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Two-dimensional one-component plasma at coupling I'=4: Numerical study of pair correlations
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%e consider a classical two-dimensional one-component plasma of charged particles in a circularly
symmetric neutralizing background, at a coupling constant of I =e /k&T=4. The numerical results,
based technically on a successive increase of the number of particles and on a Van der Monde deter-
minantal representation of Boltzmann factors, strongly indicate a Gaussian-type falloff of the truncated
bulk charge-charge correlations, similarly as in the exactly solvable I =2 case.
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The classical one-component plasma, or jellium, is a
system of identical pointlike particles of charge e embed-
ded in a spatially uniform neutralizing background. In
two dimensions, the Coulomb interaction energy between
two particles at a distance r reads e ln(r—/L ), where a
length scale L fixes the zero of energy. For the system at
temperature T, the only dimensionless coupling constant
is I'=e /kttT. The availability of exact results for the
thermodynamic and correlation functions at coupling
I'=2 [1], even in the case of an inhomogeneous back-
ground [2,3], provides density profiles for a variety of
electrostatic boundary conditions, including simple mod-
els of electrodes [4,5] (see recent review [6]).

Of special interest is the I dependence of the decay of
the bulk two-particle distribution functions in two-
dimensional (2D) jellium. At the high temperature (weak
coupling I ~0) limit, truncated distribution functions
display exactly the Debye-Huckel screening of exponen-
tial type, as has been shown generally using the
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY) in-
tegral equation hierarchy [7] and the field-theoretic ap-
proach [8]. At the special coupling I =2, the decay is of
the pure Gaussian form exp( trpr ) with p

—the particle
density. A temperature expansion around I =2 [1] sug-
gests that the monotonic decay of the two-body density
for I &2 changes to an oscillating one in the region
I &2. For I &142, the plasma system becomes a 2D
Wigner crystal [9]. An attempt to estimate the character
of the correlation decay for intervalues of I has been
made within the mean spherical model of the discrete lat-
tice version of plasma [10]. For this system there exists
an intermediate coupling constant I 0, identified intuitive-

ly as a counterpart of I =2, which characterizes the de-
cay of truncated charge-charge distribution functions as
follows: for I &I 0 the screening is exponential and
monotonic with a correlation length decreasing with in-
creasing I; at I =I 0 the pair correlation has a range of
one lattice spacing; at I ) I 0 the decay is exponentially
fast with oscillations and a correlation length that in-
creases with increasing I . Although the spherical con-
straint introduces an extra-long-range interaction, the
zeroth and second moment Stillinger-Lovett sum rules

[11] hold (indicating a dominant role of the tail of
Coulomb interaction at asymptotically large distance
[12]}. On the other hand, because the charge variables
are continuous the mean-spherical constraint interferes
significantly with the Coulomb nature of the lattice plas-
ma in the description of correlations at a free surface [13]
and does not provide a Kosterlitz-Thouless transition for
a two-component Coulomb system [10]. An approximate
evaluation of the pair distribution [14],based on a closure
of the BGY hierarchy at the level of the three-particle
correlation function which is exact for both the Debye-
Huckel I —+0 limit and the I =2 case and simultaneously
satisfies the sum rules for arbitrary I, predicts a transi-
tion from the region of monotonically vanishing correla-
tions (I (2} to one of oscillating correlations with
powerlike falloff (I') 2}. It has been proven in Ref. [15]
that if the correlations of a charged system are integrable
and monotonic at infinity, they decay faster than any in-
verse power.

The present paper aims to clarify to a certain extent
whether the Gaussian decay of correlations is a peculiar
property of the I =2 coupling. This key question is in-
vestigated via the example of jellium at coupling I =4,
characterized by the phenomenon of vanishing pressure,
which is, after I'=2, the simplest case with an integral
power Van der Monde determinantal representation of
the Coulomb Boltzmann factor. Although jellium at
I =4 is not equivalent to a system of independent fer-
mions (and so cannot be solved in a standard way as in
the I'=2 case}, the Van der Monde determinantal for-
malism is a powerful means for developing simple,
eScient, and quickly converging series expansions. As a
model system, we consider a Quid of X particles in a disk
and, taking advantage of the circular symmetry, calculate
numerically the short-distance expansion of the truncated
particle-particle correlation around the disk center for
successively increasing N. Then we propose a simple
Gaussian-type form of the bulk two-body density which
satisfies the charged-fluid sum rules [11]and fits very well
the asymptotic N~ao tendency of numerical data. A
comparison with Monte Carlo (MC) simulations [16]
shows the adequacy of the suggested form of pair correla-
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tions in the region of large particle-particle distance as
well.

Let N particles j=0, 1, . . . , N —1 of charge e and with
position vectors r be confined to a disk of radius 8
whose center is taken as the origin 0. The disk is filled
uniformly by a neutralizing background of charge density
—ep; p=X/IrR stands for the number density. The to-
tal potential energy 4 of the background particle system
follows from elementary electrostatics [6],

p(rl =p(r)=(g 5(r, —r)) (4)

and the two-body density of particles localized at the ori-
gin and at distance r from the center of the disk,

p' (O, r)=p' (r)= g 6(r, )6.(r k
—r)

j&k

The correlations will be considered in the truncated form

Ne l~ 3 Ne
4.

h(0 } h( )
p"'(r) —p(0)p(r)

p(0)p(r)
(6)

j j(k
where r = r, and rk= r —rk~. For I =4, the
Boltzmann factor is written as

Due to the circular symmetry of w(r) in (3), the loga-
rithm of Zz is the generating functional in the sense that

w(r ) 5 lnZ)v
p(r)=

2Irr 5w(r )

exp

and the partition function reads

with an irrelevant constant dropped, and

(3a)

w(r)w(r)
p' '(r) —p(0)p(r) = lim

p=o (2Irr)(2Irr) 6w(r)5w(r)

as one can show after some algebra. Of course, the parti-
tion function with angle-independent w(r) cannot gen-
erate correlations between two points, neither of which
are at the origin.

To obtain a convenient formula for Z)v, (3), we use the
Van der Monde determinantal representation

—2~ r'w(r)=e (3b)

The statistical quantities of interest are the particle
density

'}"
I j, k =(),

j(k
where (r, , 8 ) are the polar coordinates of r, and write

Zv= I d r() I d r)v III w(r)K(IrI)K(Ir))
0 )V —i

(10a)

with

K(IrI )=det(r e ')"det(r e ')" . (lob)

each term in the sum solely by the set of powers that ap-
pear, i.e., ak denotes the number of values of j for which
j+P'(j ) =k. Doing so, the sum over P' appears as

Due to the orthogonality relation

0

~~
e

~ ~ ~ ~~ ~ j )dg ((j—k)()
jk

it is sufficient to analyze the two-determinant product K.
It can be expressed as

X Ca I ao) ) a2(x —)) I

More explicitly, coefficients C are generated by

(13)

(14)

IC(I rI }=g ( —1) + iI (r e ') ' '(r e ')
J J

P.P'

( 1)p' g (
' j )p(j)+p'p(j )

J
P, P' J

X ( 1} II[r (')e ~+ (12)

The terms generated by the summation over P' for two
different P's differ from each other only by a permutation
of particle indices. Let us consider the summation over
P' for a specific permutation P, say P =I, and represent

Now when K*(IrI ) is appended and the integration per-
formed, the orthogonality (11) shows that only terms in
K*( [ r I ) with the same [ a(), . . . , az()v ) ) ) can couple to a
term in (13). Under the permutations P in K*(IrI }, they
wi11 occur in ao!a,! . a&~~, ~! difterent ways. Since the
same result is obtained for any P in (12), the 1/X! in (10a)
is canceled, and we have
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where

R
dr 2mrr Jw(r) .2J (16)

terms of the incomplete I function

2N
wzj= .+, dt t e

(2irp)1+'
(16')

After performing all necessary functional derivatives of
lnZ& with respect to the w(r), w(r) will appear only in
the special form (3b), and hence wzj will be expressed in

I

According to (14), the explicit evaluation of Ziv requires
algebraic manipulations with N. permutations. For small
particle number, we have

Z2 =wpw4+ 2W 2
2

Z3 wpw4W8+2wpw6+2N2N8+4N2N4N6+6w42 2 3

(17a)

(17b)

Z4 =Wpw4NSW j2+2wpw4N ]p+2wpw6N]2+2N 2N8Wi2+4WpW6N8N ]p+4W2W4W6W j2+4W2W4WSW &p+4N 2W ip
2 2 2 2 2

+4w4w s +6wpw 8 +6w 4w &2+ 8w2w6w 8+8N2 w 6w &p+ 8w 4N6w &p+ 18W4w 6N8+24w 6,2 2 3 3 2 2 2 2 4 (17c)

and so on.
We were able to perform the numerical calculations up

to N=12 particles. The density ratio p(r)/p(0) is ex-

panded in the dimensionless variable

h (r) at given N are represented by the coefficients I h„j i,
defined by the short-distance expansion of h(r) around
the origin

x =27jpr

as follows:

(18) h(r)= —1++h„x~",
1

(20)

P 1+y xnan
(r)

p(0)

The plots of the coefficients Ip„ I i as functions of 1/N
(N=2, . . . , 12) are pictured in Fig. 1. Since p„~0 in
the limit N~ac, they indicate the level of the bulk re-
gime in the neighborhood of the disk center for a given
particle number N. It is seen that the convergence of
[p„I to zero is very quick. The numerical results for

in Table I. The value of h(0) = —1 is fixed by the equali-
ty p' '(0)=0 (two particles of the same charge have
infinite electrostatic energy at zero distance). For every
N, h, =0 in accordance with the expectation of the lead-

ing bare-potential term r suggested by a temperature
series expansion around I =2 [1]. There exists another
exact result concerning the short-distance expansion of
h(r) [17] which relates coefficients hz and h3. Adapted
from the original derivation for three dimensions to 2D
jellium, at I =4, it gives

h~/h3= —2 . (21)
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As is evident from Table I, this relation is satisfied with
good accuracy for larger numbers of particles N The.
dependences of coefficients [h„iz'0 on 1/N are also
presented in a transparent graphical form in Fig. 2—
here, only coefficients with "stabilized" signs are includ-
ed. In spite of relative oscillations of data, the conver-
gence rapidity of the coeScients towards their asymptot-
ic X~~ values in satisfactory.

Before proposing a realistic N~ao form of the bulk
correlation h (r), we summarize all necessary and suggest-
ed requirements put on h (r) for our special choice of the
coupling constant I =4.

(1) Around r =0, h(r)- —1+h~r +h3r with
h2/h3 = —2.

(2) The behavior of h (r) is not monotonic and in the
limit r ~ 00 it tends to zero.

(3) The bulk h(r) satisfies the charged-fluid sum rules:
(i) the zeroth moment condition (electroneutrality)

FICx. 1. Plots of the coefficients [p„l of the density ratio ex-
pansion (19}versus the inverse of the particle number I /X. p f d rh(r)= —1, (22)
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TABLE I. Numerical results for the coefficients of the short-distance expansion of the truncated
correlation h {r){20)at given partic1e number X; data in the last X~ ~x rows correspond to the conjec-
tured bulk h(r) (see the text).

2
3

6
7
8

9
10
11
12

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

h2

+ 1.355 046
+0.471 452
+0.328 143
+0.291 305
+0.289 171
+0.299 528
+0.311935
+0.321 550
+0.327 146
+0.329 409
+0.329 583
+0.331 160

—3.231 287
—0.032 860
—0.115455
—0.116573
—0.127 002
—0.141 810
—0.155 258
—0.164 106
—0.168 077
—0.168 628
—0.167 470
—0.165 580

h4

+6.832 461
—0.470709
+0.124426
+0.025 883
+0.031 100
+0.038 722
+0.045 271
+0.048 979
+0.049 919
+0.049 222
+0.047 991
+0.045 710

—14.21 119
+0.475 605
—0.151 631
—0.000 247
—0.005 368
—0.008 044
—0.010 184
—0.011 156
—0.011065
—0.010486
—0.009 889
—0.008 925

2
3

5

6
7
8

9
10
11
12

+29.486 75
—0.045 628
+0.064 880
—0.007 913
+0.001 142
+0.001 461
+0.001 992
+0.002 164
+0.002 019
+0.001 781
+0.001 597
+0.001 365

10 A I

—611 596.7
—3546. 110
—6.381 514
+63.088 66
—9.376 899
—2.113369
—3.586906
—3.773 724
—3.163 457
—2.480 785
—2.078 634
—1.729 902

10 /28

+ 1.26 X 10'
+ 36 486. 51
—773.3779
—266.0815
+65.739 34
—3.417 962
+6.420 553
+6.106 815
+4.299 950
+2.777 045
+2.151 043
+ 1.882 054

10'a,

—2.63 X 10'
—41 198.07
+ 10019.14
+735.0464
—287.8598
+ 51.976 21
—15.852 18
—9.153 277
—4.964 303
—2.219 653
—1.633722
—1.800 560

10 ~io

+5.45 X 10
—2.65 X 10
—140 541.0
—743.9691
+883.6680
—265.9129
+62.123 59
+9.919973
+4.552 500
+0.476 262
+0.637 621
+ 1.540 933

(ii) the second moment condition (Stillinger-Lovett)

[18,19]

1
p2 d 2rp 2A p.

2~ ' (23)

k (iii) the fourth moment condition (compressibility) [20]

J d rr h(r)=0 . (24)

—10
0.0

I I I I

0. 1 0.2 0.3 0.4 Our proposal for the truncated particle-particle correla-
tion is a superposition of two functions of Gaussian type

2

h«, „(r)=—(a, +b, x +c,x )e ' —aze

(25)

—20
0.0

I

0. 1.
/A

n=- 7
n=B
n= c)

n=10

0.2

FIG. 2. Logarithmic plots of the absolute values of
coefficients [h„], defined by the short-distance expansion of
h (r) around the origin (20), versus 1/(particle number N); hor-

izontal dashed lines reAect the analytical estimates given by (25)
with coefficients fixed by requirements (1)—(3}.

where the parameters are determined by the requirements
(1)—(3) as follows: v& =0.397, vz =0.849, a, = 3.886,

6& = —0.909, c& =0.043, a2= —2.886. The consequent
short-distance expansion of h,„;„around r=0 results in

coefficients [h„] tabulated in the last X~~ rows in

Table I and represented by horizontal dashed lines in Fig.
2. It is seen that the predicted coefficients fit very well

the asymptotic tendency of numerical data. Although
slight oscillations of data points prevent application of a
1 fN polynomial extrapolation, even data for X= 12
confirm a strong evidence for the Gaussian nature of the
correlation decay at I =4, in full agreement with the
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rigorous results of Ref. [15]. When compared to the
Gaussian decay of the truncated correlation at I =2,
transcribed in terms of dimensionless distance x as
—exp( —x /2), the asymptotic correlations for I =2,
since vy & 1/2, are weaker than those for the I =4 cou-
pling, which agrees with the expected minimum of corre-
lation effects at I =2. The special role of the function
(25) is supported by our experience that when one re-
quires the fulfillment of the sum rules in other simple su-
perpositions of two Gaussian-type functions or a single
Gaussian function, the real h(r) either does not exist or
the coeScients of its short-distance expansion around the
origin differ from the corresponding numerical estimates
by a few orders of magnitude.

The MC results [16] for the truncated correlation at
I'=4, presented together with the plot of h,„,&(r) in Fig.
3, confirm the applicability of the suggested h,„„in the
region of large particle-particle distance as well. The
striking coincidence between the model-analytical results,
based on the supposition of the Gaussian decay of h(r),
and the MC simulations is surprising in view of the con-
temporary status of the topic summarized briefiy in the
introductory part of this work.

In conclusion, it is not clear whether the correlations
in the coupling range 2&I &4 also possess a Gaussian
nature, i.e., whether or not the Gaussian falloff is a conse-
quence of the Van der Monde representation "symmetry"
of Boltzmann factors. The framework of the procedure
outlined remains unchanged for higher I =6,8, . . . , but

0.0

—0.2

—0.5

-0.8

—1.0 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I

0 1 2 3 4 5

FIG. 3. Truncated pair correlation h (r) versus dimensionless
particle-particle distance x =(2mp)' r. Solid line, the form sug-
gested in the present work (25); squares, the MC data deduced
from a system of 256 particles [16].

much more numerical work has to be done for obtaining
reliable data.
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