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Time-dependent Beltrami fields in free space: Dyadic Green functions and radiation potentia&s
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The Beltrami-Maxwell equations for free space arise as specializations of the Beltrami-Maxwell equa-

tions for general material continua. Here, we investigate the novel concept of time-dependent Beltrami
fields to solve the electromagnetic radiation problem in free space. %e derive Beltrami field representa-
tions in terms of dyadic Green functions and vector potentials. Closed-form results for the Beltrami
fields are presented for elementary point sources.
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I. INTRODUCTION

V XQ+(r, t)+(i/c)c},F+(r, t)=W+(r, t) . (2)

In Eqs. (1}and (2), Q+(r, t) are the time-dependent Bel-
trami fields, and F+(r, t) are the time-dependent Beltrami
induction fields. The impressed Beltrami charge densities
w+(r, t) and the Beltrami current densities W+(r, t) are
related through the continuity relation

V.W+(r, t)+B,w+(r, t)=0 . (3)

All fields and sources in Eqs. (1}—(3) are complex-valued.
Here and hereafter, i is the imaginary unit, c = I/Qeolto
is the speed of light in free space (vacuum}, and
@0=8.854X10 ' F/m and go=4m X10 H/m are the
vacuum permittivity and permeability, respectively; 8, is

the partial derivative with respect to time; r is the posi-

The concept of Beltrami fields and fiows has a long and
distinguished history in fluid mechanics. In elec-
tromagnetism, following early work by Silberstein [1],the
Beltrami field concept has been repeatedly rediscovered
throughout this century —see, e.g., [2—4]—though its
antecedents have generally remained muddled. It is fair
to state that these approaches mainly viewed the Bel-
trami field concept as a convenient tool to rearrange the
time-harmonic electromagnetic field equations. Only in
recent years, with considerable interest in the study of
complex media, has there been a shift in emphasis: Bel-
trami fields are essential for the description of time-
harmonic electromagnetic fields in chiral and biisotropic
media [5].

While all these developments applied to fields that are
either static or time-harmonic, a Beltrami field formula-
tion for time-dependent fields has been lacking until re-
cently. Such a description of time-dependent Beltrami
fields has now been achieved, and the fundamental
Beltrami-Maxwell equations have been formulated for a
general material continuum [6]. It was shown that the
time-dependent Beltrami-Maxwell equations in a material
continuum are given as [6]

V F+(r, t)=+icw+(r, t),

tion vector of the observation point; vectors appear in

boldface; dyadics are underlined.
Equations (1) and (2) can be shown to be Lorentz co-

variant [7]. However, they do not form a closed system
of difFerential equations unless constitutive relations be-
tween F+(r, t) and Q+(r, t) are formulated. To set up ap-
propriate constitutive relations, Beltrami polarization
fields P+(r, t) are conceptualized through

F+(r, t ) =Q+(r, t)+ P+(r, t); (4)

where a; (r, t) (i,j =1,2) are the dyadic susceptibility
operators, and o denotes temporal convolution:

a; (r, t)oQ+(r, t)= I dt'a J(r, t t') Q(r, t—') .

It is emphasized that the differential equations (1) and
(2) and the constitutive relations (4}—(6} provide a fully
self-consistent theoretical apparatus, and no recourse has

yet been taken to the usual formulation of time-
dependent problems in terms of the electromagnetic fields

E(r, t), H(r, t), D(r, t), and B(r, t). It is important to
remember that the four fields Q+ and F+ are complex
valued and therefore possess twice as many degrees of
freedom as the real-valued electromagnetic fields E, 8,
D, and B. A connection between the Beltrami-Maxwell
fields and the electromagnetic fields can be made to exist
by using the dictionary:

Q+(r, t) =E(r, t)+i Qp&&/eoH(r, t),
F+(r, t) =D(r, t) /eo+icB(r, t),
W+(r, t)= J(r, t)+i Q—po/eoJ, (r, t),

I.8)

(10}

thus a prescription for P+(r, t) in terms of Q+(r, t) is

necessitated. Such a formulation, whereby the macro-
scopic properties of the material continuum can arise
from a model of the behavior of the microscopic constitu-
ents of the medium, has been given for linear, spatially
nonhomogeneous, spatially local, temporally causal, bian-
isotropic materials [6]. The constitutive relations are

P+(r, t) =a
&& (r, t)o Q (+r, t)+a &z(r, t)o Q (r, t), (5)

P (r, t) =a2, (r, t)o Q+(r, t)+a22(r, t)oQ (r, t), (6)
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w+(r, t) = —
p (r, t)+i+pa/Eop, (r, t),

relations which eS'ectively amount to a reduction in the
number of degrees of freedom of the complex Beltrami-
Maxwell formalism. Here p, and p are the electric and
magnetic charge densities; J,(r, t) and J (r, t) are the
electric and magnetic current densities. Through rela-
tions (8)—(11) it is then a straightforward exercise to es-
tablish a mapping between the dyadic susceptibility
operators a," in the Beltrami-Maxwell formulation and
the constitutive dyadic operators (permittivity e, etc.) of
the conventional Maxwell formalism [8]. Boundary
and/or initial conditions are usually formulated in terms
of E and H in the conventional electromagnetic formal-
ism. These conditions can be translated into those for the
Beltrami fields Q+ by using Eq. (8). In the context of the
present paper, boundary conditions are of lesser interest.
As we are motivated to present closed-form results appli-
cable to the radiation of confined sources in an unbound-
ed region of free space, the only conditions on our solu-
tions are a general necessity for them to be causal, thus
implying an outgoing-wave condition [9].

The purpose of this paper is to explore the time-
dependent Beltrami-Maxwell equations for free space,
wherein the polarization fields P+ vanish identically.
Therefore, from Eq. (4), the relation

in terms of dyadic Green functions and vector potentials
(the concept of purely scalar Beltrami-Hertz potentials is
explored elsewhere [10]). Closed-form expressions for
simple radiating sources will be derived.

II. DYADIC GREEN FUNCllONS

Due to the linearity of the Beltrami-Maxwell equations
the (particular) solution to Eq. (14}can be represented as

Q+(r, t)= J d r'dt'G+(r, t;r', t') W+(r', t') . (15)

Here G+(r, t;r', t') are the dyadic Green functions, and
the integration is over the space-time span A in which
the source current densities are nonzero. Incidentally,
the divergence relation (13) is automatically satisfied if
Eq. (14) and the continuity relation (3) hold.

The dyadic Green functions Gz(r, t;r', t') satisfy the
differential equations

[VXI+(i/c)IB, ] G+(r, t;r', t')

=I5(r—r')5(t —t'), (16)

Ibeing the unit dyadic and 5( ~ ), the Dirac delta function.
The solution of Eq. (16) can be written in the form

F+(r,t):—Q~(r, t), (12)
G+(r, t;r', t')=[VXI+(i/c)Id, ] G&, (r, t;r', t'), (17)

holds in free space, and Eqs. (1) and (2) reduce to

V Qz(r, t)= View+(r, t),

V XQ+(r, t)+ (i /c)d, Q+(r, t) =W+(r, t) .

(13)

(14)

where the free space dyadic Green function Gt, (r, t;r', t')
is a solution of

[V XV XI+(1/c )d«I] Gt, (r, t;r', t')

=I5(r r')5(t ——t') . (18)
Indeed, Eqs. (13) and (14) follow naturally from the

time-dependent Maxwell's equations for free space via
the definition of the Beltrami fields and sources through
Eqs. (8)—(11}. Here the Beltrami-Maxwell equations for
free space have been given as specializations of the
Beltrami-Maxwell equations for general material con-
tinua to underscore the importance of the Beltrami-
Maxwell field formalism, viewed not so much as a
mathematical manipulation of the conventional elec-
tromagnetic formalism but as a theoretical apparatus in
its own right.

We can observe an important difference at the level of
the mathematical formalism between Beltrami fields in
material continua and those in free space. It is apparent
from the constitutive relations (5) and (6) that at the mi-
croscopic level both fields Q+ and Q are necessary for a
consistent description. In free space, however, the polar-
ization fields vanish. Therefore, there is no coupling be-
tween Q+ and Q through the diff'erential equations (13)
and (14) and it is sufficient to carry out the analysis for ei-
ther Q+ or Q; because by virtue of Eq. (8) we then have

Q+ =Q (the symbol e indicates complex conjugation}.
Nevertheless, to remain in the spirit of the Beltrami-
Maxwe11 formalism, we will continue to write subsequent
equations and solutions in terms of Q+.

In the following, we will investigate the free-space
equations (13) and (14) and present field representations

[V —(1/c )B«]g(r, t;r', t') = —5(r —r')5(t t') . —

We note parenthetically that

(1/&, )f (t)=—(&, ) f (t) =f f (t')«'

(20)

is a unique operational definition of 1/8, if a
causality/initial condition is imposed.

The retarded solution of Eq. (20}is

g (r, t;r', t') =5(~)/4mR, (21)

where R =~R~, R=r —r', and r=t —t' —R/c is the re-
tarded time.

Using Eqs. (19)—(21) in Eq. (17},we obtain the causal
solution for G+ for which

G+(r, t;r', t')= 0 for ~=t t—' R/c (0, — —

in the form

(22)

Equation (18) has the well-known solution (see, for exam-
ple [9])

G„(r,t;r', t')

=(1/poB, )[jttoB,I—(1/eoB, )VV]g(r, t;r', t'), (19)

where g(r, t;r', t') is the scalar Green function of the
time-dependent scalar wave equation
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G+(r, t;r', t')

=[VXI+(i/c)B,I+(ic/8, )VV](5(r)/4nR ) . (23)

Explicitly, solution (23) can be given as

0 «0
U(r) = 1, 0 5(r) = U'(r) .

Elementary yoint sources

(25)

+4m 6+(r, t;r', t') = (i /Rc)(I R—R+R XI )5'(r)

+(i/R )(I—3RR+iRXI)5(r)

+(ic/R )(I—3RR)U(r), (24)

As an application of the above, we will now evaluate
the fields radiated by elementary point sources. First, we
consider an elementary point source located at the origin
r=0 that fiashes on and off at time t =0. Such a source
can be modeled through Beltrami current densities con-
taining an impulse doublet 5'(t) at t =0 [11]as per

where we have introduced the unit vector R=R/R; 5'( )

is the derivative of 5( ) with respect to the argument, and
U( ~ ) is the unit step function defined via

W+(r, t) =W i+5(r)5'( t), (26)

where W&+ are some constant vectors. Substituting Eq.
(26) into Eq. (15) and using Eq. (24), we obtain

+4m Q+(r, t) =(i/rc )(I rr/r +—r XI/r) W, +5"(t r/c)—+(i/r )(I 3rr/—r +ir XI/r) W, +5'(t r/c)—
+(ic/r )(I 3rr/r—) Wi+5(t r/c) . — (27)

Here, r = ~r~, and 5"( ) is the impulse triplet [11]. It is clear from Eq. (27) that the radiated field is precisely null for
any t & r/c or t & r lc.

As a second example we consider an elementary point source at r=0 which is switched on at t =0 and remains
turned on; the temporal behavior of the corresponding current densities is then modeled through a 5 function according
to

W+(r, t) =W2+5(r)5(t),

where now W2+ are constant vectors. It follows from Eqs. (28), (15), and (24) that

+4rrQ+(r, t) =(i/rc)(I rr/r +r X—I/r) W2+5'(t r/c)+(i /r —)(I 3rr/r +ir X—I/r) W2+5(t r/e)—
+(ic/r )(I 3rr/r ) Wi—+U(t r/c) . —

(28)

(29}

Therefore, at large times t & r lc we find

+4~+(r, t)=(ic/r )(I—3rr/r ) W2+, (30)

where A~(r, t) are as yet undetermined vector functions.
Inserting Eq. (33) into Eq. (14), we find

in agreement with the behavior expected of a static dipo-
lar source. We note that both elementary point sources
which we have chosen as examples are canonical radia-
tors; i.e., W+ (W } generates the radiated Beltrami field

Q+ (Q-}.

III. RADIATION POTENTIALS

In order to solve the time-dependent free space
Beltrami-Maxwell equations (13) and (14) in terms of vec-
tor (and scalar) potentials, we first eliminate the Beltrami
charge densities w+(r, t) by virtue of the continuity rela-
tion (3). Then

VX[VX A++(iB, /c) A++(ic/B, )W+]=0 . (34)

V X A+ + (i d, /c ) A++ (ic /8, )W+ =V V+, (35)

containing the arbitrary scalar functions V+(r, t).
A solution of Eq. (35) can be derived by making the an-

satz

A~=aB, p++P(VXp+)+VA+, (36}

V =yV.pg+&8, Ag

This equation suggests that A+(r, t) must satisfy the
differential equation

w+= —(1/B, )V.W+ .

Upon substitution of Eq. (31) into Eq. (13), we obtain

V.[Q +-(tc/a, }W ]=O.
Consequently,

(31) for the unknown vector potentials p+(r, t) and scalar po-
tentials A+(r, t). Four constants —a, P, y, and ~—are
involved here, but one of the four will remain arbitrary as
it amounts to a redefinition of p+ only. The motivation
for the ansatz (36) and (37) is to use first-order derivatives
in space and time only when expressing A+ and V+.
With the choices

Q+ = + (ic /d, )W++ V X A+, (33) y =P, a=+(ig/c), z=+(i /e), (38)
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we find Eqs. (36) and (37) turn out to be solutions of the
difFerential equations (35), provided that p+(r, r) are solu-
tions of the inhomogeneous vector wave equations

where V' is the volume wherein W+(r', t') is nonzero; the
Lorentz potentials q+ then follow simply by using Eq.
(42).

[V —(1/c )B„]p+(r,t)=+(ic/B, )W~(r, t) . (39) Elementary point sources

Finally, the Beltrami fields Qz(r, t) are represented in the
form

Q+=+(ic/8;)W++(iB, /c)(VXp+)+VX(VXp+) .

(40)

To exemplify the general results for the vector poten-
tials p+ we specialize the Beltrami current densities to
those in Sec. II for elementary point sources. In the first
example, with W+(r, t) given by Eq. (26), the general ex-
pression (45) yields

An alternative representation for Q+ can be obtained by
using Eq. (39) in Eq. (40). Then we have p+(r, t) = WicW, +5(t r lc)/—4srr . (46)

Q =+(iB,/c)(VXp )+VV p —(1/c )B„p (41)

Interestingly, the scalar potentials V+ play no role in the
Beltrami field representation. Furthermore, if we define
new vector potentials q+(r, t) through

The second elementary point source, given by the Bel-
trami current density (38), provides us with

q~(r, t) =VXp~(r, t), (42)
pz(r, t)= WicW~+U(t rlc)/4—nr . (47)

then Eq. (40) becomes

Q+ =6( ic /8, )W++ (i 8, /c) q++ V Xq+, (43)

and the potentials q+ can be thought of as Lorentz poten-
tials in view of Eq. (8}.

The particular solution to Eq. (39) can be written by
using the scalar Green function g(r, t;r', t') defined ear-
lier [see Eqs. (20) and (21)]. We obtain

p+(r, t}=T-(ic)f d r'dt'(5(r)/4srR )

X [(I/Bt')W~(r, r')] . (44)

Performing the integration with respect to t', we obtain

p~(r, r)

= +(ic)f d'r'[(I/Bt')W+(r', t')], , a~, /4nR,

(45)

On substituting the vector potentials from Eqs. (46) and
(47) into Eq. (40), we obtain the Beltrami fields Q+ in

identical form as derived previously in Eqs. (27} and (29),
respectively, by using the Green function technique.

IV. SUMMARY

We have shown that the Beltrami-Maxwell equations
for free space arise as specializations of the Beltrami-
Maxwell equations for general material continua. Subse-
quently, we delineated the general problem of radiation
of confined sources in an unbounded region of free space.
We found closed-farm results for the time-dependent
dyadic Green function associated with the Beltrami fields
and, alternatively, derived a representation of the Bel-
trami fields in terms of vector potentials. Detailed,
closed-form results for the Beltrami fields were then given
for two types of elementary point sources.
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