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Nonlinear properties of the Kapchinskij-Vladimirskij equilibrium and envelope equation
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Chiping Chen
Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Ronald C. Davidson
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

(Received 27 October 1993)

The nonlinear properties of the Kapchinskij-Vladimirskij (KV) equilibrium and envelope equation are
examined for an intense charged-particle beam propagating through an applied periodic solenoidal

focusing magnetic field, including the effects of the self-electric and self-magnetic fields associated with

the beam space charge and current. It is found that the beam emittance is proportional to the maximum

canonical angular momentum achieved by the particles within the KV distribution. The Poincare map-

ping technique is used to determine systematically the axial dependence of the radius of the matched
(equilibrium) beam and to study nonlinear behavior in the nonequilibrium beam envelope oscillations. It
is shown that the nonequilibrium beam envelope oscillations exhibit nonlinear resonances and chaotic
behavior for periodic focusing magnetic fields and sufficiently high beam densities. Certain correlations
are found between the nonlinear resonances and well-known instabilities for the KV equilibrium. It is
also shown, in agreement with previous studies, that there exists a uniquely matched beam in the param-
eter regime of practical interest, i.e., 00&90', where cro is the vacuum phase advance over one axial
period of the focusing field. The nonlinear resonances and chaotic behavior in the nonequilibrium beam
envelope oscillations may play an important role in mismatched or multiple beam transport, including
emittance growth and beam halo formation and evolution.

PACS number(s): 07.77.+p, 29.27.Eg, 41.75.—i, 52.25.%z

I. IN ERODUGTION

The exploration of equilibrium and nonequilibrium
properties of an intense charged-particle beam in a
periodic focusing channel has been emphasized in high-
current accelerator and charged-particle beam research
[1,2]. Such research is critical to the advancement of
basic particle accelerator physics and to the design of
high-current linear accelerators and high-current beam
transport systems. An important application of high-
current charged-particle beams is heavy ion fusion [3].

In 1959, Kapchinskij and Vladimirskij [4] constructed
the first and only known equilibrium distribution func-
tion for a continuous beam in a periodic focusing channel
including the eFects of beam space charge and current.
This pioneering work has led to theoretical and experi-
mental investigations of several critical aspects of an in-
tense beam focused by a periodic transport channel, in-
cluding (i) the introduction of the concept of root-mean-
squared (rms) emittance [5—7], (ii) the derivation of the
rms beam envelope equations [5,6,8], (iii) the investiga-
tion of current intensity limits [9], (iv) the analysis of the
stability properties of the Kapchinskij-Vladimirskij equi-
librium [10,11], (v) the study of the phenomenon of emit-
tance growth [12—16], and (vi) the exploration of beam
halo formation and evolution [17]. Despite these efforts,
a basic understanding of the physics of intense charged-
particle beam propagation in periodic focusing channels
has not yet emerged.

The purpose of this paper is to examine the nonlinear

properties of the Kapchinskij-Vladimirskij (KV) equilib-
rium and envelope equation for intense charged-particle
beam propagation through a periodic solenoidal focusing
magnetic field, including the efFects of the self-electric
and self-magnetic fields associated with beam space
charge and current. The KV equilibrium distribution
function is derived. It is emphasized that the periodic
solenoidal magnetic field configuration possesses a higher
degree of symmetry than the alternating-gradient quadru-
pole magnetic field configuration. It is shown that the
unnormalized emittance determines the upper and lower
bounds on the canonical angular momentum of the parti-
cles within the KV distribution. A normalized beam en-
velope equation is presented and it is characterized by
two parameters, namely, the intensity of the focusing
field and the beam self-field perveance. The properties of
the beam envelope equation are examined over a wide re-
gion of parameter space without making the linearization
approximation [11]about the KV equilibrium. The Poin
care mapping technique [18] is used to determine sys-
tematically the axial dependence of the radius of the
matched (equilibrium) beam and to explore the phase
space described by the beam envelope equation. It is
shown, for a periodic focusing magnetic field and
suf6ciently high beam density, that the nonequilibrium
beam envelope oscillations can exhibit nonlinear reso-
nances as well as chaotic behavior, i.e., a very sensitive
dependence on initial conditions. Certain correlations are
found between the nonlinear resonances in the nonequili-
brium beam envelope oscillations and well-known insta-
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bilities [10] for the KV equilibrium. The nonlinear reso-
nances and chaotic beam envelope oscillations may play
an important role in mismatched or multiple beam trans-
port including emittance growth and beam halo forma-
tion and evolution. Furthermore, it is found, in agree-
ment with previous studies [10,11], that there exists a
uniquely matched beam in the parameter regime of prac-
tical interest, i.e., in the regime where the strong,
second-order (envelope) instability is avoided.

The organization of this paper is as follows. In Sec. II
the Hamiltanian equations of motion are presented for a
single particle in bath the laboratory frame and the Lar-
mor frame in the paraxial approximation. In Sec. III the
Kapchinskij-Vladimirskij equilibrium distribution func-
tion is constructed and the beam envelope equation is de-
rived. It is shown that the unnormalized emittance deter-
mines the upper and lower bounds on the canonical angu-
lar momentum of the particles within the KV distribu-
tion. In Sec. IV the properties of the beam envelope
equation are studied using the Poincare map. The axial
dependence of the radius of the matched (equilibrium)
beam is obtained and shown to be unique in the parame-
ter regime of practical interest. Chaotic beam envelope
oscillations are found for a periodic focusing magnetic
field and sufficiently high beam density.

II. CANONICAL DESCRIPTION
OF SINGLE-PARTICLE MOTION

In this section, we present a canonical description of
the motian of a single particle in an applied periodic
solenoidal focusing magnetic-field and the equilibrium
self-electric and self-magnetic fields associated with an in-

tense non-neutral charged-particle beam. After making
the paraxial approximation, we express the Hamiltonian
and the equations of motion for a single particle in both
the laboratory frame and the time-dependent Larmor
frame.

A. Equations of motion in the laboratory frame

We consider an intense charged-particle beam propa-
gating with average axial velocity pbce, through an ap-
plied periodic solenoidal magnetic field described by [1]

8'"'(x,y, s) =B,(s)e, —
—,'8,'(s)(x e„+ye~ )

in the thin-beam approximation. In Eq. (1), use has been
made of the convention s =z to denote axial coordinate,
the prime denotes derivative with respect to s, and c is
the speed of light in vacuo. For a periodic solenoidal
magnetic field with the fundamental periodicity length S,
the axial magnetic field 8,(s) satisfies the condition

8,(s+S)=B,(s) .

v=q N/mc «1, (4)

where N= Jdx dy no(x, y, s) is the number of particles
per unit axial length of the beam and q and m are the par-
ticle charge and rest mass, respectively. Under these con-
ditions, the equilibrium self-electric and self-magnetic
fields associated with an intense non-neutral charged-
particle beam can be approximated by

E"(x,y, s) = —e„+e„4"(x,y, s)
(1

x y

and

B"(x,y, s) = e„—e A,"(x,y, s),

where the scalar potential for the self-electric field obeys
the Poisson equation

a2 82+ 4"(x,y, s) = 4mqno(x, —y, s)
Bx By

(7)

and the vector potential for the self-magnetic field is
given by

A"(x,y, s) =Pb@"(x,y, s)e, .

Throughout this paper, the equilibrium particle density
no(x, y, s) in Eq. (7) is assumed to be uniform over the
cross section of the cylindrical beam with radius rb(s),
l.e.,

N/err'(s) for 0 r & rb(s)

0 for r & rb(s),

where r =(x +y )'~ is the radial coordinate and
rb(s) =rb(s +S) is a periodic function of s. From Eqs. (7)
and (9), the scalar potential within the beam is easily
found to be

NrN['{x,y, s)=-
rb(s)

{10)

The equations of motion in the laboratory frame can be
derived from the single-particle Hamiltonian defined by

The vector potential for the applied magnetic field can be
chosen as

A'""(x,y, s) = —,'8, (s)( —ye„+xe )

with S'""=V X A'"').
In the paraxial approximation [1],the transverse parti-

cle motion is assumed to be nonrelativistic, and the
Budker parameter is small compared with unity, i.e.,

'2 '2

I( p p p ) C2 p pp(ex() +C2 p Xg(ext) +C2 p +g(s) +m2C4hays, „, „, , — c
c y 3c z zc

1/2

+qC"
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where (s,P, ) is a canonical conjugate pair and the canoni-
cal momentum P is related to the mechanical momentum

p by & =p+ (q /c) [ A'*"+A"]. Here s =Pbct is the ax-
ial coordinate, where pbc is the average axial velocity of
the beam particles. Because the transverse motion is as-
sumed to be nonrelativistic in the paraxial approxima-
tion, the axial mechanical momentum p, =ybtnpbc can
be treated approximately as a constant. Hence the full
Hamiltonian can be approximated by

H —ybmc +H» (12)

qB, (s)
P„+ y + P„—

2c2fbm

N (x2+y )
i brb($)

qB,(s)

2c

where s =pbct is the axial coordinate.
It is useful to introduce the normalized transverse

canonical momenta and Hamiltonian

P„p P„~ H~

ybrnpbc
'

ybrnpbc
'

ybrnpbc

(14)
the normalized focusing strength parameter

qB, (s)
«, (s)=

2p bPb tnc

and the normalized self-Beld parameter

«, (s)= E
rb(s)

(15)

where yb=(1 —Pb)'~ =const, and the Hamiltonian for
the transverse motion is de6ned by

Hi(x, y, P„,P», s)

Note that the motion in the x direction is strongly cou-
pled to the motion in the y direction in the laboratory
frame.

where P(s)= I,'ds+«, (s}. The generating function F2
de6nes the following transformation:

2=x cos[$(s)]—y sin[/(s)],

g=x sin[/(s)]+y cos[$(s)],

P„=P„cos[/(s)] —P sin[/(s)],

P =P„sin[/(s)]+I cos[P(s)] .

(20}

The Hamiltonian in the new variables (Xg,P„,P ) can
then be expressed as

Hj(X,g,P„,P,s)= ,'[P„+P»—+«(s)(X+g )), (21)

where «(s)=«, (s)—«, (s) and use has been made of the
property that H j =8~+BF2/Bs. The equation of motion
in the Larmor frame are given by

X' =P„, (22)

B. Equations of motion in the Lannor frame

We now perform a canonical transformation from the
laboratory frame to the so-called Larmore frame [2],
which rotates with respect to the laboratory frame with
angular velocity pbc+«, ($)=qB,(s)/2ybrnc, i.e., at
one-half of the loca/ relativistic cyclotron frequency. The
gener atin function for such a transformation from
(x,y, I'„, » ) to (X,g,P„,P ) can be chosen as

F2(x,y;P, P», s ) = jx cos[$(s)] y—sin[/(s)]]P„

+ jx sin[/(s)]+y cos[$(s)]]P, (19)

where K=2v/ybpb =2q X/ybpbtnc is the normalized
perveance of the beam. Making use of the above nota-
tions, the normalized Hamiltonian for the transverse
motion can be expressed as

P,(x,y, P„,P„,s)
=

—,
'

j [P,+y+«, (s)]2+[I» —x+«, (s)]
—«, (s)(x +y )], (17)

where the axial distance s =pbct is an effective time vari-
able. The equations of motion for a single particle in the
laboratory frame are given by

g' =P»,
P„' = —«(s}X,

P» = —«(s)jT .

Combining Eqs. (22) and (24) gives

X
+«($)X=0 .

$2

Similarly, from Eqs. (23) and (25), we obtain

+«($)g =0 .

(23)

(24)

(25)

(26)

(27)

=P„+y+«~($),

=P»Q«, (s) [«,(s) «, (s)]x, — —

j. P„+«;{$) [«,(s)——«, {s)]y . —

For an even periodic function «(s)=«( —$)=«(s+S)
which is a special case of the present analysis, Eq. (26} or
Eq. (27) is known as Hill's equation.

Two remarks are in order regarding the canonical
transformation in Eq. {20) from the laboratory frame to
the I,armor frame. First, because the transformation is a
pure rotation, it preserves the invariance of an arbitrary
axisymmetric equilibrium density profile, i.e.,
no{r,s}=no{F,$), where F={X +t/ }'» . Second, the
motion in the X direction is decoupled from the motion in



5682 CHEPING CHEN AND RONALD C. DAVIDSON

the y direction for the uniform density profile defined in
Eq. (9). Such decoupling can be accomplished with a
pure rotation if and only if the equilibrium density profile
is both axisymmetric and uniform within the beam.

III. KAPCHINSKI J-VLADIMIRSKI J
DISTRIBUTION FUNCTION

The Kapchinskij-Viadimirskij distribution [4] is the
only known self-consistent Vlasov equilibrium (8/Bs =0)
for an intense charged-particle beam in a periodic linear
focusing field including self-field effects. Such a periodic
focusing field can be realized either in an alternating-
gradient quadrupole magnetic field configuration in the
laboratory frame or in a periodic solenoidal magnetic
field configuration in the Larmor frame as shown in Sec.
II. Because the latter configuration possesses a higher de-
gree of symmetry than the former, there are subtle
differences between the two configurations. The aim of
this section is to construct the KV distribution function
for a periodic solenoidal magnetic field configuration and
to point out the differences between the periodic
solenoidal and alternating-gradient quadrupole magnetic
field configurations.

To construct the KV equilibrium distribution function
for an intense charged-particle beam propagating
through a periodic solenoidal magnetic field, we adapt
Courant and Snyder's treatment [19] of the alternating-
gradient synchrotron, noting the symmetry that
a„(s)=x. (s)=l~(s). We define

and

s ds
x (s)= A„w(s)cos 2

+4'„o
'ow(s) "] (28)

dsy(s)= A w(s}sin
2

+0'»o
'o w (s)

(29)

In Eqs. (28) and (29), w (s)=w (s +S) is the square root of
the so-called amplitude function, and A„, A„, %„o, and
4 o are constants which can be determined from the "ini-
tial" conditions x(so), y(so), P„(so)=x'(so), and
P (so)=y'(so). Substituting Eq. (28) into Eqs. (22) and

(24), and Eq. (29) into Eqs. (23) and (25), we find that Eqs.
(28) and (29) solve the Hamilton equations (22)—(25), pro-
vided w (s) solves the differential equation [19]

F(xyP P s}=—P +— +—P +-x x dN g g dM2» X~ Y~ X 2 d Y

II(X, Y,Px, Pr, s)= (X + Y +Px+Pr2},1

2w (s)
(33)

which is proportional to the sum of the following two in-
dependent constants of the motion:

3,=X +Px=const (34}

c4y Y +PY =const (35)

The constancy of the quantities X +Px and Y +PY is
readily verified from Eqs. (28), (29), and (31).

The Kapchinskij-Vladimirskij distribution function [4]
can be expressed as

fo(X, Y,Px, Pr)= i 5(X +Y +Px+Pr e), —
7T E'

(36)

which describes a class of self-consistent Vlasov equilibria
(8/Os=0) for an intense charged-particle beam in a
periodic solenoidal magnetic field including the effects of
the self-electric and self-magnetic fields [1] associated
with the beam space-charge and current. In Eq. (36), the
parameter e is the unnormalized emittance of the beam.
Integrating fo over the momentum space (Px, P„), we
find that the particle density no(x, y, s) is given by the
step-function profile in Eq. (9) provided

rb(s)=E w(s) . (37)

Therefore, the assumption made regarding the density
profile in Sec. II is consistent with the choice of the KV
distribution in Eq. (36).

The relationship in Eq. (37) can be derived indepen-
dently by observing the axisymmetry of the beam and the
fact that the beam radius rb(s) corresponds to the max-
imum value achieved by x(s) along the x axis when

3» =0. Indeed, setting A„=A„'"=v'e and
cos[+„o+f', ds/w (s)]=1 in Eq. (28) yields Eq. (37).

From Eqs. (30) and (37), we obtain the beam envelope
equation

(32)

The Hamiltonian in the new variables (X, Y, PX,P„) can
be expressed as

d N +a(s)w =
ds

(30) d f'b E e
z b

+a. (s)r ————=0
ds b rb

X=- K=—
W N

Px=mP + x, PY=mI' + y,dw — dw
(31)

with the generating function

subject to the periodicity constraint w (s) =w(s +S).
It is convenient to make the canonical transformation

from (x,y, P„,P~) to the new variables (X, Y,PX,Pr)
defined by [10]

where use has been made of the relation
Ic($) K (s)—z, (s) and Eq. (16). Equation (38) is also re-
ferred to as the Kapchinskij-Vladimirskij equation in the
literature.

In the present solenoidal magnetic field configuration,
the beam envelope evolution is described by a single
second-order ordinary di5'erential equation because of the
axisymmetry in both the applied focusing field and the
beam density profile. This is in contrast to the case of
alternating-gradient quadrupole magnetic field config-
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ds 0 ds
CT =

'o w (s) '0 rt, (s)
(39)

where use has been made of Eq. (37). As shown in Sec.
IV, the phase advance without space charge, i.e.,
os=cr ~x 0, is an important parameter characterizing the
focusing field.

The unnormalized emittance e in Eq. (36) is a measure
of the phase-space area occupied by the beam. Indeed, it
is readily shown [19]from Eq. (38) that me is equal to the
minimum area, in either the phase plane (X,Px) or the
phase plane (Y,P„), required to enclose all of the parti-
cles described by the KV distribution function fo. Fur-
thermore, it is straightforward to show that the unnor-
malized emittance e is equal to the rms emittance defined

by [5,6]

uration [4] in which the KV equilibrium corresponds to a
beam whose density is uniform over an elliptical area of
the beam cross section and whose envelope must be de-
scribed by two coupled second-order ordinary differential
equations [1,4].

To complete the construction of the KU distribution
function for an intense charged-particle beam in a period-
ic solenoidal focusing field, periodic solutions to Eq. (38)
remain to be found. The procedure for finding a stable
periodic solution to Eq. (38) with periodicity length S is
often referred to as beam matching, which will be dis-
cussed in Sec. IV. For a matched (equilibrium) beam, the
phase advance over an axial period of the focusing field is
defined by

Pe = E—Y bm pbc (44)

It can also be shown that the particles with Pe=+Pe
always stay at the rms beam radius [i.e., at
r(s)=rl, (s)/~2], whereas the particles instantaneously
reaching the beam edge r(s)=rb(s) carry zero canonical
angular momentum. Note that Eq. (44) results from a
kinetic analysis and differs from the well-known relation
e=PelyI, mP&c [Eq. (3.47) in Ref. [2]] for a helical lami-
nar distribution.

IV. SEAM MATCHING
INTO THE FOCUSING FIELD

and express Eq. (38) in the following normalized form:

d rb K 1

8$ 2 z b 3
+«(s)r — — =0 .

Tb

(46)

Equation (46) is equivalent to the first-order ordinary
differential equations

Pb
=fb

s
(47)

The aim of this section is to study the properties of the
beam envelope equation (38) and present a numerical
method for finding periodic solutions to Eq. (38). For
present purposes, we introduce the dimensionless parame-
ters and variables defined by

s rt z SE—~s, ~r&, S «, ~«, , ~K, (45)

(40}
and

In Eq. (40), the average of the phase function
X(X, Y,Px,P„) over the phase space (X, Y,Px,P„) is

defined by

Pb K 1= —» (s)r +—+z b 3s Pb Pb
(48)

(41)

where d I =dX d Y dPxdPr.
Finally, we derive an important equation which relates

the unnormalized emittance e and the maximum canoni-
cal angular momentum Ps allowed for the particles
within the KV distribution. Making use of Eqs. (14), (20),
(28), and (29), we can express the canonical angular
momentum for an individual particle within the KV dis-
tribution as

The normalized beam envelope equation (46) is now
characterized by two parameters, namely, », (s) and E,
which measure the (focusing) strength of the applied
periodic solenoidal magnetic field and the (defocusing)
strength of the equilibrium self-fields of the beam, respec-
tively. Unless specified otherwise, the dimensionless pa-
rameters and variables defined in Eq. (45) will be used in
the remainder of the paper.

By making a Fourier expansion of the axial magnetic
field profile B,(s)=B,(s+1), we express the normalized
focusing strength parameter», (s) as

Pe=xP yP„= A„A (y&m—Pt, c }cos(% 0
—4„o)

=const, (42}

'2

», (s)= g [a„cos(2nns)+b„sin(2nms)]
n=0

(49)

—Pg ~Pg +Pg (43)

where the maximum canonical angular momentum is
given by

where the amplitudes A„and A satisfy the relation
A„+A =e, and W„o and %' o are the "initial" phases for
the particle motion in the X and p'directions, respectively.
It is readily shown that P& obeys the inequality

», (s)=«,'+'(s)+»,' '(s), (50)

where the periodic functions», '+'(s) =», '(s + 1 }
'( —s) are defined by

where the coefficients a„and b„are proportional to the
coefficients in the Fourier expansion for B,(s) More-.
over, «, (s) can be decoinposed according to
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K,'+'(s) =
—,
' [K,(s)+K, ( —s)]

=ao+ g [a„cos (2nirs)+b„sin (2n2rs)]
n=1

(51)

In the limit of a uniform solenoidal magnetic field with
K (s) K o const, it is readily shown that the beam en-

velope equation (46) is integrable and possesses a unique
stable steady-state solution given by [1]

and

K ($)= 2[K (s) —K ( —s)]
rb(s) =rbo=

2Kzo

1/2
1

Kzp

1/2

+
2K p

(56}

Periodic solutions to Eq. (46) with unit periodicity can
be found using the Poincare mapping technique [18],
which tracks an ensemble of phase-space trajectories as
they intersect the phase plane (rb, rb) located at succes-
sive axial positions s =0, 1,2, . . . . Formally, we may ex-
press such a map as

rb rb g(rb, rb )
—Tr I

rb n+1 b n g(rb, rb )

n =0,+1,+2, . . . , (53)

which maps the phase plane (rb, rb ) onto itself from s =n
to n +1. Because Eq. (46} is a Hamiltonian system, it fol-

lows that the map preserves area in the phase plane. In
the present analysis, the functions g(rb, rb ) and g(rb, rb')

are obtained implicitly by integrating Eqs. (47} and (48)
numerically with the fourth-order Runge-Kutta algo-
rithm. In general, they have a highly nonlinear depen-
dence on their arguments.

A periodic solution to Eq. (46), or equivalently to Eqs.
(47) and (48), corresponds to a fixed point of the map
defined by

rb

rb

rb
T

rb
(54}

In principle, such a Gxed point may correspond to a
periodic solution with a fundamental periodicity of 1/m,
where m =1,2, . . . . Linearizing T about the fixed point
yields the tangent map defined by

'6rb

5rb

ag ag
~rb Orb 6rb

5rb
(55}

where orb =rb —
rb and 6rb =rb —

rb are small quantities.
A fixed point is stable if the eigenvalues of the tangent
map about that fixed point are of unit module. It should
be emphasized that as far as completing the construction
of the KV distribution function in Sec. III is concerned,
we are interested in locating the stable fixed points of the
map.

=2 g g a„b cos(2n2rs)sin(2m2rs) . (52}
n=pm=1

We refer to a focusing field with K, (s) =K,'+'(s) as an euen

focusing field. A sufficient condition for K, (s) =K,'+'(s) is
that b„=0.

A. Poincare map deduced
from the beam envelope equation

Therefore, the point (rb, rb)=(rb&, 0) is a unique stable
fixed point of T. As E is increased, the beam radius ex-
pands due to the (defocusing) self-field effects. Indeed,
the Brillouin Pow condition [1,20], i.e., rbc= EI«,o,. is
recovered as @~0, or equivalently the normalized per-
veance parameter I ~ ~ [see Eq. (45)]. Since both of the
normalized quantities E and rbo are inversely proportion-
al to e, as defined in Eq. (45}, the Brillouin flow condition
can be expressed in the familiar dimensional form [1]

2copb =1,
Fbc

(57)

where co b=(4q NImrbc)'~ is the nonrelativistic plasma
frequency of the beam particles and co, =qB, Imc is the
nonrelativistic cyclotron frequency.

For general focusing field, however, the beam envelope
equation (46} describes a Hamiltonian system with one
and one-half degrees of freedom and therefore is general-
ly nonintegrable The Po.incare map T is expected to gen-
erate a mixture of regular and chaotic orbits in the phase
plane (rb, rb). In practice, the fixed-point equation (54)
must be solved numerically.

Unlike the beam envelope equation (38), the differential
equation (30) for the amplitude function w(s) (in the di-
mensional form),

d w K 1+ Ki(S) 2
W—

ds 2 '
rb2(s) w

(58)

is integrable in the parameter regime where the radius of
the matched (equilibrium) beam is given by a periodic
solution to Eq. (38). This is because the underlying equa-
tions (26) and (27) for this case are linear ordinary
differential equations, where K(s) =K(s +S)=«, (s)

Elrbi(s) is a presc—ribed periodic function.
The Poincare map T has the property that for an even

focusing field with K, (s) =K, ( —s), the line rb =0 (rb axis)

is an axis of symmetry of the map T; that is, the phase
plane (rb, rb) is symmetric with respect to the rb axis.
This symmetry follows from the fact that Eqs. (47) and

(48} are invariant under the transformation
(s, rb, rb )~ ( —s, rb, —rb ). Furthermore, it can be shown

that for a focusing field with small-amplitude oscillations
about «, (s)=K,o=const, the fixed point of the map corre-
sponds to the intersection of the rb axis and its image, as
shown in Fig. 1. This Gxed point originates from the
value of rbo defined in Eq. (56).

B. Beam matching into an even focusing field

With regard to the construction of the KV distribution
function, we must answer the questions of whether the
map T has a unique fixed point and, if so, under what
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lations and the well-known instabilities [10] for the KV
equilibrium, the nonlinear resonances and chaotic
behavior are expected to play an important role in the
transport of mismatched or multiple beams, where large-
amplitude nonequilibrium beam envelope oscillations
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condition is the fixed point stable. To find definitive
answers to these questions, we consider a focusing field

described by the even function
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FIG. 1. Plot of the rb axis (straight line) and its
image (dashed curve} showing a unique intersection for the
choice of the system parameters K = 10 and a, (s)
=(1.07)'[1+cos(2ns }]'.
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which physically also corresponds to a rather general
class of even periodic axial magnetic field B,(s), truncat-
ed to leading order in the Fourier expansion. Figure 2
shows the phase plane (rb, rs } produced by successive ap-
plications of the Poincare map with 20 initial points on
the r& axis. The choice of system parameters in Fig. 2
corresponds to X =10 and ac=1.07 for the cases (a)
a

&
=0, (b) a

&

= 1.07, and (c}a, =2.85.
In Fig. 2(a), the phase plane is completely regular (inte-

grable), as expected for a uniform solenoidal magnetic
field. The stable fixed point is located at r& =r&p=3. 0 on
the r& axis, which is in agreement with Eq. (56). The el-

liptical orbits surrounding the fixed point represent stable
(nonequilibrium) beam envelope oscillations about the
matched (equilibrium} beam envelope r&(s)= ryp.

As the parameter a, is increased from a, =0 to 1.07,
the stable fixed point moves slightly towards the origin,
as shown in Fig. 2(b). The location of the fixed point
corresponds to the intersection of the r& axis and its im-

age shown in Fig. 1. In the vicinity of the fixed point, a
pair of stable and unstable period-three orbits appear.
Because the phase advance without space charge is
op=o ~z p=75', the appearance of the period-three reso-
nance is well correlated with the third-order instability
[10] for the KV equilibrium, which occurs over a wide

range of E when o p & 60'.
While the area occupied by the chaotic orbits is hardly

visible in Fig. 2(b), transition to a high degree of chaos in
the phase plane is inevitable as a& is increased. Such a
transition is accompanied by the shrinkage of the regular
region surrounding the stable fixed point. This is illus-
trated in Fig. 2(c), where the stable fixed point is located
at r& -——1.7 on the rI, axis. This fixed point is completely
enveloped by chaotic orbits as a, is further increased.

In addition to apparent correlations between the non-
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FIG. 2. Poincare surface-of-section plots showing the transi-
tion from regular orbits to chaotic orbits in the phase plane
(rb, rb ). The choice of system parameters corresponds to E= 10
and a0=1.07 for the cases (a) a&=0, (b) a, =1.07, and (c)
a& =2.85. In each plot, 20 points, initially on the rb axis, are
iterated 250 times (i.e., 250 axial periods of the focusing field).
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FIG. 3. Plot of the beam radius rb(s) versus axial coordinate
s for the case of a matched (equilibrium) beam and system pa-
rameters corresponding to Figs. 1 and 2(b).

occur and can become chaotic. An intriguing
phenomenon in mismatched or multiple beam transport
is the formation and growth of a beam halo [17].

For the cases shown in Fig. 2, the fact that the Poin-
care map T possesses a unique stable Gxed point demon-
strates that the beam envelope (46) has a unique stable
periodic solution with unit periodicity, and therefore
there exists a unique KV equilibrium distribution func-
tion. As a by-product of determining the stable fixed
point of the map, the stable periodic solution is obtained
and shown in Fig. 3 for the case corresponding to Fig.
2(b). The phase advance defined in Eq. (39) is evaluated
to be v=10' with space charge and o'o=a~» —p=75'
without space charge.

Is it true that the map T can have at most one fixed
point as suggested from the results shown in Fig. 2? A
positive answer to this question is found by searching nu-
merically all of the fixed points of the map over an exten-
sive domain in the parameter space (I:,ao, ai). As ~ai ~

is

FIG. 5. The threshold curve for the birth of a pair of stable
and unstable period-two orbits is plotted in the parameter space
(ao, a&) for I( =10. The open circles are numerical results,
whereas the solid curve is given by Eq. (61).

2
1 Q)

oii= a.,(s)ds =ao+
o 2

(60)

in the smooth-beam approximation, the threshold for the
birth of the period-two orbits is approximately

2

Qo+ (61)

increased, however, such a unique fixed point either des-
tabilizes for ac=0 or disappears for aoAO. Figure 4
shows the boundary in the parameter plane (E, ~ai~)
below which the map Thas a unique stable fixed point.

It should be pointed out that the threshold for the des-
tabilization or disappearance of the fixed point, as mea-
sured by the phase advance without space charge oo is
found to be greater than the threshold for the birth of a
pair of stable and unstable period-two orbits which
occurs at oo=90'. Because the phase advance without
space charge o 0 is given by

I 0 I I lfli) I I I 1&lil] I I I I l»ll 1 I I II ill( ' s I I IIII

o =0
Cr

The numerical results shown in Fig. 5 confirm this condi-
tion. Note for oo&90' that the KV equilibrium is subject
to the strong, second-order (envelope) instability [10,11]
over a wide range of K, which is correlated with the ap-
pearance of the period-two orbits.

V. CONCLUSIONS

o = I.07

I I I I I I ill I I I I l I Iil I I i i I i Ill I i i I I I Ill I I s I I I I I0
OOI 0 I I IO IOO IGOO

FIG. 4. The threshold value of ~a, ~
below which the map T

has a unique stable fixed point is plotted as a function of nor-
malized perveance K. The solid line connecting the open circles
is obtained for a0=0, and the solid line connecting the open
squares is obtained for ap =1~ 07.

The nonlinear properties of the Kapchinskij-
Vladimirskij equilibrium and beam envelope equation
have been explored for intense charged-particle beam
propagation through a periodic solenoidal focusing mag-
netic field including the sects of the self-electric and
self-magnetic fields associated with the beam space
charge and current. It was found that the unnormalized
beam emittance is proportional to the maximum canoni-
cal angular momentum achieved by the particles in the
KV distribution. The Poincare mapping technique was
used in the analysis of the dynamics described by the
beam envelope equation. This technique allowed us to
determine systematically the axial dependence of the ra-
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dius of the matched (equilibrium) beam and to study non-
linear behavior in the nonequilibrium beam envelope os-
cillations.

It was shown that nonequilibrium beam envelope oscil-
lations exhibit nonlinear resonances and chaotic behavior
for a periodic focusing magnetic field and sufBciently
high beam density. Certain correlations were found be-
tween the nonlinear resonances and well-known instabili-
ties for the KV equilibrium. It is also shown, in agree-
ment with previous studies [10,11], that there exists a
uniquely matched beam in the parameter regime of prac-
tical interest, i.e., 00 & 90', where 00 is the vacuum phase
advance over an axial period of the focusing field neglect-
ing beam self-field efFects.

Finally, efFects of the nonlinear resonances and chaotic
beam envelope oscillations on mismatched or multiple
beam transport and the formation and evolution of beam
halo are being studied by means of numerical simulation
and will be the subject of a future report. The present
analysis can be extended to the case of an alternating-
gradient quadrupole magnetic field configuration.
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