values
f * S2dT and f ® S3dT are rotating around the axis s,
with frequency 23. However, the integrals of the prod-
ucts s,5; on the right-hand side of these equations make
the problem quite complicated to solve. To make a first
step towards solving this generally complicated problem,
we shall use an approximation which is suggested by the
exact numerical solution of Egs. (6) for several solitonlike
pulse initial conditions.

III. APPROXIMATION OF THE AVERAGE PROFILES

We are interested in the problem of solitonlike pulse
propagation. That is, we shall assume that the shape of
each component of the pulses hardly changes upon prop-
agation, and that the phase chirp across each pulse is
negligible. However, the amplitudes can change with the
distance £ because of the energy transfer taking place be-
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tween the two components of the field. Obviously, the
actual shape oscillates around the considered average
profile. However, these oscillations should be small: in
nonintegrable dynamical systems any field oscillation
generates small amplitude waves around the soliton
which are radiated away. Their intensity is proportional
to the amplitude of these oscillations. The energy of the
soliton would decrease in this case with the distance &.

As we shall see in what follows, this assumption is a
good approximation when the linear birefringence B is
smaller than the soliton parameter g. More precisely, the
linear beat length L; =~ /B should be larger than the non-
linear beat length L which we shall define later. We
shall also show that this assumption allows us to qualita-
tively describe soliton propagation even when L, is com-
parable to or less than L. Then, in a first approxima-
tion, we shall assume that the solution is separable in the
following way:

u=X(&)f(7), v=Y(&)f(1), (12)

where f(7) is a real function defining the common aver-
age (constant) profiles and X (&) and Y(£) are complex
amplitudes. The approximation can be improved greatly
by adding new terms in (12), but this is beyond the scope
of this paper. Equations (11) become

d

2£50~0
SES=288, 125,55
di§S3 =—2BS, ,

where the integrated Stokes parameters divided by the in-
tegral [ *_f2dr are given by
So=(X>+7]?),
S, =(x>=|y%,
S,=(X*Y+XY*),
S;=—i(X*Y—XY*),
and g, the nonlinear birefringent coefficient, is defined by
f ® fHdr
g=(1—A4)—7——. (15)
f f4dr
The nonlinear beat length L is proportional to this
coefficient: L ;~m/g. The value of g depends on the sol-
iton parameter g as well as on 4. To estimate roughly
the dependence on g we calculate g using the average
pulse shape (9). In this case g=%g(1— A4). The devia-
tion of this value from the average of that corresponding
to the slow and fast linearly polarized solitons is
Ag=3%B(1— A), which is small at small B. Then g is,
roughly speaking, proportional to ¢ and changes its sign

at A=1. It is remarkable that g becomes zero when
A=1.

(14)

Equations (13) can be written in a vector form:

—;—é_S=ZB[e1XS]+2gS3[e3XS] , (16)
where S=(S5,,5,,S;) is the Stokes vector in a three-
dimensional space, e; and e; are unit vectors along the
axes 1 and 3, respectively, and X indicates vector prod-
uct. Equation (16) describes a double rotation around the
axes 1 and 3, respectively.

The set (13) has an integral of motion

Si+83+85=53, (17)

which is a consequence of the energy conservation (2),
and indicates that, within the approximation we are mak-
ing, the evolution of any solution can be qualitatively an-
alyzed as a motion of the Stokes vector S on the Poincaré
sphere. The set (13) has a second integral

W=-5%S§—S1 , (18)

which is a consequence of the conservation of the Hamil-
tonian (3). In our approximation

_H gS}h pSo
W—BI+ZB(1—A) 28’
h [ I=[° f4d (19)
where p=—% , I= T.
P f_ fdr —

Different values of W correspond to different regimes of
soliton propagation (i.e., different trajectories on the
Poincaré sphere). From now on, we shall call it the evo-
lution parameter. The convenience of the evolution pa-
rameter (in contrast to the Hamiltonian) is that it is con-
stant along the energy-dispersion curves for fast and slow
solitons in Fig. 1(a). We can conclude preliminarily that
the same value of W corresponds to the same type of
solution for different soliton parameters q.

Let us choose as initial conditions one of the linearly
polarized solitons given by Egs. (7) or (8). We can consid-
er now that initially X(§=0=1, Y(£=0)=0, or vice ver-
sa, and therefore the integrated Stokes parameters in (14)
are normalized so that S,(§=0)=1. In principle, the
value of S is conserved, as the first of Eqs. (14) proves.
However, if the pulse changes its shape, and if it radiates
energy as a result of this reshaping, then S, can, and usu-
ally does, decrease during propagation. For small pertur-
bations of the NLSE these changes are slow
(dS,/d&<<S,) and can be considered adiabatic. The
second integral also depends on the energy of the pulse,
and decreases if energy radiation takes place. We will as-
sume these processes are slow and ignore them to a first
approximation.

Before proceeding with the general theory, let us first
consider two limiting cases.

A. Special cases: (a) =0,and (b) 4 =1

(@) In Eqgs. (6), B is responsible for the linear
birefringence. When S=0 there is no birefringence, the
medium is isotropic, and the pulse evolution is deter-
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mined completely by the nonlinear terms. In this case
Egs. (13) take a simple form given by

d
——S,=0,
dg™°
ESI =2gS2S3 )

d
—S
de™?

d
—8;=0.
de™?

Sy and S5 are therefore conserved and the pulse evolu-
tion appears as a pure rotation of the Stokes vector

around the e; axis onto the Poincaré sphere. The solu-
tion to Egs. (20) is

S, =S8,cosbcos[wé+d/2],
S,=—S,cosOsin[wé+d/2], 21
S;=8,siné ,

(20)
= —ZgSIS:; )

where the frequency w=2gS;=2gS,sin6, 0 is the angle
formed between S and the plane (S,,S,), which is con-
stant, and ¢ defines the initial phase of this rotation. The
direction of the rotation depends on the sign of S;. This
direction is different in each hemisphere. If f=0 then
the two linearly polarized solitons given by Egs. (7) and
(8) coincide. This means that the approximation of the
constant profile is a good one in this case. Depending on
the initial conditions, the rotation around the e; axis
takes place along one of the circles parallel to the equator
onto the Poincaré sphere. The state of polarization al-
ways remains elliptic. The field components along the
axes u and v oscillate periodically. The phase difference
between the two components oscillates around /2 (for
S3>0) or around —m/2 (for S; <0). Equation (21) can
be described as a solution with oscillating phase.

Note that the phase only oscillates in the laboratory
frame of reference connected with the axes (u,v). It is
easy to show using Egs. (21) that, in a frame rotated with
the angular frequency w/2=gS,sinf relative to these
axes, the state of polarization is fixed (elliptic) [23].
Hence, in the laboratory frame, a nonlinear rotation of
the polarization ellipse occurs. The ellipticity is defined
by the angle 6 (given by the initial conditions). The po-
larization changes from linear at 6=0 to circular at
6==m/2. The angular frequency of rotation at a given
ellipticity is defined by g, i.e., by the energy of the soliton.
The direction of rotation is clockwise for the right-
handed elliptic polarization [Fig. 2(a)] and counterclock-
wise for the left-handed polarization [Fig. 2(b)]. The el-
lipse of polarization does not rotate at =1 /2 (linear po-
larization) and/or at small g as should be the case in the
limit of small intensities.

The solutions to Egs. (6) cannot be found in analytic
form for the general case but they can in particular cases.
Equations (21) for 6=m/2 or —m/2 correspond to sta-
tionary points S=(0,0,+S;) on the Poincaré sphere,
when the circularly polarized input wave does not change
its state of polarization, with the two components u and v
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FIG. 2. Rotation of the ellipse of polarization in an isotropic
(B=0) nonlinear fiber. (a)0<0<w/2. (b) —7/2<60<0.

being 7 /2 out of phase. In terms of u and v, these solu-
tions can be written

u=—r 4

V' 4 cosh(V2g 7)
— Vi

V' 4 cosh(V2g 7)

Another set of stationary points is located on the equa-
tor of the Poincaré sphere (6=0) at $=(5,,5,,0). The
solution for this case is

ey _
uz——gg___cos_?" vz__.!_2ﬁ___.sin_¢_ s
cosh(V2gr) 2 cosh(V2g7) 2
where ¢ is an arbitrary phase. This solution corresponds
to a wave linearly polarized in a direction which forms an
angle ¢ /2 with the fast axis.

(b) The parameter A is related to the nonlinear
birefringence (or ratio between the self- and cross-phase
modulation terms). This ratio is zero when 4 =1. In
this case Egs. (13) become

d
—S
3
d
_S =
de™!
d
:j'—g‘s 2 = ZBS 3
d
dg
Therefore S and S, are conserved and the Stokes vector
S now rotates around the e, axis with frequency 23. The
solution to Egs. (25) is:

S;=S,cosb' ,
S, =S,sind'sin(286+24,) , (26)
S3 =Sosinelcos( 2B§+ 2¢0) )

, v=++iu at 6=w/2, (22)

, v=—iu at@=—7m/2. (23)

(24)

0=0,

0,
(25)

S,=—2BS, .

where 6’ is the angle formed between S and e, and ¢, is
another constant to be determined from the initial condi-
tions. The solution for » and v is given by

:V—Z—gcos@/Z) BEL i

! cosh(V'2q 7) expliBE+ido)
_Vogsin(@/2) o .

v cosh(V'2gq 1) exp(—iBE~ido) »

where 0’ defines the relative values of the two com-
ponents and 2¢, denotes the phase difference between

(27)
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them. The solution oscillates with frequency 28. The
state of polarization oscillates from linear (when
BE+¢,=Nm/2, N being an integer) to elliptical [when
BE+¢o=(N +1)m/2], and vice versa. The amplitudes of
the two components do not change in this case, but their
phase difference increases linearly. This means that the
phase of the whole solution rotates. Accordingly, this
solution can be called a solution with rotating phase.
The differential Stokes parameters are given by

so=f(7),

s, =f(7)cosb’ ,

5, =f(7)sin@ cos(2BE+2¢,) ,
53 =f(7)sin@'sin(2BE+24,) ,

where f(7)=2V2q /cosh(V'2q 7). The integrated Stokes
parameters become

(28)

S,=cosf’ ,
S, =sin0'cos(2BE+24,) ,
S;=sin@'sin(2BE+24,) .

(29)

By comparing Eqgs. (28) and (29), one realizes that the
differential (at 7=0) and the integrated Stokes parameters
are proportional to each other if the pulse exactly con-
serves its profile during propagation.

The two examples given above show qualitatively the
role of each parameter in Egs. (6) on the evolution of soli-
tonlike pulses. These two cases correspond to two
different regimes of propagation of solitonlike pulses.
The qualitative peculiarities of these two regimes are
preserved in more complicated cases which we consider
in the next section. In general, these two regimes of
propagation are defined not only by the parameters of the
problem but also by the initial conditions, i.e., by the ini-
tial state of polarization.

B. General case

If neither B nor (1— A4) is zero, then the total motion
consists of a combination of two rotations, as Egs. (13) or
(16) show. To analyze this complicated motion, we first
find its singular points on the Poincaré sphere. When
So <B/g, Egs. (13) have only two stationary points [see
Fig. 3(a)]

S, =+8; S§,=0, §;=0, (30)
Sl=_SO’ S2=0, S3=0. (31)

The point $=(+S,,0,0) is always stable. It corresponds
to the slow linearly polarized pulse of Eq. (7). The second
point $=(—S,0,0) is stable if B/g >S,. It corresponds
to the fast linearly polarized soliton given by Eq. (8).

If B/g <8, then, in addition to (30) and (31), we find
two more stationary points [see Fig. 3(b)],
2 1172
S3— B ) (32)

S1=—'£, SZ=0’ S3=j: 2
g 4
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FIG. 3. Trajectories on the Poincaré sphere for the periodic
solutions for (a) B> gS, and (b) B<gS,.

which are always stable. These two stationary solutions
correspond to elliptically polarized solitons with

V'S,—B/g V'S,—B/g
2 2

and ellipticity |X|>—|Y|>=—pB/g. The phase difference
between the two components u and v is 7/2 or —7/2.
These two points correspond to right- and left-hand ellip-
tically polarized pulses which change neither their state
of polarization nor the amplitudes of their components
during the propagation. With the appearance of these
two points, the stationary point corresponding to the fast
soliton (31) loses its stability. However, the energy Q of
these stationary solutions is higher than that correspond-
ing to the fast solitons. This indicates that they can also
be unstable. In fact, our numerical simulations verify this
unstable behavior.

When points (32) exist, there are solutions oscillating
around them. We call them solutions with oscillating
phase.

|X|2= , |Y]2= +§, (33)

Solutions with oscillating phase

These solutions correspond to closed loops inside two
separatrices in Fig. 3(b). They can be written as

L B
— 2 —_11—£E
S, Bz [2cn*(A4,&,k)—1] g’
%
Sz=:tTBgSn(A1§,k)cn(A1§,k) ’ (34)

Al
S;=t——dn(4,£k) ,
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where
1/2

2B

27,4
_ P 2 g°k” 2
Al—k2 4(1—k°)+ 2 S5

1/2
—(2—k2)l ,

and sn, cn, and dn are elliptic Jacobi functions with k be-
ing their amplitude. Plus and minus signs correspond to
loops at S; >0 and S; <0, respectively. These solutions
exist only when 3/g <S,. The value of the second in-
tegralis W=p8/g+( A3 /4Bg)(2—k?).

The three parameters k, 4, and W are related to each
other. In principle, k and W can be expressed in terms of
A, (or k and A4, in terms of W). However, we found the
above formulas to be the most convenient way to relate
these values. At k—0 these solutions tend to the station-
ary solution given by Eq. (32). Note that
A,—V g?S3—p? at k—0. Hence, the solution (34) os-
cillates in this limit with frequency 2V g’s2—p%. The
frequency decreases to zero when k increases to 1. At
k — 1 these solutions degenerate into separatrix solutions
which are written down below.

The state of polarization is elliptic with both com-
ponents oscillating along the principal axes, with the
phase difference between them oscillating around 7 /2 or
—a/2. This regime of propagation is analogous to the
regime with oscillating phase considered before. More-
over, at 8—0 these solutions have the limit considered in
the previous section. Solutions with oscillating phase can
be excited if the initial state of polarization is elliptic,
with the major axis of the ellipse directed along the prin-
cipal axis of the fiber (S,=0) and with the amplitudes
satisfying  the  inequality S,<S,—2B/g (or
X< |Y|*+5,—2B/g).

When B0, for the same values of material parameters
a second type of solution appears. It characterizes a
different regime of propagation. We shall call these solu-
tions with rotating phase.

Solutions with rotating phase

These solutions correspond to closed loops beyond two
separatrices in Fig. 3(b). In the case B/g <S, they are
given by

43 g 8
Sl_’4_B'g_[2dn (A2§,kl)—l]_; y

k143
S,= 2Bz sn( A,&,k)dn( 4,€,k,) ,
o A (35)
S3: ! zcn(Azg,kl) Py
where
2 17271172
A,=28|(1—2k?)+ %Sé—%f(l—k%) J

and modulus k, satisfies 0<k; <1. The second integral
is given by W=8/g+(A%/2Bg)(k?—1). Their corre-

2
sponding trajectories rotate around the axis e, with a fre-
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quency which goes from zero (when k;=1) to
28V (g /B)S,+1> 2B (when k,=0).

If B/g > S then the solution is defined by the same ex-
pression (35) but with

172

2 172
A4,=2B|(1—2k})* %S%—%%(l—k%)]

and the amplitude changes in the smaller interval
0<k?< %—\/1/4—g2$% /4B%. There are two values for
A, (corresponding to the plus and minus signs in front of
the second square root) for each value of k. They coin-
cide at k1=1—1/1—g2S% /48

When k; —0 the solution (35) can be approximated by
the formulas

2 2 e
Sl=So—k:f£0—\/l+gS0/B ,

(36)
_ k43

> 2Bg

kiAs

sinA3§, S3= COSA3§,

where A,=281/(g/B)S,+1. In this limit the second in-
tegral becomes W= —S,. This solution corresponds to
rotations around the stable point (30). The solution (36)
shows that the point (30) is an elliptic point and that the
slow soliton is stable. Note that the frequency of rotation
is V/(g /B)S,+1 times higher than 2B8. This means that
the difference in propagation constants between the two
components in this limit does not coincide with the
difference in the linear limit, as was the case of the solu-
tion (27). The frequency of oscillations in (35) changes
from zero at k,=1 to A; at k;=0. Therefore, there is
some value of k; when the difference in propagation con-
stants is exactly 28. The frequency of phase rotation
changes from zero (when k;=0) to 4; when k;=0.
Hence there is a unique value of k, when this frequency
is exactly equal to 2.

The state of polarization for these solutions evolves as
in the case (4 =1) of the previous section, except that
the amplitudes of the two components along the principal
axes oscillate with £&. This changes the parameters of the
ellipse of polarization during propagation. The period of
the oscillations is also different, and is defined by the
period of the Jacobi elliptic functions in (35).

The solutions with rotating phase can be excited in an
optical fiber in two simple ways. First, any linearly polar-
ized soliton (S;=0) can be used as an input (except the
one which coincides with the fast soliton). Secondly, we
can use an elliptically polarized soliton with the major
axis of the polarization ellipse directed along the princi-
pal axis of birefringence (S, =0). The amplitudes of two
components must, in this case, satisfy the inequality
S,>8,—2B/g lor |X|*>|Y|*+S,—2B/g).

Separatrix solution

The solution (34) at k—1 and the solution (35) at
k,—1 have a common limit in the form of the separatrix
solution
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82 2
Si=— | —2— 1
' 4Bg | cosh?(5¢)

s _:t_BL sinh(8£) - )
27 ’ 3T ’

2Bg cosh?(8€) g cosh(8¢)
where 8=1/4B[gS,—B]. The evolution parameter
W =S, for this solution. At §— — « the trajectory cor-
responding to this solution tends to the point
S$=(—5,0,0). The Stokes vector moves away from this
point exponentially when £ increases. Hence in the vicin-
ity of this point the solution can be approximated by

’

B
g

(37

S,=—5,,
b (38)
S, =12 exp(86), S;=+exp(se) .

Bg g

The Stokes vector moves exponentially to the same point

when §— «. Hence, close to this point, the solution can
be approximated by

82

S$,=—8y S=F——

1 0 2 Bg

S3=:{:%exp( —6€) .

exp(—&¢) ,
(39)

Two trajectories start at the point S=(—S,0,0) and two
trajectories finish at this point. Hence, it is a saddle-type
point. The separatrices are shown in Fig. 3(b) as two
closed loops starting and finishing at the point
S$=(—5,0,0).

Stability of the fast solitons

The expressions (38) and (39) show that, when
B/g <S8y, the point $=(—S,0,0) is of saddle type and
that fast solitons are unstable. Obviously, the value § is
the growth rate of this instability. Let us estimate it by
calculating the value of g. The point S=(—S,,0,0) cor-
responds to the fast linearly polarized soliton (8). If it is
used as the initial condition, then X(£)=0 and Y(£)=1.
For a quartz fiber 4 =2, and

g=3%(g+B). (40)

Hence, the point S=(—S5,,0,0) is unstable if g < or
g > 3B. In the opposite case, g > B or g < 3, it is stable.
The instability growth rate is equal to

6=4%1/Blg—3P) . (41)

This expression describes qualitatively the curve plotted
in Fig. 1(b). The slight shift in the edge of the stability re-
gion [q/B=1.53 rather than 1.25 given by Eq. (41)] is
due to the approximations we made.

In addition to this instability, we have numerically
found instability with a complex growth rate in the inter-
val —0.2<q /B <1.475. Only the real part of the growth
rate is shown in Fig. 1(b). This instability is related to the
oscillations of the pulse shape during propagation, and
radiation due to these oscillations. It cannot be described
using our simple approximation. In the small range
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1.475<q/B<1.53 the frequency of the oscillations is
very close to zero. The radiation is small in this case and
the fast soliton is stable.

The role of the radiation

All the above solutions were obtained analytically in
the approximation of constant shape. Of course, the
shape is not fixed but oscillates slightly. This implies that
a small amount of radiation is emitted in each period of
these oscillations. We have observed that the emission of
radiation is low when B/g <<S§; and high for values of
B/g larger than S,. This means that, if we start from a
point corresponding to an unstable fast mode, its subse-
quent trajectory will never come back to this point but
will tend to reduce the total energy of the pulse. More
precisely, the trajectory evolves in such a way that the to-
tal energy Q reduces its magnitude as well as that of the
second integral W. In the above theory we can take the
radiation into account by considering that the values of Q
and W adiabatically decrease with £&. Then the solutions
would behave qualitatively as described above, but in
such a way that trajectories in Fig. 3 slowly slide from
one closed loop to another one with slightly smaller value
of W.

On the energy-dispersion diagram [Fig. 1(a)], for a
fixed B we associate a given energy Q to a soliton state
with a specified propagation constant gq. At any given ¢
the energy can change from the value for the slow soli-
ton, O, =2V'2(g—pB), to the value for the fast soliton,
Qy=2V'2(q+p). On the other hand, the second integral
W is equal to —S, for the slow soliton and +S, for the
fast soliton. At any fixed g, the second integral monoton-
ically decreases from the upper curve to the lower one.
In our simple analysis we can consider the second in-
tegral as being roughly linearly proportional to the ener-
gy Q along the vertical line. Then the energy of the soli-
tonlike pulse is a function of two variables,

Q(q, W)=1[(So+W)2V2(q+B)
+(So—=W2v2q—PB)] . 42)

Any energy losses from a given solitonlike pulse can be
associated with a decrease of g and Q.

Obviously, in the presence of radiation, a representa-
tive point in Fig. 1(a) can move only downwards, decreas-
ing W. For an infinite length of propagation the result of
this tendency will be the convergence of any initial condi-
tion to a slow mode because the slow mode has the lowest
energy at given g. From our numerical simulations, we
have found that the rate of this process depends on B/g
and is negligible for B/g <<1 (or q/B— x). It becomes
considerable when 8 and g are comparable.

As a consequence, a trajectory starting at any point of
the Poincaré sphere will tend, on the average, to reduce
its W value. If this process is slow, the trajectories will
slide from one closed loop in Fig. 3 to another one with
smaller W. The decrease of W gradually changes the
type of solutions. This produces a change in the type of
evolution of the polarization state of the pulse. In partic-
ular, transitions from solutions with oscillating phase to
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solutions with rotating phase are possible.

The decrease of g at given W is only connected with
the slow reshaping of the average profile of the pulse. In
general, both ¢ and W decrease due to radiative processes
and a representative point on the energy-dispersion dia-
gram moves down as well as to the left along the parabol-
ic curves. This behavior is what we qualitatively ob-
served in our numerical simulations.

IV. NUMERICAL SIMULATIONS

We have numerically solved Egs. (6) rather than the
equations for the Stokes parameters by using a split-step
method. We divide the equation into a dispersive part
and a birefringent and nonlinear part. At each step we
solve the dispersive part using the fast Fourier transform.
The rest of the equation is solved using a fourth-order
Runge-Kutta method. The temporal grid was typically
chosen to have 8192 points to cover the interval
[ = Tmaxs Tmax)» Where 7. is much larger than the width
of the initial input. The step size in the £ direction was
typically taken to be A§=0.01. Numerical accuracy was
checked by repeating the simulations for different grid
and step sizes. To remove the small amplitude waves
emitted from the soliton we used reflectionless absorbers
at the end points of the temporal grid. In all simulations
we used the value 4 =2, The Stokes parameters are cal-
culated from the values of u and v.

The definition of the Stokes parameters given by Egs.
(14) requires knowledge of the pulse amplitudes. In the
numerical simulations it is more convenient to use the in-
tegrated Stokes parameters defined in the form

S, = [ff:Ms,.dT /so(§=0), (43)

where the integration must cover the whole pulse but
nothing else, to eliminate the influence of the radiation
around the pulse. For cases when the shape does not
change, S; in this definition is equal to S; defined by (14).
Normalization in (43) is chosen to satisfy Sy(§=0)=1 (at
least initially). If the shapes change significantly, the
definition (43) is preferable because the length of the
Stokes vector is proportional to the energy of the pulse,
and this changes more smoothly than the pulse ampli-
tudes. In cases where the pulse shape changes by a small
amount, the integrated Stokes parameters are roughly
proportional to the differential Stokes parameters at 7=0
and we can represent data using s;(7=0) rather than S;.
Obviously, the trajectories presented through any of
these three definitions exhibit the same qualitative
behavior.

First we studied the unstable behavior of the fast
linearly polarized waves given by Eq. (8). In terms of the
Stokes parameters, we start from the point
S=(—8,,0,0). This point is unstable inside the intervals
we discussed before, and any perturbation like the addi-
tion of a small value ¥ =pv to the stationary solution
makes it diverge from the initial point. Depending on
whether the small parameter p is real or imaginary, the
solutions with oscillating or rotating phase will be excit-
ed.
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Figure 4(a) shows the evolution of the Stokes parame-
ters for B=0.01, g=1, and u=10""*. The trajectory evi-
dently is very close to the separatrix. However, the per-
turbation is chosen in such a way that the solution with
rotating phase is excited. Hence, after moving along the
first separatrix with S;>0 and returning to the saddle-
type point, it follows the second separatrix with S5 <O.
The trajectory would follow the same separatrix if the
real value p=10"* were used. The deviation of the
differential Stokes parameter s,(7=0) at 7=0 from its in-
itial value is less than 2% during this evolution. This in-
dicates that the pulse shape changes very slightly, as we
have verified by direct observation of the profiles, and
that our approximation is good enough for this simula-
tion. Radiation emission is also very small, and conse-
quently the trajectory is described by our approximation
with very high accuracy. Figure 4(b) shows the evolution
of the field amplitudes at the origin for the two com-
ponents.

Perspective plots of the field amplitudes |u | and |v| for
this simulation are shown in Fig. 5. This figure shows
that the energy is concentrated mainly in the fast mode
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FIG. 4. (a) Evolution of the integrated Stokes parameters for
B/q=0.01. The initial condition is the fast linearly polarized
wave [Eq. (8)] with g=1. A periodic solution close to the
separatrix is excited. The solution still has oscillating phase. (b)
Evolution of pulse amplitudes |u | and |v]| at the center of pulses
(7=0).
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FIG. 5. Perspective plot for the field envelopes |u| and |v|
for the same parameters as in Fig. 4.

and that it is certainly unstable, so that, after some dis-
tance of propagation, the energy switches to the slow
mode. Because of the recurrency which takes place for
separatrices, the energy switches back to the fast mode
where it stays for a longer distance. Absolute values of
the fields are plotted in Fig. 5. Therefore, the plot does
not show whether the first or the second regime of propa-
gation takes place. The distance of propagation is £=500
in this case. The behavior is the same (almost periodic)
for longer distances of propagation. The periodicity be-
comes weaker for larger values of 5/q.

Figure 6(a) shows the evolution of the Stokes parame-
ters for =0.04 and ¢ =1. The evolution is qualitatively
the same as in the previous case, except that the total en-
ergy, Sg, and the parameter W slowly decrease due to the
radiation effects. The trajectory gradually shifts away
from the separatrix, becoming a periodic solution with
rotating phase. The period of the oscillations eventually
decreases. At a distance £=500 we can observe nine
periods of the cn function. Radiation is still small in this
case and the total energy of the pulse decreases only by
0.3% over the distance £=500, as we can see in Fig. 6(b),
where the total energy defined by Eq. (2) is plotted.

Figure 7(a) shows the evolution of the Stokes parame-
ters for 8=0.1 and ¢ =1 and for the initial conditions as-
sociated with the corresponding fast mode. We can see
that increasing B/q causes more radiative losses. The pa-
rameter W as well as S, decreases on average. The tra-
jectory qualitatively corresponds to the solution with ro-
tating phase. Because the initial input is unstable, energy
is shared between each component and after some transi-
tion distance the amplitudes become approximately equal
on average, but oscillate periodically and thus exchange
the energy. The total pulse energy decreases by 5% over
the distance £=300. The evolution of W is shown in Fig.
7(b).

An example of the solution with oscillating phase is
given in Fig. 8. We now consider 8=0.01 and take as in-
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FIG. 6. (a) Evolution of the integrated Stokes parameters for
B/q=0.04. The initial condition is the unstable fixed point
S=(—8,,0,0) with a small perturbation. (b) Evolution of the
total energy in this simulation.

itial conditions the following:
u=V'2(q+pB)sech[V'2(q+B)r]sin(7/16) ,

(44)
v=iV'2(q+B)sech[V'2(q +B)r]cos(m/16) ,

with g¢=1. This initial condition corresponds very
roughly to the input value of a solution with oscillating
phase. In fact, the trajectory converges to the solution
very quickly in a propagation distance £ < =1. The evo-
lution parameter W for this solution is higher than S|,
which shows that the energy is higher than for the
separatrix. Therefore radiation can, in principle, trans-
form the solution with oscillating phase through the
separatrix to the solution with rotating phase. This can
happen when the radiation is considerable.

Figure 9 shows this type of transformation. Now
B=0.1 and the initial condition is

u=V'2(q+B)sech[V'2(q+PB)r]sin(7/12) ,

45)
v=iV'2(q+PB)sech[V2(q+B)r]cos(m/12) ,

where ¢ =1. The trajectory starts almost at the station-
ary point, makes several loops corresponding to the solu-
tion with oscillating phase and then transforms into a
solution with rotating phase. This trajectory ends up
converging to the slow soliton. Its radius in the Poincaré
space decreases, which means that a large amount of ra-
diation is emitted in this process. In Fig. 9 we have plot-
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FIG. 7. (a) Evolution of the integrated Stokes parameters for
B/q=0.1. The initial condition is chosen to excite the solution
with rotating phase. The total pulse energy decreases due to ra-
diative losses. (b) Evolution of W.

ted only three parts of the total trajectory representing
the stages (a) 0<£<100, (b) 400<£<500, and (c)
900 < £ < 1000.

When ¢q /8 < 1.475, only solutions with rotating phase
can exist. To illustrate the general behavior we observed
in this region, Fig. 10(a) shows the evolution of the Stokes
parameters for =2 and initial conditions corresponding
to a fast soliton for ¢ =1. In this region, the instability is
of radiative type. The leading pulse decreases its energy

FIG. 8. Evolution of the integrated Stokes parameters for
/¢ =0.01. The initial condition is chosen to excite the solu-
tion with oscillating phase.
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FIG. 9. Evolution of the integrated Stokes parameters for
B/q=0.1. The initial condition is chosen to excite the solution
with oscillating phase.

on propagation, and therefore S, decreases and the Poin-
caré sphere shrinks in size. The trajectory rotates around
the S, axis along surfaces with constant W. The value of
W decreases adiabatically [Fig. 10(b)]. This decrease is
negligible initially when the amplitude of oscillations is
small and radiation is also small. The decrease becomes
faster in the region 60 <& <100 when the amplitude of
oscillations increases. The decrease becomes noticeably
slower later on (S, >0) when the oscillations of the am-
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FIG. 10. (a) Evolution of the integrated Stokes parameters
for B=2, g=1. The initial condition is the corresponding fast
soliton. (b) Evolution of W.
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FIG. 11. Evolution of (a) the energies in each of the two com-
ponents and (b) their field amplitudes at =0 as a function of £
for f=2,q=1.

plitudes of the fast and the slow components become
smaller. This is the reason why the trajectory lines are
denser above the equatorial line S, =0. However, the to-
tal energy decreases continuously due to the radiation
process, and the radius of the Poincaré sphere decreases.

We continued the simulations up to £=5000. Only a
part of these simulations (up to £=500) is shown in Fig.
10. Figure 11(a) shows the distribution of the energy be-
tween the two components, and Fig. 11(b) shows the evo-
lution of their field amplitudes. These figures show that
the solution converges to the slow soliton at a very slow
rate. The soliton parameter also changes on propagation.
The starting value of g /B is 0.5. This ratio becomes 0.47
when £ is around 250 and becomes 0.33 when £=15000.
In this particular example the soliton parameter g de-
creases.

The above simulations generally confirm the qualita-
tive picture we outlined in the previous section.

V. DISCUSSION

Now we shall concentrate on the main points of this in-
vestigation.

(1) The problem of nonlinear pulse propagation in opti-
cal birefringent fibers defines a Hamiltonian dynamical
system with an infinite number of degrees of freedom.
This dynamical system can be considered as the one
defined by the NLSE plus a small perturbation. There-
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fore the solitonlike solutions of this system are perturbed
solitons of the single NLSE. An approximation of an
average profile can be used to solve the problem. The
average profile is close to the soliton of the NLSE but
does not necessarily coincide with it. Moreover, the solu-
tion usually oscillates around this average profile.

(2) A solitonlike pulse of average profile can be
represented by the point (representative point) on the
energy-dispersion diagram which specifies its energy Q
versus the soliton parameter q. The stationary solutions
of this dynamical system (the slow and the fast solitons)
are represented by points on two parabolic curves on the
diagram. In general, the representative points for soli-
tonlike pulses are located between these two curves. Slow
(adiabatic) changes of the pulse in the course of propaga-
tion along the fiber can be represented by the slow motion
of the representative point on the energy-dispersion dia-
gram.

(3) The state of polarization is the physical parameter
in this problem which can be directly measured (rather
than the average profile). Its evolution can be con-
veniently represented by the Stokes parameters. The ap-
proximation of the average profile allows us to reduce the
integrodifferential equations for the differential Stokes pa-
rameters to a simple set of ordinary differential equations
for the integrated Stokes parameters of the soliton as a
whole. This approximation greatly simplifies the analysis
and allows us to represent the solutions in the form of
trajectories on the Poincaré sphere. The analytic solu-
tions of this set describe the evolution of a solitonlike in-
put pulse with great accuracy when the linear beat length
L, between the two linearly polarized components is
much larger than the nonlinear beat length.

(4) The approximation of the average profile allows us
to find simple analytic expression for the nonlinear beat
length L ;, in terms of the soliton parameter and the ma-
terial parameters. It also allows us to define an evolution
parameter W, which serves to characterize the type of
solution. The analysis shows that, depending on the
value of W, two qualitatively different regimes of evolu-
tion of the state of polarization are possible. They are
characterized by the form taken by the phase difference
between the two field components on propagation. We
call them ‘“‘solutions with oscillating phase” and “solu-
tions with rotating phase.” Initial conditions needed for
the excitation of these two regimes of propagation in op-
tical fibers have been considered.

(5) When the two beat lengths are comparable, one has
to take into account the losses of energy from the leading
pulse due to the radiation processes, as they are impor-
tant in this case. To understand the effects of the radia-
tion emission, our qualitative analysis on the Poincaré
sphere must be done bearing in mind the slow motion of
the representative point on the energy-dispersion dia-
gram. A decrease of energy in the leading pulse associat-
ed with an adiabatic decrease of the evolution parameter
W (the representative point moves vertically on the
energy-dispersion diagram) changes the regime of evolu-
tion of the state of polarization. In particular, the trans-
formation from the solution with oscillating phase to the
solution with rotating phase is possible in this case. The
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decrease of energy in the leading pulse associated with an
adiabatic diminution of the soliton parameter g (the
representative point in the dispersion diagram moves
along the curve Q vs g for the NLSE soliton) changes the
average soliton profile. The evolution parameter W de-
creases faster than the soliton parameter q. As a result
the solution converges to the slow soliton after long dis-
tances of propagation.

VI. CONCLUSIONS

In conclusion, we have shown that the evolution of the
state of polarization in birefringent optical fibers can be
qualitatively described using the equations for the in-
tegrated Stokes parameters. Different regimes of propa-
gation were found, depending on the fiber parameters and

on the initial conditions. We have linked the Stokes-
parameter formalism on the Poincaré sphere with the
analysis using the energy-dispersion diagram. It was
shown that the radiation effects can be naturally included
into this combined qualitative analysis. The results of
our analytical approach were confirmed by exact numeri-
cal simulations.
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FIG. 10. (a) Evolution of the integrated Stokes parameters
for B=2, g=1. The initial condition is the corresponding fast
soliton. (b) Evolution of W.
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