PHYSICAL REVIEW E

VOLUME 49, NUMBER 1

JANUARY 1994

Structure and shape of nematic liquid-crystal microdroplets

Wei Huang and G. F. Tuthill
Physics Department, Montana State University, Bozeman, Montana 59717
(Received 13 July 1993)

We calculate the continuous dependence of structure and shape of tangentially anchored nematic
liquid-crystal microdroplets on the parameters of anchoring strength w, and radius r, at fixed tempera-
ture, using a numerical relaxation method and Landau-de Gennes theory. The structure is character-
ized by spatially varying order parameter and director fields S and 1, and the shape of a free droplet is
assumed to be a prolate ellipsoid. For droplets of fixed spherical shape, we find discontinuous and
discontinuous order-disorder and uniform-distorted transitions of .S induced by r and by w,, respectively,
and uniform-distorted transitions of @i induced by both r and w,. For free droplets, we show that the
surface interactions can indeed induce prolateness, which increases toward a limiting value as the
volume becomes smaller, and which is nearly proportional to w, /o, where o is the director-independent

part of the surface tension.

PACS number(s): 64.70.Md

I. INTRODUCTION

In recent years keen interest has surrounded the
behavior of liquid crystals in confined geometries (drop-
lets, films, and capillaries) due to present and potential
applications. In such situations, surface and bulk effects
may be comparable, and both the order parameter and
the director field may show large spatial variations at
equilibrium. The case of nematic droplets is particularly
interesting because of their use in polymer-dispersed
liquid-crystal (PDLC) devices that act as field-actuated
shutters.

Theoretical treatments of nematic droplets have an ex-
tensive history. Chandrasekhar [1] in 1964 pointed out
that the competition of elastic and surface energies might
render their shapes elongated rather than spherical.
Dubois-Violette and Parodi [2] were the first to model in
detail the effect of an external (magnetic) field on the
director configuration of a spherical droplet, in the limit
of strong anchoring. For homeotropic anchoring, they
found a first-order transition from the radial to the axial
configuration with increasing external field. The order
parameter, and therefore the elastic constants, were con-
sidered to be fixed and uniform. Sheng showed that the
temperature-driven isotropic-nematic transition, which in
the bulk is first order (discontinuous), could become con-
tinuous in confined geometries due to the order-
enhancing effects of surface anchoring, both strong [3]
and weak [4]. The isotropic-to-radial-nematic transition
in droplets with strong homeotropic anchoring was then
shown by Zumer, Vilfan, and Vilfan [5] to become con-
tinuous or disappear entirely, for sufficiently small radius,
a picture later confirmed by experiment [6], and analyzed
[7] in greater detail using a picture in which spatial varia-
tions of the nematic order parameter are permitted. Vil-
fan, Vilfan, and Zumer [8] found similar behavior in the
case of strong tangential anchoring, where the transition
is from isotropic to bipolar nematic.

Transitions between various configurations within the
nematic phase have been examined more recently. For
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example, Erdman, Zumer, and Doane [9] have studied
the axial-to-radial transition as a function of external
field, temperature, and radius in the approximation of a
spatially uniform order parameter and equal splay and
bend constants, and have tested their predictions against
experimental results obtained on micrometer-sized drop-
lets of the liquid crystal E7 dispersed in a polyurethane
matrix. A more thorough study of this transition [10] has
delineated a region of the phase diagram in which the
configuration is axial with an equatorial line defect for
anchoring strengths that are large compared to the exter-
nal field. For strong tangential anchoring and uniform
order parameter, Williams [11] has demonstrated the ex-
istence of a twisted bipolar phase for a splay elastic con-
stant that is large compared to the sum of twist and bend
constants.

Still lacking to this point is a complete and integrated
picture of the combined effects of droplet size, anchoring
strength, elastic constants, field, and temperature on the
structure of nematic droplets, including the spatial
configurations of both the order parameter and the direc-
tor fields. In this paper we begin such a program by
describing the interrelated effects of droplet radius (from
hundreds of angstroms to hundreds of micrometers) and
anchoring strength, from weak to strong. We use a
single-elastic-constant approximation in which the bend
and splay constants are set equal and the twist constant
assumed very large (i.e., no twisted configurations are al-
lowed). A mean field or Landau—de Gennes approach is
employed, and both the order parameter and the director
fields are allowed to vary spatially. We focus on the case
of tangential anchoring, so that the competing
configurations in the nematic regime are uniform and bi-
polar, as shown in Fig. 1.

In a second and related portion of this work, we exam-
ine Chandrasekhar’s original prediction concerning the
shapes of free droplets. This issue may be approached in
a qualitative way by noting that both the elastic and sur-
face anchoring terms tend to produce an elongated shape.
The surface tension counters this tendency, and the two
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FIG. 1. Bipolar and uniform director configurations in a
spherical droplet.

surface terms may be comparable in size. The bulk elas-
tic energy of the nematic is associated with the squares of
gradients of i, and so is proportional to the radius r of
the droplet, while the surface energy is proportional to
r2. Thus for small radius, the bulk energy dominates and
may also play a role in determining the droplet shape.
With the same model free-energy and calculational ap-
proach that we use for the fixed-shape case, we consider
droplets of fixed volume whose surfaces are allowed to as-
sume prolate ellipsoidal configurations and find the equi-
librium (minimum-total-free-energy) shape.

In what follows we first briefly review the model free
energy used in our calculations, including approxima-
tions. We also outline the numerical procedure used to
find the minimum-free-energy configurations. This in-
volves a direct minimization of the discretized free ener-
gy, rather than the usual Euler-Lagrange equation ap-
proach. In Sec. III we discuss our findings for both the
fixed-shape and the free-shape parts of our work.

II. MODEL DEFINITION
AND COMPUTATIONAL METHOD

The model free-energy density used in this work is of
the Landau—-de Gennes type [12], consisting of contribu-
tions from both the bulk and the surface, and is a func-
tion of both the nematic scalar order parameter S(r) and
the director field fi(r). Following Ref. [8], we take the ex-
pression for the bulk free-energy density f, to be of the
form

fo=fo+5(T=T*)S*~1BS*+Cs*
+3L(VS)P+3S2L[(V-A)+H(VXA)] . (1)

The terms involving S alone are responsible for driving
the first-order isotropic-nematic transition. The tempera-
ture T* represents an ideal bulk supercooling limit, while
in the absence of elastic distortions, surface effects, or in-
homogeneities, the first-order transition would occur at
T*+2B%/9aC. Terms involving the director field de-
scribe the splay, bend, and twist elastic energy density,
specialized to the case of equal elastic constants; the usu-
al Frank elastic constant K in this approximation is given
by K =9LS?/2. In fact, we treat only configurations in
which twist is excluded, so that the contribution of
(V X1)? arises entirely from bend distortions.

The areal free-energy density at the surface is modeled

by a general expression for weak anchoring:
fi=o—1lwy@an)?, )]

where a is a unit vector in the “favored” direction—the
surface normal in the homeotropic case or a surface
tangent in the cases discussed here in which bipolar
configurations arise. The quantities 0 and w, describe,
respectively, the surface tension and anchoring strength.
The anchoring is here assumed to be independent of S, al-
though we have recently also studied [13] the effects of al-
lowing w to be S dependent.

The total free energy F is obtained by integrating f,
over the volume of the droplet and f over its surface.
To find equilibrium configurations, we minimize directly
[14-16] a discretized version of F. The discretization is
most simply discussed in the case of the droplets of fixed
shape. We introduce a square mesh covering a single
quadrant of the drop’s axial cross section and at each
node (i, j) define local variables S;; and 6;; for the order
parameter and the angle between the director and the po-
lar axis. Note that in the no-twist case, i has no azimu-
thal component. F is then a sum involving the set
{S;,0;;}, and the simultaneous minimization equations
{OF /3S;;=0,0F /36,;=0} are solved numerically: We
repeatedly sweep through the mesh and adjust the vari-
ables at each point with a single iteration of a Gauss-
Seidel over-relaxation method, using the most current
values for the node variables at adjacent points in the cal-
culation of the spatial derivatives. To take account of the
droplet boundary efficiently [14], we assign to each mesh
point a fixed weight factor of 1 or 0, depending on wheth-
er the point is inside or outside the surface, and use these
factors to calculate the contribution of a unit cell of the
mesh to the free-energy integral. Using this technique,
variables at both bulk and surface points may be updated
in the same sweep.

For our investigation of droplet shape, we describe the
prolateness by a single additional variable x > 1. We de-
form the unit cell of our mesh from square to rectangular
through contraction of the lateral dimension by a factor
1/x and extension of the vertical dimension by x2. Thus,
x is simply the cube root of the ratio of the ellipse princi-
pal axes. Mesh points outside the droplet before the de-
formation remain outside, those inside remain inside, and
the droplet volume is conserved. This allows us to com-
pute the free energy as a function of x and adds very little
complexity to the code.

III. RESULTS

For the results described here we used the bulk
coefficients of the nematic liquid crystal 4-n-pentyl-4'-
cyanobiphenyl (5CB), as given by Ref. [4]: a=0.13
J/Kem?®, B=1.605 J/cm?, C =3.9 J/cm®, and L=10""1
J/cm. The corresponding bulk supercooling limit
T*=317.14 K is 1.129 K below the bulk nematic-
isotropic transition temperature, and we fix the tempera-
ture at a point just below the transition: T—7T*=0.001
K.

As either r or w, is varied in a spherical droplet, we
find that the director configuration can show a distortion
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FIG. 2. Maximum polar director angle as a function of the
log of the anchoring strength parameter w, (in J/m?) for drop-
lets of radius (a) 0.01, (b) 1, and (c) 10 um. Because of the use of
a finite-spaced mesh, the maximum angle is less than 90° even in
the bipolar phase.

transition, as measured by 6,,,, the maximum value of
the director angle (Figs. 2 and 3). The transition with
respect to w, can become virtually discontinuous for
small droplets, a situation that we describe as “first-
order” by analogy to usual phase transitions in bulk sys-
tems. It is possible that the first-order character of the
transition here and in the following is due to our assump-
tion of an anchoring parameter independent of S, but we
believe that the qualitative trends shown here are reason-
able. For droplet radius larger than 10° um, or anchor-
ing strength greater than 2 X 1072 J/m? the configuration
is always highly distorted (bipolar). Thus for large drop-
lets, there is always effectively strong anchoring, even if
the anchoring parameter is small, as proposed in Ref.
[11] and confirmed by photographs [17]. On the other
hand, for small droplets and not extremely strong an-
choring, the director field can become completely undis-
torted. This is also consistent with our earlier arguments,
which indicated that for small droplets, the bulk elastic
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FIG. 3. Maximum polar director angle as a function of the
log of the radius (in m) for anchoring strength parameters w, of
(a) 3X107° J and (b) 0.1 J/m>.
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FIG. 4. Order parameter as a function of radius, for fixed an-
choring parameter wy: (a) wy=3X10"°J/m? a case for which
the order parameter is uniform; (b) maximum value of §, for
we=0.01 J/m?; (c) minimum value of S for w,=0.01 J/m?.

energy term dominates; a reduction in size is virtually
equivalent to a reduction in anchoring strength.

The result of uniform director field for small droplets is
of particular interest since Ref. [8] used the condition of
fixed tangential surface director (in analogy to Sheng’s
proposal for a planar surface) to discuss the experimental
observation (Ref. [6]) of a nematic-isotropic transition
with temperature. However, the same findings can be ex-
plained if S dependence is introduced into w, and in this
case the uniform state is still retained for small droplets
[13].

The behavior of the order-parameter field under these
conditions is equally interesting but somewhat more com-
plex. Viewed as a function of droplet size, the order pa-
rameter decreases from its bulk value as r decreases, as
noted in experiment [6]. For small values of the anchor-
ing parameter w, (e.g., wy=3X10"> J/m? shown in
curve a of Fig. 4), the order-parameter field remains

05

os | |

0.2 \

Order parameter S

0.1 b

0.0 4

10g,oW,

FIG. 5. Order parameter S as a function of anchoring
strength wy: (a) Value of uniform S for 10-um droplet and max-
imum value of S for 0.1- um droplet; (b) minimum value of S for
0.1-um droplet.
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FIG. 6. Prolateness parameter x versus radius (of a spherical
droplet of equal volume) for anchoring strength parameter
wo=3X107° J/m? and surface tension o =10"*J/m>.

roughly uniform over the volume of the droplet as it de-
creases in size. For larger w,, the decrease is a two-stage
process: S rapidly falls to near zero in the pole regions
(around the director singularity), while in the rest of the
volume it remains at its bulk value until yet smaller
values of radius are reached, whereupon it abruptly goes
to zero everywhere. That is, the anchoring can force the
director to remain distorted and therefore the elastic en-
ergy rises until order is destroyed. There is a size regime
in which S is distinctly nonuniform, as illustrated by the
difference in curves b (the maximum value of S) and ¢ (the
minimum value of S) in Fig. 4.

For the droplet size that is fixed and small, an increase
in w, can induce sudden nonuniformity in the S field, as
shown in Fig. 5. Large droplets remain in the bipolar
phase for all values of w,, with S virtually constant and
uniform.

If the droplet shape is allowed to become ellipsoidal,
we find that the change of the bulk free energy under a
shape variation is always smaller than that of the surface
energy. In consequence, the shape depends only on the
director configuration and the ratio wy/o. Figure 6
shows that large drops become spherical; the director
near the surface is perfectly tangential and no decrease of
surface energy is possible under elongation. For a small
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FIG. 7. Prolateness parameter x versus anchoring strength
w, for a 0.5-um droplet and o =10"* J/m?>.

droplet the shape becomes prolate, approaching a limit-
ing value as the radius shrinks. For the surface tension to
anchoring strength ratio shown in Fig. 6, the limiting
value of x is near 1.06, giving a structure with a ratio of
major to minor axes of 1.19. The nearly linear depen-
dence of shape on the ratio wy /o is demonstrated in Fig.
7 for a droplet of radius 0.5 um.

In summary, we have obtained several results unavail-
able from earlier work that assumed fixed anchoring or
uniform order parameter. These include the uniform
director configuration for small droplets, an order-
disorder transition for small droplets with very strong an-
choring, and a range of size and anchoring strength in
which a nonuniform S field appears. In addition, we have
shown that moderate prolateness does indeed exist under
certain conditions for a free droplet. Since these effects
appear at the micrometer level, light-scattering methods
on aerosols, electron microscopy, or shape-analysis tech-
niques routinely used in microbiological studies may
prove applicable in developing experimental tests of our
results.
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