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Single-particle dynamics at synchro-betatron coupling resonances
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The action-angle variables for the longitudinal motion in synchrotrons are defined to conform
with that of the transverse degrees of freedom. The Hamiltonian due to synchro-betatron coupling
resonances is formulated in terms of these action-angle variables. A method for the calculation
of the synchro-betatron resonance strength is discussed. The dynamics of particle motion near a
resonance condition in the presence of nonlinear detuning is studied. The hysteresis phenomena
associated with these resonances are discussed and employed to deduce the resonance Hamiltonian
from experimental data.

PACS number(s): 41.85.—p, 03.20.+i, 05.45.+b, 29.20.Dh

I. INTRODUCTION

Synchro-betatron coupling resonances (SBRs) are im-

portant in electron storage rings and fast cycling pro-
ton synchrotrons, where the &actional parts of the syn-
chrotron tune and betatron tunes are of the same order of
magnitude. Beam current limitation, beam loss, and per-
formance degradation due to SBR have all been observed
in many storage rings [1—9]. This problem is particularly
important for high luminosity electron storage rings and
for high brightness synchrotron radiation sources.

In the past, many model calculations were performed
to estimate effects of SBR [1—14]. In particular, Piwin-
ski and Wrulich [3] pointed out many essential features
of the sum and di8'erence SBRs and their driving mech-
anisms. Similarly, Hamiltonian formalism for the SBR
single particle dynamics have been derived by many au-
thors [11—14]. The emittance growth rates due to SBR
obtained &om the Hamiltonian formalism agree well with
numerical simulations [11,12]. More recently, there have
also been extensive studies on SBR induced by beam-
beam interactions at a crossing angle [13,14]. However,
these studies neglect the dependence of tunes on the be-
tatron amplitudes. Since the detuning process is an es-
sential ingredient for the stability of particle motion near
a nonlinear resonance, studies of SBR with nonlinear de-

tuning are useful. Because the beam loss mechanism oc-
curs mostly in the transverse degrees of freedom, we will

reformulate the SBR Hamiltonian conforming with trans-
verse actions or, equivalently, the Courant-Snyder invari-
ants and study transverse beam dynamics at a SBR.

This paper is organized as follows. In Sec. II, we review
the SBR Hamiltonian, where the Panofsky-Wenzel theo-
rem is used to constrain the SBR potential. A method for
the calculation of the SBR coupling strength in action-
angle variables is discussed. In Sec. III, the dynamics
of particle motion near a SBR is studied in the presence
of nonlinear detuning parameters. We will show that
the nonlinear detuning gives rise to the bifurcation of
resonance islands. When the betatron tune is ramped
through a resonance, the response will exhibit hystere-

II. THE SBR HAMILTONIAN

The Hamiltonian for a charged particle executing be-
tatron and synchrotron motions in a circular accelerator
can be expressed as [11—14]

H, = e~(z, z', z, z')+e,
(

—@,'(h ' pp)'

where H~ is the Hamiltonian for betatron oscillations
with (z, z') for the horizontal and (z, z') for the vertical
phase space variables, respectively. The prime represents
the derivative with respect to the longitudinal coordi-
nate s along the ring, which serves as the time coordi-
nate. H, is the Hamiltonian for the synchrotron motion
with the conjugate longitudinal phase space coordinates

( & g, —~), where R is the mean radius of the circular
accelerator, h is the harmonic number, P is the rf phase
of the particle relative to the synchronous phase angle
P„and ~ is the momentum deviation of the particle
from that of the synchronous particle.

The Hamiltonian for the linearized betatron oscilla-
tions is II~p ——-(z'2 + K z ) + 2

(z'2 + K, z2), where

K, K, are the focusing functions. Similarly, the syn-
chrotron Hamiltonian is given by [ll]

1 (D.
2 ( p

1 il(I~pi
&') & pp)

—) [cos(P + P, ) + P sin P,]b„(0—Hi),

(2)

where D is the dispersion function; p is the bending ra-
dius of dipoles; Pc, p, and E are, respectively, the speed,
the Lorentz factor, and the energy of the particle; V~ is

sis phenomena, which are applied to determine a SBR
Hamiltonian &om experimental data of tune scan mea-
surements in the large electron-positron (LEP) collider
in CERN [9]. The conclusion is given in Sec. IV.
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the rf voltage at the 8& location, and b~(8 —8I) is the
periodic delta function. Since the synchrotron oscillation
is relatively slow, the synchrotron Hamiltonian averaged
over one revolution becomes

2

2

[cos(P + P, ) —cos P, + P sin P, j, (3)h2 q

where v, =
z &,'@ is t e synchrotron tune of a station-

ary bucket at small synchrotron amplitudes with V as
the efFective voltage of the entire ring and a constant was

added in Eq. (3) to shift the Hamiltonian value.
The actions of the synchrotron and the linearized be-

tatron oscillations are defined as

I, = B dJ
dP, I = — x'dz, I, = — z'dz.

2'h pp
' 2' ' 27'

The transverse actions are also called the Courant-Snyder
invariants. Table I lists parameters of some electron stor-
age rings and the ratio ~& of rms actions. Appendix A
discusses general properties of I, and Appendix B exam-
ines scaling properties of the longitudinal and transverse
actions. Note here that the ratio of ~1 is about 50—200 for
high energy colliders, which does not minimize the trans-
verse emittance. On the other hand, the ratio is about
600—700 for synchrotron radiation sources, which mini-
mize the transverse emittances. However, the large ratio
for synchrotron radiation sources arises mainly from their
small synchrotron tunes. Had the synchrotron tunes of
the Advanced Photon Source (APS) and the Advanced
Light Source (ALS) increased by a factor of 10, the ratio

would have been decreased by the same factor.
Transforming the coordinate system onto the action-

angle variables and using the orbital angle 8 for time
coordinate, one obtains the unperturbed Hamiltonian as

Hp ——v I +v, I, + —a I

+cI,I I, + n„—I, + E,(I,),2 "' (4)

where Q, = v,
~
cos P, ~

I~2. The detuning parameter

a„= —
s& (1+ s tan P, ), tabulated in Table I, is of

the order of —10 m I, which is normally much smaller
than the betatron detuning parameters.

A. The SBR potential

The SBR potential VsBR may arise &om dispersion
functions in rf cavity locations, transverse fields with lon-

where v, v are the horizontal and vertical betatron
tunes and the nonlinear detuning parameters n, a „
and cr„(due mainly to sextupoles, octupoles, and beam-
beam interactions in storage rings and colliders) are the
order of 103 —104 m . It is worth pointing out that the
perturbation expansion in power series of I,I, may not
be appropriate for the nonlinear detuning due to beam-
beam interactions, where the tune shifts for particles at
large amplitudes are small.

The Hamiltonian value of the longitudinal motion,
E,(I,), can be expanded as (see Appendix A)

E,(I,) = "(Q—,I—, + 2a„I,'),

TABLE I. Parameters of some electron storage rings. The action listed in this table is the action
for the rms particle. The symbols for storage rings are as follows: BEPC, Beijing electron positron
collider; CESR, Cornell; LER, low energy SLAC B factory; HER, high energy SLAC B factory;
LEP, CERN; APS, advanced photon source at Argonne; ALS, advanced light source at LBL.

BEPC LER (e+) HER (e )
2.2 3.1 9
5.8 32.28 25.28
6.8 35.18 24.18
450 96 48
35 3.86 1.93
10.35 30.6 165.0
400 14.9 24.4
240.4 2199.3 2199.3
160 3492 3492
199.5 476 476
0.016 0.0498 0.0522
4.0 9.5 6.1
3.5 3.1 5.7
7.7 4.7 3.0
34 98 12?
3%3 -6.5 -10.6

8.0 1.4 2.4

ALS
1.5
14.28
8.18
4.8
0.48
4.01
14.3
196.8
328
499.65
0.0082
7.1
0.43
1.4
574
-0.61
2.8

APS
7
35.22
14.3
8
0.08
38.96
2.374
1060
1248
352.96
0.0066
9.6
4.1
2.8
699
-0.27
1.3

LEP
55
76.2
70.2
51
0.51
3096.2
3.866
26658.9
31320
352.2
0.085
8.4
78.
6.8
267
-11.2
1.6

Parameter
E (GeV)
P~

P~

(nm)
eg (nIII)
p (m)
104o.
C (m)
h

f,r (MHz)
&s

104 hE
Eo

A(10 'eV s)
I (10 nm)
~I
1~ —I )b

P, (10 rad)

CESR
6
9.38
9.36
240
8
60
152
768.4
1281
499.8
0.064
6.3
7.2
5.7
48
-25.5
11.1

2
The rms action is I 2 2P~
This table calculates only the nonlinear detuning for P, = 0 or z'. The actual longitudinal nonlinear

detuning parameter can be about 10% larger depending on the value of P, .
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gitudinal variation, dipole field modulation at dispersive
locations, beam-beam interactions with a nonzero cross-
ing angle, etc. [1—14]. The resonance strength should be
calculated from all possible sources.

In general, the S BR potential must satisfy the
Panofsky-Wenzel theorem, which relates the transverse
kicks to the longitudinal energy gain. Consider a parti-
cle of charge e and velocity v =

&~
experiencing a kick

&om a component in an accelerator. The total momen-
tum change is given by

tg

(E+ 8 x B)dt,

where E,B are electromagnetic fields and t~ —t is the
transit time of the kicker component. The total energy
change will be

Sg

AE=e E ds,
Sa

where s, sg are the entrance and exit azimuthal coordi-
nates of the kicker. Then the Panofsky-Wenzel theorem
yields a relation between the transverse kick and the en-

ergy gain [17], i.e. ,

/i 8 (Ap~l
RBQ ( pp ) ( P2Ep) ' (6)

where ~~ is the transverse kick, & P is the longitudinal

phase space coordinate of the particle, and V'~ is the
transverse gradient. Thus if the transverse kick depends
on the longitudinal coordinates, then the energy gain will
also depend on the transverse coordinates.

This SBR potential, which satisfies the Panofsky-
Wenzel theorem, can generally be expressed as a func-
tion of six-dimensional (6D) phase space coordinates. Be-
cause of the periodic nature of a circular accelerator and
the quasiharmonic nature of synchrotron and betatron
oscillations, the SBR potential can be expanded as [15]

VsBR—
m, m, ,m, ,e

(I I I ) i(m Q +m, Q, +m, Q, —N)
gm, ey z) z) s)e

—;(m.@.+m. y, +m. @.—ee)1
grrp. ,t =

(2 )4
sBRe

xd@ dg, dg. d8, (8)

]~z ] [ma ]

which scales generally as I~ ' Iz ' I, '

The SHR patential due te nansera dispersion
in rf cauities

The most common SBR arises from nonzero dispersion
functions at rf cavity locations. The SBR potential due

where m, m„m„and 8 are integers and m represents
(m, m„m, ). The SBR coupling strength g~ t is given

by the inverse Fourier transform of the SBR potential,
i.e. ,

to dispersion in rf cavities is given by [11]

VsBR = R—) [cos(g + P~ + P~)

—cos(P + P, ) + P, sin P, ]bz(0 —0~), (9)

Here (I,p ) are the action and phase of betatron oscil-
lations and (I~, pti) are the dispersion action and dis-
persion phase [16], i.e. ,

D = /2P icos pD,

P D' — P' D =— /2P I—D sin pD .
2

Note here that ID and p, —p,D are constant in a straight
section without dipoles. Therefore, the rf phase shift P,
is constant for rf cavities located in a straight section.
The contribution &om all cavities in a straight section to
VsBR is an arithmetic sum. Varying the phase advance
within a straight section does not alter the SBR strength.

Since the dispersion action is generally proportional to
p8&, where 8~ is the bending angle of dipoles in a half

cell, we define P, as the maximum phase shift parameter
as

2h
4'c = Iz, rms peg

Table I lists P, for some storage rings. In reality, the ac-
tual phase shift P, can be one order of magnitude smaller

than P, because the actual dispersion action at the rf cav-

ity locations is small. We note, however, that P, for the
Cornell Electron-Positron Storage Ring (CESR) and the

Beijing Electron Positron Collider are much larger than
other storage rings. This is due to their smaller circum-
ferences and large rms betatron actions. It remains to
be verified that these two colliders are much more sensi-
tive to SBR. Incidentally, the P, parameter for the Stan-
ford Positron Electron Accelerator Ring (SPEAR) at the
Stanford Linear Accelerator Center (SLAC) equals that
of CESR.

The SBR potential of Eq. (9) can then be written as

VsBR = —R) ([cos(P+ P, )(cos P, —1)]
2

—[sin(P + P, ) sin P, —P, sin P, ])6„(g —8~ ),
(11)

which satisfies the Panofsky-Wenzel theorem. The cou-
pling strength g- e can be obtained easily from the in-
verse Fourier transformation of Eq. (8). To perform beta-
tron phase integrals, the betatron phase p, should be re-
placed by @ +p —v 8, where Q is the conjugate phase
variable to the action I . To perform the synchrotron
phase integrals, a coordinate transformation discussed in
Appendix A becomes handy. The 6rst square bracket
term in Eq. (11) contributes to even m in Eq. (8), while

where the phase shift P, due to the synchro-betatron cou-
pling is

h,
/ I 2h

P, = ——(D ~' —D'z) = —QI I~sin(y, —p~). (10)
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the second square bracket term gives rise to odd m ~ Be-
cause P, is relatively small, ~m

~
) 1 is usually less im-portant�.

On the other hand, the synchrotron amplitude
cry is of the order of 0.2 rad. Thus high order synchrotron
sidebands with ~m,

~

) 1 can be important.

be represented by

H = Hp(I, I„I,)
(I I I ) i(m Q +m, Q, +rn, Q, —g8)

g ~( )

ma )m, )m, )E

The SBR potential arising from transverse kicks
with lonyittcdhnal dependence

Any differentiable function of (z, z, b P), e.g.,
f(z, z, & P), that satisfies the Panofsky-Wenzel theorem
can be used for the SBR potential. Since the electro-
magnetic fields in transverse kicker components can be
expanded in Taylor series, the SBR potential can be ex-
pressed as

VsBR = —
~

—A zP + —A zg +
~
bp(8 —8'). (l2)

h
'

h )

( R
Vbb sRR = —U~ z+ 8 —$, 2, 8

~

—U(z, z, 8), (13)
IL )

where U (2, z, 8) is the beam-beam potential. A com-
monly used Gaussian beam-beam potential model is
given by [6,13,14]

oo P I 2m~+m 2cr~+ay

(2o 2 + 1p)1/2(2o 2 + 1p) 1/2

xbr(8 —8;), (14)

where N~ is the number of particles per bunch, ro is the
classical radius of the particle, and cr, o, are the rms
horizontal and vertical beam sizes.

Because nonzero crossing angles in beam- beam inter-
actions may give rise to SBR, high energy colliders are
usually designed with zero crossing angle. However, when
the number of bunches is increased in order to gain nec-
essary luminosity parasitic crossings do occur. Because
the parasitic crossing angle is usually not zero, it is possi-
ble that the long range beam-beam interactions can also
drive SBR. Detailed analysis of such a mechanism may
be important

III. BEAM DYNAMICS NEAR A SBR

Here the coefficients A,, are given by the transverse gra-

dients of the integrated change of —~ in a kicker com-
J 0

ponent, i.e., A =
& [—b (~)],etc.

The beam-beam interaction at a nonzero crossing angle
is another example of transverse kick, which may depend
on the longitudinal coordinate. Using the the Panofsky-
Wenz el theorem, the SBR potential arising from the
beam-beam interaction, at a horizontal crossing angle of
28, can be written generally as

where Ho is the unperturbed Hamiltonian shown in
Eq. (4). In a single resonance dominant regime at the
following resonance condition:

mdiv~ + mivi ——msQe —E (16)

m, I, —m, I, = const.

These invariants define a line in the (I„I„I,) action
space. The variation of actions becomes

AI = *AI„LI, = ' AI, .
ms ms

Since the rms longitudinal action I, of a beam is much
larger than the corresponding rms actions of the trans-
verse planes, the percentage increase in transverse actions
is much larger as shown in Eq. (19) for both sum and dif-
ference SBRs. Since storage rings are usually operating
close to the transverse dynamical aperture limit, particle
loss appears dominantly in transverse degrees of freedom.
This loss mechanism has been observed in PETRA and
DORIS [6], in CESR [7], and during the injection in LEP
[8]. Based on I, &) I „approximate treatment of SBRs
will be discussed as follows.

A. Approximate treatment for v 6 m, Q,
resonances

Since I « I, for most of particles in the bunch, the
percentage variation of the longitudinal action is small
We can thus approximate g = gI for v + m, Q,1/2

SBR, where g depends on m„ I„and E. The Hamiltonian
near the Grst order sideband resonance can be expressed
as

H=v I + a I — (Q,I,—+ 2a„I,)—
+gI'/ cos(g + m, vP, —N + p). (2O)

Using the generating function

E2 = (Q +m, g, —N+ /)I1 +@,I2,

the Hamiltonian can be approximated by

H —Hp + (g- t( cos(m vP + m, @, + m, @, —N + p- t).
(17)

It is easy to show that the Hamiltonian of Eq. (17) has
two invariant s, i.e. ,

m, I —m I, = const,

Following the discussion in Sec. II, the SBR Hamilto-
nian for a particle in a circular accelerator can generally

the Hamiltonian in the resonance rotating frame becomes
H —Hl(I1)1 tt'1) I2) + H2(I2)& w1th H2(I2) =

~ )
(QsI2+
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a—„I22) and

1/2Hl = 61I1 + —C11Ii + gIi Cos '(Ul.
2

(21)

Here bi ——v —l"lm, (Q, + a„I2) —I. is the resonance

proximity parameter, a1 ——a —
~~~ m, o.„is the effective

resonance detuning parameter, I1 ——I, and I2 ——I, —
m.I..

Because of the fact that I, )) I, the approximate SBR
Hamiltonian in the resonance rotating kame is identical
to that of the first order parametric resonance system
[18]. Hamilton's equations of motion are given by

(bl
1 —

I

—
l

+1
(b~]

( b ) 3 - i/3

Ebs J
(26)

(2 ) i/3

and all tori are closed curves orbiting about the outer
SFP. The condition for minimizing the effects of SBR
can be analyzed similar to that of rf phase modulation
[18]. In particular, when b = bs, the SFP becomes

Qi ——hi + niIi + gIi —cos Qi, Ii —gI, sin/i.
—1/2 ' - 1/2
1

(22)

The equation for fixed points of the Hamiltonian is given

by

1
ZD —bQ)+ —G =0,

2
(23)

with

ut = Ii costi (gi ——0 or x), b = ——, a = —.1/2

A1 0!1

First, we examine the trivial case with a1 ——0. The
fixed point is located at mpp ———

~2& . The condition for2

minimizing effects of SBR becomes liUFp
l

& 2 QIi, , or,

equivalently, lb'i
I
) lgl

h, rms

When the nonlinear detuning is not zero, solutions of
Eq. (23) are well known [18]. If the resonance proximity
parameter b is larger than or equal to a bifurcation value

bb, given by

) 2/3

&4)
(24)

there are three solutions to Eq. (23) given by

wi(b) = — b / cos —,
2

3'

b / sinl ——
V~ E6»'
2

m, (b) = b'/' sinl —+ — I-
l, 6 3

m2(b) = (25)

Here ( = arctan ( & )s —1, with
&

) 1. The solutions

n)i with @i ——~ and io2 with @i ——0 are stable fixed
points (SFPs) and the solution ms with vPi ——0 is the
unstable fixed point (UFP). Stable tori in phase space
are closed curves around the SFPs. The particle motion
in phase space can be described by the tori of constant
Hamiltonian IIi around SFPs (see [18]).

When b & bg, there is only one real solution to Eq. (23)
given by

To ascertain small perturbations to the beam distri-
bution, the SFP must be near the bunch center, i.e. ,

liui
l

& 2Ii r~, . This means that the resonance strength

should be lgIi, , l
&,&, laiIi, , l, if the SBR resonance

3 1/3-2 3

Beyond the bifurcation tune, i.e., the resonance prox-
imity parameter b ) bb, the SBR resonance island bifur-
cates into two stable islands. At a resonance strength
where both SFPs are within the dynamical aperture of
the accelerator, a beam can split into two beamlets in the
betatron phase space. These two beamlets are orbiting
about the closed orbit at the tune of v +m, Q, E. A high—
resolution profile monitor may be able to resolve these
islands. However, since the beam bunch is composed of
particles with all synchrotron and betatron phases, the
actual island is a ring of islands in the betatron phase
space.

When the betatron tune is ramped through the reso-
nance, these islands may exhibit hysteresis phenomena.
At a betatron tune with 6 (( bb, the equilibrium bunch
center is located at the only SFP given by Eq. (26). When
the tune is ramped so that b is approaching bb from be-
low, the amplitude of SFP increases and the bunch fol-
lows adiabatically with the outer SFP, beyond the bifur-
cation point bb, until the outer island becomes too small.
The beam bunch will jump from the outer island into the
inner island.

On the other hand, at a betatron tune with b )) bb, the
equilibrium centroid of the beam bunch is located at the
inner SFP of Eq. (25), because the outer island is either
nonexistent or very small. When the tune is ramped so
that 6 is approaching bb from above, the beam will follow
the inner SFP until the separatrix cuts through the center
of the phase space. Then each particle in the beam bunch
will perform large amplitude oscillations about its corre-
sponding outer SFP. These hysteresis phenomena have
been observed in synchrotron motion with rf phase mod-
ulation [18]. The SBR Hamiltonian can be determined
&om the measured hysteresis curves. In the following, we

discuss an example of deducing SBR Hamiltonian &om
the data of tune scan experiments in LEP [9].

Experimental observation of SBR in LEP

Recently, experimental measurements of beam size as
a function of the horizontal betatron tune across the
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).2

E
0.8 i

b 0$

v, = 0.20 Q, = 0.076

0.2

~ s a a I ~ i I .~ ~ I i I I ~ I j I I ~ I i ~ I ~ I i I 4 i I I i I I I I I I i I I I ~

P. 12 O. ie O.~6 0,~ 0.2 0.22 021 0.26 0.28

0.7

0.6

0.5 ™
O.4 ".=
03 ''

42

0.1
's ~ ~ ~ I s a ~ a I a I s ~ I a ~ a ~ I a ~ a a I ~ ~ i a I ~ a s ~ I ~ ~ a a I a a a ~ I a ~ ~

0.'l 2 0.14 0.16 0.&I 0.2 0.22 0.24 0.26 0.21

I I I I I I I I I I I I I I I I

1.85

1.00

v —2Q, = E resonance were performed in LEP [9]. The
upper two panels of Fig. 1 show the rms beam sizes vs
the horizontal betatron tune, which was scanned Rom
0.1 to 0.3 while the vertical tune was 0.20 and the syn-
chrotron tune was 0.076. The rms beam sizes obtained
&om downward tune scan were shown upside down to
exhibit possible asymmetry between the upward and the
downward tune scans.

The increase in beam size at v 0.152 might result
from the SBR at v —2q, = E. The difference between
the upward and the downward scans may result from the

hysteresis phenomena discussed in the preceding section.
The lowest panel of Fig. 1 shows gP I spp deduced
&om the data along with the St of the model discussed
in the preceding section. In the following, I will discuss
the model for deducing SFPs from experimental data.
However, one should take the following model-dependent
analysis with a grain of salt.

We 6rst realize that SFPs and the UFP of the 6rst
order resonance are smooth curves shown in the low-
est panel of Fig. 1 (see also [18]). When the betatron
tune is ramped upward, toward the resonance &equency,
the outer SFP and its island move outward in the beta-
tron phase space. The center of the beam bunch follows
adiabatically the outer SFP of the solution mq in the
preceding section. The measured beam size is given by
(quadrature assumption)

(27)

where gP e is the off-resonance beam size and I,sFp
is the rms action of the SFPs of all particles, shown as
solid square symbols in Fig. 1. When the tune is ramped
upward, the center of the beam bunch follows the SFP
outward and beyond the bifurcation tune, until the outer
island size becomes too small to contain the bunch. The
beam bunch then jump from the outer SFP to the inner
SFP shown as a downward arrow in Fig. l.

On the other hand, when the betatron tune is ramp
downward toward the resonance tune, the beam would
stay with the inner stable island, which is usually at a
very small betatron amplitude. The inner SFPs shown as
open circles in Fig. 1 can be obtained from experimental
data similar to that of Eq. (27). The response of the beam
size to the tune change will be small until the separatrix
cuts through the origin. Then the beam bunch would
orbit about the outer SFP at twice the SFP amplitude.
This transient effect has been observed [18]. Thus the
measured SFP, shown as open circle in the lower part of
Fig. 1 for b ( bs, is given by

0.50
1

v P&I& sFp
2 ~measurea (28)

0.85

0.00

SFP
II ~ a ~ I

0.13 0.14 0.15 0.18 0.17

FIG. 1. The rms beam sizes, with resolution of about
0.05 mm, obtained from tune scan measurements in LEP are
shown as a function of the horizontal tune in the top two
panels [9]. The synchrotron and the vertical tunes were kept
constant at 0.076 and 0.20, respectively. The lowest panel
shows the SFP amplitudes, i.e., gP I,spp, derived &om ex-
perimental data. The solid squares correspond to data from
the upward tune ramp and the circles correspond to data
from the downward tune ramp. An error of 0.1 mm was as-
signed to reSect the 10/0 variation in our derived Hamiltonian
parameters. Smooth curves are solutions of Eq. (23) Stted
with parameters Q...s = 0.074, uq ———1.4 x 10 P m and
!g[ = ~ x 10 m ~ . This model does not explain why o
decreases during resonance crossing.

It is worth mentioning that the response observed at the
bifurcation point during the downward tune ramp may
depend on the ramping speed and the radiation damping
rate. If the radiation damping rate is faster than the
tune ramp measurement rate, then the factor of 2 in
Eq. (28) should be replaced by 1. In both cases, the
data will exhibit hysteresis phenomena. However, if the
tune ramp measurement rate is slower than the rate of
quantum Buctuation, which characterizes the rate that
beam particles can jump from one island to the other due
to quantum Huctuation, then the hysteresis phenomena
may disappear. In the present analysis, we have assumed
a fast tune ramp measurexnent rate and a small quantum
Buctuation rate.

The deduced parameters are Q, ,g ——0.074 + 0.0005,
aq ———1.4 x 10 P m ~, and [g[ = ~'o x 10 s m~~2,

where P m is the betatron amplitude function at the
location of pro6le monitor. Because of the uncertainty
in the data analysis, we assign an error bar of 0.1 mm in
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QP I spp which reflects 10'% variation in our deduced
parameters nq and g. The SBR Hamiltonian is therefore
only determined up to a scaling factor. Calculations and
measurements of machine parameters, such as n, P,
etc. , can be used to con6rm the validity of the model for
data analysis. It is possible to formulate a more sophisti-
cated model by making ensemble sum of particle motion
with a given distribution function. For simplicity, I defer
these detailed studies to the future. Similar analyses for
tune ramp measurements at v, —2Q, and v, —3Q, can be
performed to test the consistency of the present model.
The source for the vertical SBR may be determined &om
these data analyses.

B. The 2v + m, Q, = E SBR resonances

Near a 2v + m, Q, = l SBR resonance, the Hamilto-
nian can be approximated as

H=v I +~zn I — (Q,I,—+ zn„I, )
rl

+gI cos(2$ + m, g, —H+ p). (29)

Using the generating function

m,0*+ '4. —-g+ —lIi+ V.I2,
2 2 2)

the Hamiltonian in the resonance rotating kame becomes
H = Hi (Ii, Qi I Iz) + Kz (I2), with H2 (Iz) = —

l„l (Q, Iz +
-'n„Izz) and

1 2Hl = hlIi + —niIi + gIi ces 2/iI
2

(30)

which is identical to that of the second order parametric
resonance system [19].Here bi ——v~ —

l l

~z (Q, +n„I2)
2 is the resonance proximity parameter, o.q

——o,
2

~"
~

~4o,„is the effective resonance detuning parameter,

Iq ——I, and I2 ——I, —~~I . Hamilton's equations of
motion are given by

Ii SFP =

Ii,UFP =
&

ISFP + ez
1 0 1

where e, is the intrinsic beam emittance of the beam and

I I I

[

I I I ~

)
~ I I I

)
I I I I

Figure 2 shows the relation of the
l

=i lIi spp and

l
- lIi upp as a function of ( =

l

'l ~. The bifurca-
tion of resonance islands occurs at ( = 1 and —1. To
ensure small SBR efFect on the beam, ( ) 1 and ( « („
where the parameter (, is determined &om the condition
that the UFP of the Hamiltonian is outside the betatron
beam width. If the resonance strength is small so that
the SFPs are located inside the dynamical aperture, then
the beam bunch will split into two or three beamlets in
the betatron phase space. These beamlets are rotating
in betatron phase space at the tune of v 6 2m, Q, —2.

Experimental measurements of 2v, —2Q, = l at CESR
Cornell (see Fig. 3 of Ref. [7j) showed that the vertical
beam size was increased by a factor of about 10%. Here
we assume that the measured beam size is the equilib-
rium beam distribution in the presence of the nonlinear
detuning and a weak SBR resonance. In the region of the
tune space lbi l

& lgl, the beam distribution resembles the
shape of a dumbbell in the betatron phase space. (Since a
beam bunch is composed of particles of diKerent betatron
and synchrotron phases, the actual beam distribution is
an 0-ring in this case. ) The maximum beam size should
correspond to the maximum width of the dumbbell with

Ispp = 2l g at hi ———n~~~. Thus the ratio of beam size

is given by

gi ——6i + niIi + g cos 2/i, Ii ——2gIi sin 2/i. (31)

In the case of zero detuning, i.e. , o.i ——0, the constant
Hamiltonian Bow is given by

Hi ——biIi + gIi cos 2''ii ——Ei.

Let us define X = ~I& costi, P = ~Ii sin@i. The
Hamiltonian Bow is given by

(8+ g)X + (8i —g)P = Ei

Thus when lhil & lgl, the Hamiltonian flow becomes
hyperbolic, which gives nse to large betatron oscilla-
tions bounded only by the conservation law of I2 ——con-
stant. Be~ause I, )) I, particle loss would occur. When
lbl ) lgl, the Hamiltenian flew' is elliptical. The stability
of particle motion therefore requires lbi l

)) lgl.
When the detuning parameter is not zero, the fixed

points are given by

0
0

ag bg

SFP-
~ ~ I

FIG. 2. The actions of SFPs and UFPs divided by a nor-
malized resonance strength for the second order SBR are plot-
ted as a function of the normalized resonance proximity pa-
rameter.
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the factor of 1.1 is obtained from Fig. 3 of Ref. [7]. Thus
we obtain Ispp 2I ~I 0.2e, . This estimation gives
only the ratio of the resonance strength to the nonlinear
detuning parameter. To measure all parameters for the
SBRHamiltonian, ramped tune measurements to observe
hysteresis phenomena would be very helpful.

When the betatron tune is ramped such that ( is de-
creasing &om above 1, the rms beam size will increase
according to gP, (e, + Ispp) showa in Fig. 2. The rms
beam size will continue to increase beyond the second
bifurcation point at ( = —1. At some critical parameter

( = (~1 & —1, the outer island becomes too small to
contain the beam and then the beam size will decrease
suddenly. On the other hand, whea the tuae is ramped
such that the parameter ( ~ —1 from below, the beam
size will remain small until the inner island is too small
to contain the bunch at ( = (p, 2 & —1. Above (s2, beam
particles in the bunch may execute transient betatron
oscillations about the outer SFP. This will result in a
larger beam size than that of the downramp measure-
ments. This effect depends on the radiation damping
rate and the ramping rate as discussed earlier. The hys-
teresis phenomena can be measured when the condition

Alternatively, one can also measure the sharp transi-
tion edge and the slope of the beam size increase at the
first bifurcation point (si = 1 to determine two param-
eters of the SBR Hamiltonian. Measurements of other
machine parameters, such as a,P, etc. , are needed to
determine the Hamiltonian completely.

The equation for fixed points of the Hamiltonian is given
by

3
u) + —bm+a = 0,

2
(36)

with

u) = I, cos3$, (sin3@1 ——0), b = —, a = —.X(2

Ay

The solutions are given by

'( 'la)+ g('-a)* —s

1

Iivpp = 41~1 y (4~)

ifb & (4a)2, b & 0

if (4a)2 & b,

if (4a) & b

D. Comments on 3D synchrotron resonances

When a 3D synchrotron sideband resonance m v +
m, v, —

~~„~m, Q, = E is eacountered, the Hamiltonian

can be approximated by

Figure 3 shows fixed points
[ ~

QI1 pp as a function of

~
~, . Note here that the resonance islands bifurcate at b =

is IaI and 0. At a sufficiently small sideband resonance
strength, which yields Ii spp I,, „the beam will also
split into three or four pieces. Such sideband resonances
may also display hysteresis phenomena.

C. The 3v, + m, q, = l resonances

The Hamiltonian near the third order SBR can be ex-
pressed as

II = Ho(I, I„I,)
I~+ I I ~~ I

+gI ' I, ' cos(m Q +m, g, +m, g, —N+p).
(37)

H = v I + 21 a I — (Q,I, + 2o(—„I,)
+gI ~2cos(3$ +m, g, —E8+p). (33) +2= l0.+ '@.+( m,

m
* m,

~+
~
Ii+4.I2+Q.Is,

m m p

Using the generating function

Using the generating function

m,
+2 =

I 0.+ '@.—-g+ -
I
I, + 4,I„

3 3 3p

$.0

2.5

~ ~ ~ I
)

I ~ ~ ~

[
~ ~ ~ I

the Hamiltonian in the resonaace rotating frame becomes
II = II1(I1,@1,I2) +II2(I2), with II2(I2) =

~ ~

(QsI2+
2a„I22) and

2.0

1.5

Hl —81I1 + —alI1 + gI1 cos 3 Ill.
1 2 - 3(2
2

(34) 1.0

Here bi ——v~ —
~~~ 2 (Q, + a„I2) —

2 is the resonance

proximity parameter and a~ ——ct —
~~~ 9 o.„is the ef-

fective resonance detuning parameter. Hamilton's equa-
tions of motion are given by

0.5

0.0
a 0

lul'

$1 ——bi + ai Ii + gI1 cos 3@1, Ii ———3gI1 sin 3@1.X/2 3/2
1

(3S)

FIG. 3. The square root of the actions of SFPs and UFPs
divided by a normalized resonance strength for the third order
SBR are plotted as a function of the normalized resonance
proximity parameter.
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we obtain I = Ii, I~ = «Ii+I2, »d I, = —Ii+
I3. The Hamiltonian in the resonance rotating kame
becomes H = Hi(Ii, gi, I2, Is) + H2(I2) + Hs(Is), with
H2(I2) = v~I2 + 2n„I2, Hs( s) = —~"

~

(Q, Is + 2n„Is)
and

m,
Hi ——biIi+ —niI, +gI, '

l
I2+ Ii

l
cosm gi.

2 ( m~ j
(38)

Here bi ——(v + n, Ig) + (v, + n, I2) —
~ ~

' (Q, +
n„Is) ——is the resonance proximity parameter and

2 2

o.i ——o. + 2 o. , +,a„—~ll ~o.„is the effective

resonance detuning parameter.
The Poincare surface of section of Eq. (38) for 3D syn-

chrotron resonances resembles that of 2D resonances [20].
Without detailed analyses of the Hamiltonian Hi in res-
onance rotating kame, observations pertinent to beam
stability can be stated as follows. Since Is is invariant
and I, &) I „the longitudinal action works as a reser-
voir in the dynamics of particle motion. Because I2 is
conserved, the transverse amplitude growth will be much
larger for the transverse sum resonance sidebands. The
transverse growth will be finite for sidebands of trans-
verse difFerence resonances, where ~o. —~0 is invari-

ant across the resonance. Experimental observations in
LEP showed that 02+ cr, was indeed invariant across the
v —v, +Q, = 8 resonance [9]. It remains to be confirmed
that P P, at the beam profile measurement location
because the proper invariant for v —v, + Q, = I SBR

2 2

is ~ + ~. To achieve further detailed understanding of
P P. '

the 3D resonance, measurements of Poincare maps are
essential.

A better experiment would require synchrotron and beta-
tron phase space tracking following a coherent synchro-
betatron excitation to a beam bunch with small phase
space area (a macroparticle).

Measurement of SFPs of the Hamiltonian can be used
to determine the SBR Hamiltonian. The ramped tune
measurements in LEP was used as an illustrative ex-
ample. The parameters of a SBR Hamiltonian can be
derived from the experimental hysteresis curves. Once
the resonance parameters are obtained, one may design
a SBR corrector to cancel the SBR harmonic near the
operation tunes.

We have discussed mainly single particle dynamics
near SBRs of low order betatron sideband synchrotron
resonances. When beam-beam interactions [13,14] are
included, high order betatron sideband SBRs have been
observed [3]. The nonlinear detuning model used in
this paper should be modi6ed to reQect the nonlin-
earities of the beam-beam interaction. More recently,
there are many experimental observations on the 3D
m v +m, v, +m, Q, = f resonances [7,9]. Further stud-
ies on these resonances may be important for future high
luminosity colliders.
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APPENDIX A: NONLINEAR DETUNING
OF SYNCHROTRON MOTION

IV. CONCLUSION

The Hamiltonian for the synchro-betatron coupling
was discussed in the action-angle variables conforming
with the transverse actions. The nonlinear detuning pa-
rameters in the synchrotron phase space are found to be
small in comparison with that of betatron detuning pa-
rameters due to octupoles and sextupoles. Because of a
large ratio between the longitudinal and the transverse
actions, particle loss via transverse phase space will occur
near a SBR, where the dependence of the stop band width
on the resonance strength and the nonlinear detuning pa-
rameters are also discussed. Because of synchrotron radi-
ation damping, the beam bunch may split into beamlets
converging toward SFPs of the Hamiltonian How. These
beamlets are orbiting in the betatron phase space at the
tune of v + ~Q, ——.A high resolution fast tim-
ing profile monitor may be used to measure these stable
fixed points (attractors), which may also exhibit hystere-
sis phenomena. However, it is worth pointing out that
a beam bunch consists of particles with different syn-
chrotron and betatron phases. Therefore "a stable is-
land" is actually a ring of islands in the betatron phase
space. It may be diKcult to resolve the ring of beamlets.

The unperturbed Hamiltonian for the synchrotron mo-
tion in the conjugate phase space variables ( & p, —~) is

given by

H, = - rIBl-
& po )

v2R
[cos(P + P, )

—cos P, + P sin P,],ti2 i7
(A1)

where v, =
2 &,'& is the synchrotron tune of a station-

ary bucket at small amplitudes. Hamilton's equations
are given by

where synchrotron tune is given by &I' and A is the

area in the conjugate phase space variables (P, — ).
The action varies from 0 to a maximum value given by

P = hg, = ' [sin(P+ P, )
—sing, ].&s

po
'

po hlnl

The action for a torus K, = E, is given by

I, = —— dQ = 4.771 x 10
1 R Ap 4 [AeVs]

ym, (A2)
2~ Ii po P[E GeV]
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I, =
& &,'~ ~o.(P, ), where cx(P,) —i ". &~' is the running

bucket reduction factor.
Let Q, = v, g~cosp,

~
be the synchrotron tune of

the running bucket at small amplitude. The solution
of Hamilton's equations in the 6rst order perturbation
theory is given by

2I,h i@i b,y 2I.Q.
RQ,

The nonlinear detuning term can be obtained perturba-
tively by substituting the 6rst order solution into the
Hamiltonian and performing canonical perturbation cal-
culations. The result is given by

~ p'('8) p'H~s= &q . ——ECq
Zap 2z

where Cq ——3.84 x 10 ' m, p is the bending radius,
and j is the damping partition number in the horizontal
phase space. The average of the dispersion action is given
by ('8) = I"p8&, where F is a scaling constant and 8~
is the bending angle of dipole(s) in a half cell. For a
lattice with periodic focusing and defocusing (FODO)
cells, I" 4 . ; ~"."@', where 4 is the phase advancesin~ z sin@
of a FODO cell, and for the minimum emittance double
bend achromatic (DBA) lattice, F =

The longitudinal action is given by

H, = (Q—,I—.+ —,'o„I,'+ ), (A4) 1 R b.E ) Rfvy[

2x h (pzEO), , ™2v, ~ pj,
'

with

(1+ —tan P, ).s
SR

The synchrotron detuning parameters o.„for some stor-
age rings are listed in Table I. These nonlinear detuning
parameters are found to be of the order of —10 m
which is small in coinparison with that of the transverse
nonlinear detuning parameters a, etc. , which are of the
order of 10 —104 m i for high energy storage rings.

The conjugate angle variable Q, can be obtained from
the generating function

&2(4, I.) = —
I I

d4'
~ (by)

with

(A5)

Thus the synchrotron phase integral of Eq. (8) can be
transformed into an integral over P variable [21]. Mak-
ing a smooth approximation for the synchrotron motion,
the evaluation of the SBR strength is reduced to the cal-
culation of the following integrals:

sin(P+ P, )e' +'i~)dQ„~~

4,
rs imp, (P)dy

etc. These integrals can be integrated by using the coor-
dinate transformation of Eq. (A5).

APPENDIX B: SCALING PROPERTIES OF THE
ACTION VARIABLES IN SYNCHROTRONS

The emittance of the electron beam in an isomagnetic
storage ring is given by

where j, is the damping partition number in synchrotron
phase space. Note here that the longitudinal action is in-
versely proportional to the synchrotron tune. For a DBA
lattice, the momentum compaction factor o.
Thus the ratio of the longitudinal action to that of the
horizontal one is

I, 1
8.2MI 4~]5E v,

where M is the number of superperiods for the double
bend achromat. Note here that the ratio is independent
of energy and is inversely proportional to v, . The ra-
tio increases with the number of cells. A similar con-
clusion can be reached for a lattice with FODO cells.
The damping rings of future linear colliders achieve their
small emittance by using many FODO cells with small
eg and employing high betatron phase advance in each
FODO cell. The ratio ~ is about 3 x 10s.

I~
For proton storage rings, a typical rms normalized

emittance of a beam is about 47t' mmmrad for 10 par-
ticles per bunch. Thus the action for an rms particle is
about

(B3)

p,m.

Similarly, the rms longitudinal phase space area is about
0.2 eV s. Thus the rms longitudinal action is given by

I x 10 pm.
'y

The ratio ~& will be about 5 x 10 in all cases.
More recently, many low energy storage rings with elec-

tron cooling have been constructed for atomic and nu-
clear physics research. The longitudinal cooling rate is
usually an order of magnitude larger than the transverse
cooling rate. Because a low energy beam is usually dom-
inated by the space charge effects, the ratio of rms lon-
gitudinal action to the transverse actions are actually of
the same order of magnitude. As an example, the rms
action of the bunched beam at the Indiana University Cy-
clotron Facility Cooler was found to be about I = 0.025
pm at 45 MeV kinetic energy for a beam intensity of
about 5x 10 protons. The corresponding longitudinal
action was found to be about I, 54 pm. Thus the
ratio is about 2x103.
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