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Approximate interacting solitary wave solutions for a pair of coupled nonlinear
Schrodinger equations
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Using a modified Cole-Hopf transformation and the Hirota method for series solutions, approximate
interacting solitary wave solutions for a pair of coupled nonlinear Schrodinger equations have been in-

vestigated. Previous solutions have been regained. It is noted that if the solution of the first order term
satisfied by the Schrodinger equation for a free particle has been taken as a linear superposition of the
solutions, then the envelope of the interacting solitary waves are time dependent. If the coupling
coeScient is negative, then the amplitudes of the envelope interacting solitary waves are reduced from
those in the decoupled limit.

PACS number(s): 03.40.Kf

I. INTRODUCTION

In a plasma, the govering equations for the propaga-
tion of the nonlinear wave-wave interaction between the
high frequency Langmuir and low frequency ion-acoustic
waves may be expressed by a pair of coupled nonlinear
Schrodinger equations [1—3]

a@, a'y,+p2, =(q21&2I'+qlggl'4'2 .
t}x

mate analytical solutions for the evolution of interacting
solitary waves are necessary to summarize information
and physical insight of the numerical results. In this pa-
per, we wish to investigate approximate solitary wave
solutions for the coupled nonlinear Schrodinger equa-
tions (1). In Sec. II, we use the Hirota method to derive
approximate solitary wave solutions of Eqs. (1). Exact
solutions for special cases are given in Sec. III. In Secs.
IV and V, approximate and numerical solutions are
given, respectively. In the last section, a summary of the
paper is given.

II. HIROTA METHOD

In other cases in plasma, the nonlinear wave-wave in-
teraction such as two transverse waves in a plasma [4—6];
one transverse and a Langmuir waves [6-7], the wave
propagations may also be governed by the Eqs. (1). In
optics, the model equations for the slowly varying electric
field amplitudes in a nonlinear Kerr medium can also be
described by the same equations [8—13]. Without loss of
generality, the coefficient of cross-phase modulation q
may be taken as +1, except for the case when the fields
are decoupled in which q =0. The system (1) may have
stable solitary wave solutions [14]. Zakharov and Schul-
man [15] show the complete integrability of this system
in terms motion invariant" by using the degenerative
dispersion laws in the following restricted cases:

x'=x —vt, t'=t,

S'(x', t') =S (x, t)exp i x ——t-j p j
J

j =1,2,
(3)

where S,(x, t) and S2(x, t) are the solitary wave solutions
of Eqs. (1). So,

The Hirota method [17—19] can be extended to find the
approximate solitary wave solutions for the coupled non-
linear Schrodinger equations (1}.We can see that Eqs. (1)
are invariant under the Galelei transformation [17]

(2a)
S~(x, t)=SJ'(x', t')exp i (x —

—,'vt), j=1,2
PJ

(4)

and

9i =9&= Q~ P2= P] ~ (2b)

For these cases, the associated Backlund transformation
and the Hirota bilinearization can be constructed [16].
Recently, interacting solitary wave solutions for the case
(2a) were derived by Tratnik and Sipe [17].

In most cases of physical interest these restrictions (2)
are not even approximately valid. Therefore, approxi-

are also solitary wave solutions of Eqs. (1) moving with
velocity v than the previous solitary waves.

To solve Eqs. (1) we make change of dependent vari-
ables from @,(x, t} and @2(x,t} to the functions f, (x, t),
fz(x, t },g (x, t), and h (x, t) as follows:

f,(x, t) =g If„gz(x,t}=h If&,

and
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2 2IgI'~f(= p)q2, (lnf))

—
p2q 2 (Inf 2)

a'
2

Bx

2
IhI If&= p2q, (lnf2)

(q' —q)q» (6)

Y, = AJ exp[ai(x+ip)an't)],

Z, =BJ exp[b (x+ip2b t)],
a )0, b &0 for j=12,

(15)

2p) f' ' = —
1 g "I —qIh")I (16)

where A, , A2, B„B2,a„a2, b, , and b2 are arbitrary
constants. To second order, in c. we get

—p)q (lnf 2)
Bx

(q2 —q, q, ), (7)
and

2p f ( ) —
q Ih (1)I2

q Ig(1)I2 (17)

&(f g gf }—+p (f g, 2g.f—,+gf ..}=o,
and

(8)

where f, and f2 are assumed as real functions of x and t.
Using the transformations (5)—(7}in Eqs. (1), we get

Using (13)—(15) in (16) and (17), we get after integration

q, 2+ 22p) 4a, 4a,

(f2 ~

—"f2~)+p2(f2 x. —2h. f2. +hf2..}=o (9)
+ cos[p, (a, —a2)t]

(a, +a2)

where here on the subscripts x and t denote partial
diff'erentiation with respect to x and t, respectively. The
modified Cole-Hopf transformations in (6) and (7) re-
duced the pair of coupled nonlinear Schrodinger equa-
tions into two homogeneous equations (8) and (9). These
equations are decoupled for g and h.

We look for solutions of the Eqs. (8) and (9) in the form
[20]

and

q

2pi

Iz, I' Iz, I'

4b 4b

21z, z2I+ cos[p2(b2) b2 )t]-
(b, +b2)

(18)

gg(1)+~3g(3)+

h =Eh'"+8'h"'+

f }+e2f(2)+e4f(4)+. . . for j—
1

(10)

and

The factor e is a convenient small expansion parame-
ter. Substituting (10) into (6)—(9) we deduce relations
connecting the different f (1"), f '2"', g'"', and h'"' at each
order of c.. At first order, one can get

(&)+ (&)—0

f2 =—(2)

2p2

q

2p2

Iz, I' Iz, I'

4b2 4b2

21z, z2I+ cos[p2(b, b2 )t]-
(b, +b2)

4a
& 4a2

+ , cos[p, (a, —a', )t ]
(a) +a2)

(19)

ih"'+p h"'=0
t 2 xx

The solutions of (11)and (12) may be written as

g"'(x, t)= Y)+ Y2,

To the third order in s, we get

(3)+ (3) ~ (1)f(2)+2 (1)f(2) (1)f (2)

and

(20)

and

with

h'"(x, t)=Z, +Z2, (14)

ih(3)+p h(3)=ih( )f( )+2p h(1)f(2) —p h(1)f(2) (21)t P2 xx ~ 2t P2 x 2x P2 2xx

Using (13)—(15), (18), and (19) in (20) and (21), we may
get the solutions of (20}and (21) in the forms

and

q1
2

+
8p& a &+a2 a& a2

+q[I Y(F(p),p2, a), b), b2)+ Y2F(p),p2, a2, b, , b2)]z)Z2 +(b, b2, Z)~Z2)]

+
2

' Y)+ Y2 .IZ(I (b+)~b„z,~ Z)2
q 1

8p) b ) a)+b, ' a2+b)
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q2

8p2 b1+b2 b,
+

b2

+q[IZ, F(p„p, ,b„a„a2)+Z2F(p2,pi, b2, a„a2) j Y, Y2 +(a,~a2, Y,~Y2)]

q 1 a1 b1 a1 b2+
2 Z1 + Z2 I Yi I'+(a1 ~a2, Y1~Y2)

8p2 a 1
a1+b1 a1+b2

(23)

where we define F(p„p2,a, b, c) as

2p2(b c)+—p, (b +c —2a)
F(p, ,p, ,a, b, c)=

2p, (b+c)[p, (a+b+c) (p,—a +p, b p2c—)]
(24)

To the fourth order of e, we may get in a similar way

f(4)—
'4 2 2

q1 a1 —a2 2 q(p1q2 —
p2q Z Z.

q

8p, (b, +b2)
+ q — ' lzz l'

(b+b }

8p, b 1bz p, (b, +b2) p2b, b2

q(p iq2
—

p2q ) 2 (Z1Z +Z;Z ) lz& l

16P ip b (b, +b )

"/~i, i Y,
'

Y,Z„Z

;j,k, i = I 2P1(ai+aj +bk kl)
(25)

and

2q2(b1 —b2)', q(p2q1
—piq)

64p2b, b2(b1+b2 } 8p,p2;l =1 (a;+al )

q

8p2(a1+a»'
+ q — ' lYYl'

8p2a 1a 2 p2(a I +a2 ) P1 1 2
2 2 2 1 2

q(p2q, —p, q) 2 (Y;Y,+Y, Y,')lY, l

16P 1P2 a (a;+a )

A/~i(zl'Zj Yk Y. l

;j k 1 =1 2p2(b;+bj+ak+a

where

g(1) qq1 qq1 qq1 q

p1(a;+a~ }(bk+bl ) 2p1(bk+bl } 2p1(a;+a ) p2(a;+aj)

+qq, IF(p„p„a,,bk, b, )+F(p„p2,a, ,b, , bk) j+q'[F(p„p„bk, a, ,a, )+F(p„p„b,,a, , a.j ) j (27)

and

g(2)— qq2 qq2 qq2 q2

p2(b;+b, }(ak+al } 2p2(ak+al } 2P2(b;+bj) p1(b;+bj)

+qq2[F(p2, p„b,ak, a, )+F(p2,p„b;,ai ak) j+q [F(p„p2,a„,b, b, )+F(p, ,p2 ai b, ,b )j . (28)
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In the same way, all other order in c. can also be calculat-
ed. Solutions of Eqs. (1) then become

(29)

and

III. SPECIAL SOLUTIONS

In general, for arbitrary p„pz, q, , qz, and q the solu-
tions (29) and (30) will not be exact. However, we can get
exact solutions in special cases. First of all, we consider
the decoupled system for (1), i.e., for q =0, in which we

may And that
~h( )+~( )g( )+. . .

1 +e2f (2) +e4f (4) + (30)

Since the terms g' 1 ", h( J ", and fI J2) are homogene-
ous functions of Y„Y2, Z„and Z2 of degrees 2j —1,
2j —1, and 2j, respectively, so Eqs. (15) suggest that for
the convergence of our solutions (29) and (30), one should
truncate the series, if required, after an even order of c, .

(2n —1)

h(2n —i)

f (2n)
1

f(2n)
2

0
for n~3.

Then the solution (29) becomes exact

(31)

a, +az
gi(x, t) =Q 2p, —/q,

/a) —a2/

a1 —az
X a1sech a, x+ln

a1+az

a, —az
Xexp(ip, a)t)+a2 sech a2x+ln

a1+az

X exp( ip, a 2t )
4a1az

1+
(a, +a2}

a1 —az

a1+az
a, —az

a1+az
exp(2a2x ) .exp(2a lx ) 1+

I exp(2a, x )+exp(2a2x )+2 exp(a, x+a2x )cos[p, (a, —a 2 )t ]]
X '2 2 (32)

where we set v=1 and

A, =2a, V —2p, /q; A2=2a2+ —2p2/q, . (33)

' 1/2

(i)( )=2 2Plq2 P2q

q1qz
exp[a (x + ip l at )], (34)

and

Similar solution for $2(x, t) may be obtained.
Next, let us take f, =f2

=f and solutions of (11) and
(12) as

Using (34}—(36) in (5)—(9), we may find

(Zn —1) .

g (2n —1) 0
f'(2n) 0

for n ~2. (37)

' 1/2

0( )=2 2Plq2 P2q

q1qz
sechax exp(ipla t ), (38)

Then the solutions (29}and (30) become [20] as

1/2

h( (,t) =2, 2P'q' P'q
q1qz

exp[a (x +ip2at )], (35)

' 1/2
P2ql Plq

sechax exp(ip2a t), (39)

provided

(piq2 p2q }/(q' —qlq2)—

where we have again used c.= 1.
Finally, we take the problem considered by Tratnik

and Sipe [17]. In this case, we have

and

(p2ql —plq }/(q' —qiq2} &0

In this case, we may get from (18) and (19)

and

@1=@2= 1, q1=qz = —1,

q —+ —1.

(40)

f' '=exp(2ax) . (36) Using (40) in (5)—(7), we get their transformations (3.4)
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(i~g~-1')
1.0

0.8

and (3.5). For the solutions parameters, we should tak
the solutions (13)-(15)as

u a e

g()) y I ()) Z 1

0.6

with

A) =2~2a, exp( —a,x,o); B)=2&2b) exp b—x) exp b)x 20

(41)

O. C
3, (25), and (26)Using (40) and (41) in (18), (19), (22), (23 2
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is p otted against x for the solutions (48)
for p&=0.45, p2=0. 55, q&= —0.45 q = —— = —1 @=005

x )0 =0.9, a) =—', (a) bi=0.05

b, =O. 1O, ~y', -'~'=0. 174,
, )@2/@~2 )(; (c) b, =0.30, [@', ') =3.59X10

@2™[=7.56X10: ———)g /f'
I z/4z ''.

(b)

FIG. 2.
~

' is 10p otted against x for the solutions (48) f
a=0.05 x x&0=0, q&= —045, q = ——

] 3 ] 0.03, (a) p2 =0.6: p =0.s p&
=

~ i s pl =0.6
p&= .4;(b) b&=0.5: ———p: ———

s p2 —, , p2 —o.4.
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FIG. 3. Ig, l
is plotted against x for the solutions (48) for

E =0.05 x ip =0.9 x1p =0.0 01 = — b1 =0.05 pi =0.5,

pz =0.45, qz = —9, q = —1:,q&
= —0.45;

q1 = —0.6.

(IV'/~ 1')
1. 0

0.8

0,6--

0, 4

f', ' =f ~2
' =exp[2a, (x —x,p)]+exp[2b, (x —x2p)], 02

a) —b)
g' '=2&2a,

a, +b,

(42) 0.0,
-3

(bj

12 'f5 (x)

X exp[a, (x —x,p ) +2b, (x —x zp ) ]exp(ia, t ), (43a)

( le gals )
1.p

Xexp[2a, (x —x,p )+b1(x x pp ) ]exp(ib1t ), (43b)

pe

0.6

f(4) —f(4)— a) —b)
exp [2a, (x —x,p )

a, +b,

+2b1(x —x2p)],

0.4

Og

0.0
-3 6

(0)
12 15 (x)

(Zn —»-

I (2n —1)

f (2n}
1

f (2n)
2

0
0

for n~3.
0

(45)

FIG. 4 Ig/1(" 'I is plotted against x when the solutions of
g" ' and h "' are taken as in (50}for c,=0.05, x &o

=0.9, x &0 =0.9,
p& =0.5, p2 =0.45, q, = —0.45, q&

= —
9 t 0 g

a2=0.03, (a) b, =0.03, I/I 'I =0.227, I1(z 'I =1.33X10
(b)

'I =0.213, lg' 'I =2.45x10: ———
I@ /@'

lyI/@{&™l' «) bi =-,' I@"I'=0 133, I@', 'I'=4. 21& 10 '
Then the solutions g, and lb2 may be expressed as
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tt, (x, t) =2&2a, exp [a, (x —x,p ) +ia, t ]

X ' 1+ cxP[2b|(x x2p )] ' 1+cxP[2a ] (x x ip }]+cxP[2bi (x x2p )]
a, +b,

gg(x t) = 2&2b] Cxp[b i(x X2p }+t'b it ]

2a —b1 1

exp[2ai(x xto) 12bi(x xzo)] '

a1+b1
(46a)

~1 1X 1 — exp[2a&(x —x,p)] 1+exp[2a&(x —x,p)]+exp[2bt(x —xzo}]
al t

01

+
' exp[2al(x-x|o)+2b|(x-x20)]ai+ (46b)

where we used e= l. These exact interacting solitary wave solutions (46) correspond to the solutions of Tratnik and
Sipe [17]. The properties of these interacting solitary waves were discussed in that paper.

(1.A 0.2~, .

.6
20a10 „

0.15

-6
15a10

OjO

-6
10%1P .,

0.05
-6

5xlp .

0.0
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/
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OQ "-
~"x '

is plotted against x when the solutions of g"'
and h"' are taken as in (50) for a=0.05, x&0=0.9 bio =0.9,
pl =0-5s p2=0 45' ql = 0 45' qz =

& s q = —1, a
a2 =0.03, b& =0.03: (a) E=O; ———,E=65, (b)———,E =65;,E = 130.

FIG. 6. igzi is plotted against x when the solutions of g"'
and h'" are taken as in (50) for a=0.05, x]0=0.9 b1=0.03,
& io =0.9, pi=0. 5, p2=0.4» qi = 0.4» q2= ——,q = —1,
a, =—,a =0.03: (a) , E=0; ———,E =65, (b) ———,
E =65;- . - ., E =130.
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4g

(47)

In this section, the exIn ', e exact solutions a g' ave een extended for th

q o ( )

e series at a c
, , p2, q, , q2, and

or t e case when

'
vo ves some power

is required to et a

may be re-

1

d d

g(1)—y

h

1
and h'"=Z

e o owing form
sion parameter c. f

1

si c. or which our

an get fr

P, (x, t) =2+ —2 /—p, /q, a, exp(8+ip
~
a, t )

pzq(b, —a, )

+b
~ 1+exp(28) +

7192

then up to the fourth o dor crine wec om (29) and (30)

exp(28') 1— exp(28')

Spa b A,
'"

2 1 1 1111
exp[2( 8+8') ] (48a)

and

{1~/y I')
1.0

0, 8 0.4

06- 0. 6

0,$

0 2 0,2

0.0,
3 9 ]5 (x )

00
-3

1.0

0.8

0.4-

0.2

00
-3

{c)
12

~iG 7
04~ 1~ Q1= —

~ g

(Q /g' '~' (b) b =
]@',-'('=3.9i x &o-' ('=&.4sx io-'. ——

the solutions (29} and
b1=0.03, t =0 =o. i92, )y' )'= . sx

(c} b2 =0.30
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1(2(x,t)=2+ —2p2/q2b, exp(8'+ip2b, t)

X 1+ exp(28)
p2qi ai+b)

1+exp(28' }+ p&q
exp(28) 1 — exp(28)

Pal& P&0

2120 i

8p a2b2g(2)

2
exp[2(8+8'}]

qiq2(ai+b) )
(48b}

To get (48}we have used

A, =2a, Q —2p, /q, exp( —a )x )p ),
B,=2b) V —2p2/q2exp( b) x—ip ),
a=exp( —a, 5, ) =exp( b, 5))—,

(49)

and

8=a, (x —x)p —5, ); 8'=b, (x —x', p
—5', ) .

If the value ofpi, p2, qi, q2, and q are used as in (40) and
x ip is rePlaced by x2p, then solutions (48) reduced to (46)
for 5, =0=5). The solutions (48) show that )t)()) ~

and ~tp2(

are time-independent pulses. If the system (1) is single
decoupled, i.e., q =0, then (48) gives either

Moreover, we have taken p ) & 0, p2 & 0, and q & 0 because
the solitary wave solutions (38) and (39) for the Eqs. (1)
are stable in this case [14). The values of q, and q2 are
taken as negative to ensure that in the absence of cou-
pling we may regain the solitary wave solution (50). Solu-
tion (48) are shown in Figs. 1-3. Comparing solutions
(50) with Fig. 1 we may find that when a, =b„ the shape
of the envelope solitary waves f) and $2 remain almost
unaltered but their maxima are reduced due to coupling.
If a, »b„ then the envelope of the solitary wave f)
remains almost unaffected due to coupling with f2, on the
other hand, the envelope of the solitary wave p2 is de-
formed due to coupling with f). Figures 2 and 3 show
the e8ects of the change of dispersion and cubic non-
linear coefficients on the envelope solitary wave respec-
tively. Figures 4-6 show the solutions g) and $2 when
g'" and h'" are taken in the following forms

1()=Q —2P, /q, ai exP(iP, a)t)sech[a, (x —x,p
—5))],

(50a)
2=0;

g'"(x, t)= r, + I'„h"'(x, t) =Z, . (51)

or

)=0,
(50b)

1()2=+ 2p2/q2bi —exp(ip2b it)sech[bi(x —x'ip 52)]

as expected.
To interpret Eqs. (48), let us take

~
h "'

~
&& 1 with

~ g ' "
(

as finite. In this case Eqs. (48) reduce to (50a), which is
the single decoupled soliton solution where a, is related
to the amplitude and x,p to the position of the maximum.
If we take the limit ~g")~ &&1 with ~h")~ as finite then
Eqs. (48) give the other soliton solution (50b), where b, is
related to the amplitude and x ip to the position of the
maximum. In the case where either g'" or h"' or both
are large, we get f) =0 and $2=0. When both h'" and
g"' are finite, Eqs. (48) give the interacting solutions.
Equations (48) represent well behaved solutions that
tends to zero as magnitude of x tends to in6nite.

From Fig. 4, we may see that ~))(i ~
and ~$2~ have the same

property as in Fig. 1 if we take g"' and h'" in (47) in-
stead of (51). Figures 5 and 6 show that ~1()) ~

and ~$2~ are
time dependent and the evolution of the pulses are
periodic.

Finally, we have taken the solutions g'" and h'" as in
(13)—(15). These are plotted in Figs. 7—10. Effects of
nonlinearity on the evolution of the pulses are shown in
Fig. 8. Evolution of the pulses and the efFects of the
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V. NUMERICAL SOLUTIONS
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2xIP ..

For our numerical computation we set 0.0
-3 15 () }

A =2a Q —2pi/qiexp( —a x p},
BJ.=2bj Q —

2p2 /q2exp( bj x1'p ), —
t Ix2o= x]0 and x20= x ]o ~

Flax. 8. ~i()~ is plotted against x for the solutions (29} for
a=0.05, xl0=0.9, xylo=0 Pl =0 5 82=0.55 q2= 9 q= 1

0.03, a2 =0.03, bl =0.03, b2 =0.3, t =0:
q, = -0.45;,q, = -0
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FIG. 9. For the values of c.=0.05, x&0=0.9, x &0
=0.0, p& =0.45, p, =0.55, q, = —0.45, q2= ——,q = —1, b, =0.03, b2 =0.3,

a, =0.03, az =0.03, (a) ~1(& ~
is plotted against x for the solution (29):,t =0;,t = 30; ———,t =50, (b) as in (a):

t =80;, t =100; ———,t =130, (c) ~g2~ is plotted against x for the solution (30):,t =0;,t =30; ———,t =50,
(d) as in (c): ———,t =80;, t = 130.
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t =100;,t =130, (c) ~g2~ is plotted against x:,t =0; ~ ~, t =50, (d) as in (c): ———,t =80;, t =130.
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change of dispersion coefflcients are shown in Figs. 9 and
10, respectively.

UL SUMMARY

The pair of coupled nonlinear Schrodinger equations
(1} can be exactly solvable for the restricted cases (2)
[15,16]. Interacting solitary wave solutions were known
for (2a} [17]. In this paper we have extended the later
case for arbitrary coefficients p&, pz, q&, qz, and q to find

approxitnate interacting solitary wave solutions. Previ-
ous results have been regained from our solutions. By us-

ing (3) in (29) and (30) we can get other solutions of 1t,
and Pz that are traveling with velocity u. It has been
shown that if we take solutions of (11) and (12) as in (47),
then ~g, ~

and ~$2~ can be made time independent. If solu-
tions for g'" and h "' of Eqs. (11)and (12) have been tak-
en as in (13}-(15)or (51), then we have seen that ~tt, ~

and ~fz~ are functions of both space and time. Approxi-
mate periodic solutions of ~Pi~ and ~Pt~ may be marked
from Figs. 5, 6, 9, and 10. From Figs. 3 and 8 we can see
that if we change the coefficient q| taking q2 unchanged
then

~
f2' '~ is reduced for large values of q, . If we change

p &
and pz then its effects may be seen from Figs. 2 and 10.

We stated that if p, is fixed then ~f(z '~ has larger values
for larger values ofpz. Again, if we take pz as fixed then
~g(2 '~ has larger values for smaller values of p, . If g'"
and It"' have been taken as in (47), then for a=0.05,
x|p=0.9=x |o p| =0.45 pg=0. 55 q| = 0.45

q2
= —

—,', q =—1, a|=—,', b
&
=0.3 we may have from Fig.

1(c) that ~P( )~ 3.59X10 ' ~P( )~~—7.56X10 and
these values attained at x are nearly equal to 7.0 and 7.3,
respectively. On the other hand, if we set q =0 we may
find from (50) that ~gI '~ =0.222, ~gz '~ =0.18, and
these values attained for x are equal to 9.9 and 10.9, re-
spectively. From these, we may conclude that if q (0,
then maxima of ~g|~ and ~g2~ are reduced from that in
the decoupled limit.
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