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We study the linear and the nonlinear stages of the Jeans instability of charged grains with mass mz
and charge qd in the regime Gmd /qd =0 (1). Various conditions for stable electrostatic levitation, con-
densation, and dispersion of grains in the plasma background are obtained. The nonlinear solutions
show that there is a condensation of grains even when the effect of self-gravity is annulled by self-

electrostatic repulsion. Astrophysical situations relevant to the results are briefly discussed.

PACS number(s): 52.25.Vy, 52.35.Fp, 52.35.Py, 52.35.Ra

I. INTRODUCTION

A dusty plasma is a three component plasma with elec-
trons, ions, and a dispersed (low number density) phase of
very massive charged grains of solid matter. The size of
the heavy grains is typically in the range of 1 pm to 1 cm.
Dusty plasma is usually found in the interstellar clouds,
circumstellar clouds, interplanetary medium, cometary
tails, planetary rings, and the Earth's magnetosphere
[1,2]. In the laboratory, dusty plasma occurs as a result
of high Z impurities from the tokamak walls, during plas-
ma etching and impurity generation in magnetohydro-
dynamics (MHD) power generators.

As stated earlier, the charged grains are very massive
as compared to electrons and ions. For instance the mi-
crometeorized fiux observed by Helios probes furnishes a
range of 10 -10 g for the grain mass within 1 A.U.
from the Sun [3]. The charge of the grains is also large as
compared to that of the electrons. In typical cases it
could be as large as 10 times that of electronic charge.
The presence of this very massive, charged, low density
grains in the plasma introduces new time and space scales
in the plasma behavior leading to new waves, instabilities,
etc. This has been the subject of many recent investiga-
tions [4—14]. The process of charging of grains and grain
charge fluctuations is also interesting and has been inves-
tigated recently [15—18].

In astrophysical scenarios, the dynamics of large
bodies like planets, stars and satellites, etc. is controlled
overwhelmingly by gravitation, while that of electrons
and ions is influenced overwhelmingly by electromagnetic
forces. The two forces operate on two widely different
scales. It is now well established that for micron and
submicron size grains these two forces become compara-
ble, at least to within an order of magnitude [19]. If we
consider only electrostatic forces then this would require
Gmd /qd =0 (1). The interplay between gravitational
and electrostatic forces in the dynamics of such grains is
responsible for many interesting phenomena in the terres-
trial and solar environment, e.g., rings of Saturn and Ju-
piter, etc. For instance it is known that during the spoke

formation in the B ring of Saturn, the grains are electro-
statically levitated against self-gravity above the plane of
the ring [20,21]. The critical thickness of Jovian rings
has been attributed to electrostatic levitation against the
gravity of the planet [22]. Similarly, the process of con-
densation or dispersion of charged grains under the ac-
tion of self-gravity has important implications for the
overall process of star formation [23,23]. With this in
view, we carry out a detailed analysis of the process of
electrostatic levitation, condensation, and dispersion of
charged grains [Gmd /qd =0(1)] in a plasma background
under the influence of self-gravity of grains. The
problem of condensation of neutral grains due to
self-gravity was first studied by Jeans —the so-called "Je-
ans instability" [25]. This is a process in which a slight
rearrangement of uniform distribution of mass by the
effect of self-gravitation leads to the further localized
condensation of grains. In the case of charged grains,
since the electrostatic forces are significant, unusual and
interesting deviations from the corresponding processes
of neutral grains are expected. Our approach to the
problem is as follows. We first consider an infinite homo-
geneous dusty plasma with spatially uniform densities of
electron, ion, and dust. As is well known, in gravitational
systems, infinite homogeneous distribution of matter can-
not occur. However, for the purpose of studying the
linear stability, such a distribution of matter is artificially
conceived by invoking the so-called "Jeans swindle"
where effects of zero order gravitational fields are neglect-
ed [25]. Our approach is somewhat similar. We first
study the linear stability of an infinite homogeneous plas-
ma invoking Jeans swindle. We then construct a more
realistic model of the equilibrium which takes into ac-
count the zero order fields. In this equilibrium, the
grains are electrostatically levitated against the self-
gravity. The linear stability of this equilibrium is studied.
Finally, using the method of Lagrange variables [26—28],
the dynamical equations are exactly integrated for a wide
class of initial conditions. From these solutions various
conditions for electrostatic levitation, condensation, and
dispersion (where density everywhere approaches zero) of
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grains are delineated. The results are interesting. It is
shown that in certain cases the results of linear stability
analysis based on Jeans swindle may not be correct. For
instance, for Gmd/qd=l, i.e., when the electrostatic
repulsion between the grains balances the self-gravity, the
linear stability analysis based on Jeans swindle implies
marginal stability, while the nonlinear solution predicts
condensation or dispersion of the grains.

In the context of a two component grain plasma, the
two stream instability for grains with Gmd /qd =O(1) has
been studied by Gisler et al. [29]. They also find substan-
tial modification of the usual two stream instability be-
cause of interplay of electrostatic and gravitational
forces.

II. LINEAR INSTABILITY

In this equilibrium there is no electric field and the free
energy is due to the gravitational field of the grains.
Strictly speaking this equilibrium cannot be regarded as
homogeneous. However, invoking Jeans swindle we will

neglect the zero order gravitational field and regard the
equilibrium as "homogeneous. " Mathematically, Jeans
swindle can be incorporated in our set of equations by
modifying Poisson's equation of g as

V $=4nGmd(nd —ndp),

where ndo is the equilibrium number density of grains.
The set of equations (1), (3), (4), (5), and (6) form the basic
set of equations for the linear analysis. To reiterate, we
consider the linear gravitational stability of an infinite
homogeneous dusty plasma characterized by

We consider an infinite dusty plasma with spatially
uniform density of electrons, ions, and grains. Let these
densities be denoted by n„n;, and nd, respectively. The
charge of these species will be denoted by q, =q, and

qd (qd &0) and their masses are denoted by m„m, , and

md. Since typically m, /md & m, /m~ —10 and

nd/n, nd/-n; —10 to 10 we have m n &m n;« mdnd so that the gravitational potential is mainly due
to grains. We further assume Gmd/qd=0(1) so that
self-gravitational field and electric field of grains are corn-
parable. On the other hand, this ratio is too small for
electrons and ions, hence self-gravitational field of elec-
trons and ions will be neglected in our model. This, how-
ever, does not mean that there is no gravitational effect
on electrons and ions. The effect of gravitational field of
grains on electrons and ions will be taken into account.
Further we consider a nonthermalized situation where
grains are cold while electrons and ions are hot and are
mutually thermalized, i.e., Td &( T, = T; = T. This as-

sumption is reasonable because grains are very massive.
As a result, the energy equilibration time between grains,
electrons, and ions is much larger than the time scale of
gravitational dynamics (Jeans time) which will be con-
sidered here. The dynamics of the plasma is governed by
the following set of equations:

+V(n v )=0,

n, o
=const, n;0= const, ndo= const,

neo ~ neo++ "do ~

qn; =(q, n, +qdnd ),
T, = T; = T=const, Td =0,

p
—0, $p

—0, Udp
—

Uep Dip

The linearized set of equations are

85n,
+n~V 5v =0,

at

m, n, o

a5v,
n; pq V5$ m; n; p—V5$ —TV5—n;,

85vd
mdndp =ndpqd V5$ mdndpV5$—.

at

with a equal to electrons, ions, and dust and

V 5$=4nGmd5nd, .

V 5$= 4n[q (5—n,
.5n, ) qd 5n—d ], —

B5v,
m, n, p =n,pqV5$ m, n, pV5$— TV5n, ,

—
dt

(8)

(9)

(10)

(12)

where a stands for electron, ion, and grains;

V $=4nGmdnd,

V P= 4m[q(n; —n, .
) qdnd ], ——

dv~
m n = nq VP —nm Vg—TVn-

dt

where a = electrons and ions, while the equation of
motion for the cold grain is given by

dvd
mdng= =ngqd VQ ndmd VQ,—

where v is the fluid velocity of the ath species. We con-
sider a quasineutral equilibrium, i.e., qd n &

=q ( n, —n, ).

Since the equilibrium is homogeneous, the perturbations
are proportional to ccexpi(kx tot). Using this—in the
continuity equation for the dust and also in Eq. (8) we

have

co5n„
6vd-

kndo

4~Gmd 5nd5p=—

(13)

(14)

which can be used to eliminate 5$ and 5vd in terms of
5nd in Eq. (12). To eliminate 5$ in terms of 5nd we use

the continuity equation to express 5v, and 5v,- in terms of
5n, and 5n, . This can be used in the equations of motion
(10) and (11) to express 5n, and 5n; in terms of 5nd and

5P as
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5n I

n,pq 5$ co~~d n, p
5n, = + 5ndT k uter "dp

e

CO1—
k v2

th,

n;pq 5$ cogd n;p
2

+ 22
'

snd 1- 22T k v~z "dp k u~z
l

(15)

(16)

2= 2 2
N =N~ COJd (20}

In this regime, the background electrons and ions can be
regarded as fixed (5n, =5n; =0). If Gmd /qd & 1 then the
gravitational condensation of the grains is inhibited by
the space charge electric field. The grains slosh around
with a frequency given by co=(co& —

co&&)' . A more in-

teresting root of Eq. (20} is when gravitational condensa-
tion is stopped by the pressure of electrons and ions. To
see this, consider the limit k A,n « l. In this case

(17)

with A, =[1—co /(k u,z )], A;=[1—co l(k uti, )], and

AD=T/(4nnpq ), where we have used n,p=n p=np and

v,z » v,z . Substituting this in the equation of motion for
e l

the dust we finally obtain the dispersion relation as

k ADco d

[A, '+A '+k A, ]

2Jd 1 n0
X 1—

A;
l

(18}

where co&=4nqdndplmd. This is the dispersion relation
for the Jeans instability of the dusty plasma with massive
grains, such that Gmd/qd-—1. It is a transcendental
equation for co which can be solved for a given k. If the
grains are electrically neutral then co&=0 and Eq. (18)
describes the usual Jeans instability of the neutral gas.
On the other hand, for cozd =0, one gets a purely electro-
static oscillation of the dusty plasma which has been
studied in [7]~

We are interested in a very low frequency root of Eq.
(18) such that co -cozd-co& «co&, , co~. In this regime
co /(k v,„)-(co&/co~;)(1/k AD) and (cojd/aP~;)-(co~d/

(mt lmd )(qd /qc )("dpln p) Typically m;/md=10, qd/q; =10 and nd/np =10 . Hence
co l( k 'v,'„)-cojd ( k 'u,'„)« I, A, = 1, A, = 1, and the last

l l

term in Eq. (18) can be dropped. Clearly, on this time
scale the inertial and the gravitational effects on electrons
and ions are relatively weaker; they both follow
Boltzmann's relation. The modified dispersion relation is

k A, co

2+k A,
(19)

Now if k A,~ ~ 1, i.e., the scale size of the perturbation is
of the same order as the Debye length, then the unshield-
ed electric field due to the charge separation affects the
gravitational condensation, i.e.,

where u,& =2T/m„v, z =2Tlm;, and cojd =4wGmdndp

is the Jeans frequency for the grains. Using Eqs. (15}and
(16}in the Poisson's equation for P we obtain

2
417qd $n q cozd 1 np

2

1— 5nd,
[A '+ A '+k2%, 2

] q k2uz
l

co=k C cod Jd (21)

Here, Cd = ( Tndpgd /mdn, pq ) T.he first term in Eq. (21)
represents the dust acoustic wave [10]. The critical
length below which condensation of grains is stopped is
given by A,, =2m C„/cojd = Tqd/(2Gmdn, q'). The physi-
cal reason for stabilization is clear. As the grains begin
to condense due to the self-gravitational field, an electro-
static field due to charge separation is created between
electrons, ions, and the grains (recall that in this frequen-
cy range the gravitational efFects on electrons and ions
are unimportant) ~ The electrons and ions rush to shield
this field thereby creating density perturbations. If the
speed of the wave is fast enough, so that it can travel one
wavelength in the Jeans time (k Cd »cozd ), the density
perturbations will be smoothed and the condensation will
be inhibited.

III. ASYMPTOTIC HOMOGENEOUS EQUILIBRIUM

In the preceding section we considered a "homogene-
ous" equilibrium which is quasineutral, so that there is
no electric field and the zero order gravitational field was
neglected invoking Jeans swindle. Strictly speaking,
there is no rigorous justification for discarding the zero
order gravitational field. In this section, therefore, we
construct a legitimate equilibrium where zero order fields
are retained. This equilibrium is shown to be homogene-
ous asymptotically. The linear analysis of this asymptoti-
cally homogeneous infinite dusty plasma is then studied.
The homogeneous equilibrium can be constructed as fol-
lows. We combine the electric and the gravitational fields
into a new field with potential [gp

—(qdlmd)pp] ~ The
Poisson's equation for this field is given by

md

=47r ' Gmdndp+ [q(n p n p) qdndp]
md

(22)

For dust equilibrium [gp —(qd lmd )pp] =0 which gives

[q(n;p(x) —n,p(x) )]
ndp(x) =-

qd(Gmd /qd —1 }
(23}

This is the condition for the electrostatic levitation of
dust against the self-gravity. The conditions for the equi-
librium with positive and finite ndp are (i) if Gmdqd & 1

then n,p&n;p, (ii) Gmd/qd &1 then n;p&n, p, and (iii)
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Gmd/qd=1 then n;o=n, 0. The reason for this is clear.
The parameter Gmd/qd measures the ratio between the
electrostatic repulsion and the gravitational attraction of
the dust. If Gmz/q& & 1, then attraction dominates over
the self-repulsion. In this case, a background of negative
charges is required (n, p & n;p) to compensate for the extra
attraction on the dust. The equilibrium of the electrons
and ions is given by

Wo
Bx

q ~No

m; Bx
y Vn;

m; n;
(24)

ay, q, ay,+
Bx Pl Bx

Z. Vn,

m, n,
(25)

Eliminating tPo using gp=(q&/my)Pp in Eqs. (24) and (25)
it can be shown that the gravitational effects on electrons
and ions can be neglected. Solving the remaining equa-
tions for n;0 and n, 0 we have

qPo(x)
n, o= &;oexp (26)

n, o
=8',oexp

qPo(x)

T
(27)

In the limit ~qPp/T ~

&& 1, n;o and n, o tend to become spa-
tially uniform. From Eq. (23) nzo also becomes spatially
uniform. The equilibrium of the dusty plasma thus be-
comes asymptotically homogeneous in the limit

~ qPo/T ~
&& l. Astrophysical situations where

~qPo/T ~
&& 1 are described at the end.

We next study the stability of this equilibrium to per-
turbations in the range k A, D »1. As shown earlier in

this regime, electrons and ions can be regarded as station-
ary and the dispersion relation is again given by

N — NJd +N&d
2= — 2 2 (28)

except that now the dust density ndo is not fixed by the
quasineutrality condition but by Eq. (23). Eliminating

nzo by Eq. (23) we have

4nqzq(n;o n,.o)—
N

md
(29)

If n, o& n, o then co &0 and the plasma oscillates with the
frequency given by Eq. (29). These are new kinds of hy-
brid electrostatic oscillations, which are governed by
background charge density and the dust mass. The con-
dition for instability is n,o) n, o. This is consistent with
the instability criterion based on Jeans swindle, which is

Gmz/qz & 1. For n,p& n, pEq. (23) re.quires Gmzlq~ &1
for positive ndo. Similarly the analysis of the preceding
section implies that if Gmd/qd=1 then cu =0 and the
equilibrium is marginally stable. This is consistent with
the analysis of this section because for Gmd/qd=1 Eq.
(23) implies n, p

=n, p (for finite neo) in which case co =0.
From this section, we find that the condition for the

stable electrostatic levitation of negatively charged grains
(against self-gravity) is n, & n, and Gmz/qJ & 1. The con-
dition for the marginal levitation is n, =n, and

GMd /qd =1, while the condition for condensation of the
grains is n, & n; and Gmd/qd ) 1. The process of disper-
sion of grain density everywhere approaches zero as
t~ ~ is not shown by the linear analysis. In the next
section, we integrate the dynamical equations to obtain
time dependent solutions. These solutions describe the
process of dispersion of grains.

IV. NONLINEAR STABILITY

In this section, we investigate the nonlinear stage of the
Jeans instability. As stated earlier, in the ~qgoT~ &&1
limit the electron and ion densities are uniform. They
can thus form a fixed background while the nonlinear
equations corresponding to the dust dynamics can be in-
tegrated analytically. The case pertaining to the limit

~qPo/T & 1 is discussed at the end. The equations to be
solved in the ~qPp/T~ &&1 limit are the equation of
motion and continuity equation for the grains and the
Poisson's equation for the electric and the gravitational
fields. Following the method of Shu [26] and Sturrock
[27], which is based on the use of Lagrangian variables
these equations can be integrated exactly in one dimen-
sion for the interesting class of initial conditions. The set
of equations to be solved are

Bv qd+(v V)v=E — E
at md

''
Bnd

+V (n~v„)=0,
at

V E& = —4mGmd nd,

V E2=4ir[q(n, n, ) q&n&]——,

(30)

(31)

(32)

(33)

where E,= —Vg is the gravitational field, E2= —VP is
the electrostatic field, and v is the grain velocity (the sub-
script is dropped). To integrate these equations in one di-
mension we transform to Lagrangian variables (xp rp)
given by [30]

7

xp —x u(xp, 7 )d1

(34)

(35)

The partial derivative with respect to x transforms as

8 Bu(xo, r')

Bx Bxo Bxo
= 1+ f'dr' (36)

while the partial derivative with respect to time trans-
forms as

a=a
at a~

Bu(xp, ~)—u(xo, ~) 1+f d~'
0 axo dxo

(37)

In the new variables the convective derivative transforms
as 8/Bt+ u(B/Bx ) =8/Br and Eq. (30) can be written as

BU

md

The continuity equation can be integrated to give
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n(xp, r) = n (xo,O}

,Bu(xo, i')
1+ di'

0 xp

(39)
This completes the solution in terms of xo and r .Trans-
formation to Eulerean variables (x, t) is achieved through

(50)

Next eliminating nd from Eq. (32) in the first term in Eq.
(31}and extracting the divergence gives

as, —4m.Gmdndv =0 .
t

(40)

=0. (41)

This is an interesting result, which simplifies the non-
linear problem. It implies that gravitational fluid is con-
vected with grain fluid. By similar manipulations, the
convection of the electric field can be written as

E
=4mq(n; n, )u—.

7
(42)

Now using Eqs. (41) and (42}, Eq. (38) can be integrated

to obtain u as a function of r which then can be used to
obtain E& and E2 as functions of ~. Thus,

v = A (xo)(er' —e r'},
v(xo, O}=0,

(43)

2y md )hald

Eg(xo, w) = — A (xo )cosh(yr)+ C(xp),0

[It should be noted that, in general, extracting a diver-
gence will leave a curl of an arbitrary function on the
right side of Eq. (40}. However, in one dimension it can
be chosen to be zero. ] Using Eq. (32) again we have

aE, aE, aE,
+v(V E, )= +u

t t x

qgndo=q {n; n, ),— (52)

for ndo&0 and n; & n, . According to Eq. (29) for n; & n„
y = —cp =op&. Let the initial perturbation around this
equilibrium be given by

nd(»o) =ndo+ b cos(kx) (53)

For this case nd(xo r) is given by [cosh(yt)icos(~ t)
for y2&0,

2A (xo)
x =xp+ [cosh(y ~)—1] .

r
For a given profile of initial dust density n&(xp, O} [at
t =v=0, x =xp, which is at rest u(x, O) =0], these equa-
tions can be integrated to obtain nd, v, E&, and E2 as
functions of (x, t). Generalization to u (xp, O)%0 is
straightforward. It should be noted that, while obtaining
the solution of the nonlinear equations (43)—(46), we have
not made any assumption about whether or not there is a
dust equilibrium at t =0. Accordingly, we will examine
two classes of initial conditions (i} when there is an equi-
libriurn of grains at t =0 and nzp is given by Eq. (23) and
(ii) when there is no equilibrium of the grains at t =0 and

ndo is arbitrary. However, before we proceed to do this,
we would like to examine the nonlinear solutions in the
following limiting cases (1) Gmd/qd=0. In this case,
there is a quasineutral equilibrium of the grains given by

El =C(xo) (45}

ndp+ 6 cos(kxp )
nd(xo 7 )=

(~/ndo}[cos(~& t)—1]cos(kxo~

where xo is related to x through

(54)

n„(xp, r) = nd(xo, O)

1+— [cosh(yr) —1]
2 BA

Bxo

(46)

where y =[4mqdq(n, n;)]/md. T—he functions A(xp)
and C(xo) are to be evaluated from Poisson's equation at
t=0 as follows. At ~=0, the Poisson's equation for the
two fields can be written as

kx =kxo+ [cos(tpzt) —1]sin(kxp) .
do

(55)

These are large amplitude dust plasma oscillations. In
order that dust density n„(xo, t) is always positive
5/ndp& —,'. (2) Gmz/qd+0, n, =n; In thi.s limit, the
plasma background is charge neutral and there is no dust
equilibrium for finite ndo(xo, O). In this limit, y~0 and
we expand cosh(yt) —1=y t /2. Using this and Eq. (49)
in Eq. (46) we obtain

BEi(x,O)

Bx

BE](xo 0)
Bxp dxp

nd(xo, O)
nd(xo, t) =

1+(co~—
co~d )t l2

(47)4nGmdnd(xo 0) ~— If the dust is charge neutral, then co d =0 and we obtain
the nonhnear Jeans instability in one dimension. It is ex-
plosive in time, i.e., nd ~ 1/(t tp } On the—othe.r hand, if
gravitation is weak then coJd=0 and nd~0 as t~~.
This is because of continuous expansion of dust under
self-electrostatic repulsion (note n, =n, ). Th.is is the pro-
cess of grain dispersion. We now proceed to examine ini-
tial conditions with and without the dust equilibrium.

dE2
4m[qdnd —q(n; n,—)] . —

dx0
(48)

(49)

Substituting for E2(xo, O) from Eq. (44) gives

Gm~ qd n„{xo,0)
1 — 1—

dxp 2 qd~ q{n; n,}—
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A. Initi~lal condition with dust lequi i rium

nd(x 0)=ndp+ 5 cos( kx } (57)

where ndp is given by E . 23 .y q. 23). Using this a d Eq. (49) i

To be ingin with, we recapitulate the results o

instability. Similarl 'f G
indicating

qd, then n;)n for'ary I md/ &1
d an ~ ) indicatin

i e

qd=, t enn =n ; for finite n and m =
d

y consider aperturbation f h fa ion o the following form:

N

r 1 5
m

a
1

1

Z

e 10

d
e
Il

S
1

t

nd(xp, r)

nd(xp, 0)

I —(b, n, ndp)[cosh(yt) —1]cos(kx )(Gxp md /qd 1 )

(58)

10 15
r = k x

20 25

where bI=qdh/q[n, (xp) nx-
In En E '

e o owing cases:n Eq. (58) we consider the f 11

md qd &1. In this case whenever b, cos x
at time t =t d

b, o(k )[ oh(o y, —)=1. In
b, ,cos(kx ) &0 th d

'
dp tabooo e ensity ndo~0 as t~cc.

fco do con ensation of grains. This
'

J i b'li Thi i y. e modification isis due to the equilibri-

p e normalized densityn ig. 1, we plot the n

p nd xp, ) ] against r =kx at differ
h'w'h' "'" f dso con ensation.

(ii) Gmd /qd & 1. In this case
cosh(yt)icos( t). Th

is case y &0 and

11 dfidd
y . ese are nonlinear

i e ue to gravit . The

th' "'s'"'"t"1't
c at ndp is given by E . (23~ ra

xp t) nd(x, O) i.e.
~

d o, there is no evolution
e equi ibrium is marginally stable.

B. Initial condition without th du e ust equilibrium

nd(xp, t)=
n (x 0)
cosh( 3I t )

(59)

Inn this case, there is no dust en ', '
us equilibrium at t =0 and

is arbitrary. As in theo' . '
e previous case, we consid-

(i) Gmz =1 n

n, &n;, y &Oand
q. 0)] and there is no eno evolution. Now if

p variation of normalized dFIG. 1. S atial v

difFerent times giv b
ize dust density at

(iii) has the highest am 1't d
y. ase (i) has the lowest am litup i ude and case

amp itude. On the x axis r =
li dd tdus ensity = nd(x, t)/nd(x, 0).

As t~cc n

the case Gm2 ~=1
x p t )~0. The reasonon for this is clear. In

se md qd=1, the effect of self- ravit of
completely annulled b lf-

-gravi y o dust is

tween dust particles If
e y self-electrostatic re

is uniforml
es. now n )n th en the background

nd(xp, t}=nd(x, 0)
cos(tot)

(60)

In this caase nd(xp, t)= ~ at t=t, such that tot =

responsible for
-g vi y w ich was originally

e or condensation) is corn letp
a ic repu sion between dust articl

ega ive y c arged dust is
ause y a positively charged background.

is ana ysis, we see that in cases w
a =, inear stability based on

dl i i o t 1c resu ts. For this case it r
marginal stability and

, i predicted

nonlinear theor redi
an no tern orap a evolution while the

eory predicts dust condensation.
ii) Gm„/qd &1 and n, &n In t '.

given by
n; nthis cas. e nd(xp, t} is

n, (x„t)= nd(xp, 0)

qdnd(xp~O) Gm+ 1 — [cosh(yt) —1] .
e i

As t~~, n ~0. Th is is again because ne ativel
d d lf 1 1a ic repu sion, while gravity is too w kea to overcome this.

es isperse in the negatively charged b k-ac-
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(iii) Gm&/qd & 1 and n; & n, .Here n&(xo, t) is given by

nd(xo, t) = nd(xo 0)

qdnd(xo 0) Gm&
~ 1+ 1+ 1—

q(n, n—;) qdz
[cosh(yt) —1]

(62)

In this case, we again encounter grain condensation, i.e.,
nd(xo, t, )= ~ where

cos(tot, )=

qd n&(x0, 0) Grnd1—
q(n, n —

) qdz

gdnd(xp 0)
1+ 1—

q(n, n ) —
qd2

(63)

TABLE I. Conditions on the plasma background and
Gmd /qq for levitation, dispersion, and condensation.

Levitation Dispersion Condensation

This condensation is jointly triggered by a positive back-
ground (for qd &0) and self-gravity which is stronger
than the electrostatic repulsion in the limit Gmd/qd & 1.
These results are systematically presented in Table I.

These conditions are interesting as they show that to
obtain levitation it is not enough to balance the self-
gravitation with self-repulsion, i.e., Gmd/qd = l. Also if
Gmd /q& & 1 we obtain condensation but no dispersion or
levitation while if Grn&/qd & 1 we never obtain condensa-
tion. The properties of the plasma background are equal-
ly important. These conditions for levitation, condensa-
tion, and dispersion in the background of the plasma will
have important implications in the dynamics of comets,
planetary rings, and the formation of stars and planets.

The limit ~qgo/T ~
& 1 is not amenable to analytic treat-

ment. In this limit, background electrons and ions move
in response to fluctuations in electrostatic potential P
through Boltzmann's relation given by Eqs. (26) and (27).
As recently shown by Schamel and Bujarbarua [31], the
Lagrangian formulation in this case gives rise to a com-
plicated set of integro-diferential equations. Such a for-
mulation can be given for the present problem also.
However, for initial condition of interest, the equations
will have to be solved numerically. We postpone this
problem to a future investigation.

We now turn to astrophysical situations where
(qgo/T~ &&1 and ~qgo/T~ &&1. As shown by Goertz and
Shan [22], typically in E and G rings of Saturn, Jovian
rings, and ring halos ~qgo/T~ is small while the charge
on the dust is significant. Our nonlinear calculations
which assume a large charge on the dust so that

Gmd/qd =O(1) and ~qgo/T &&1 are applicable to these
situations. On the other hand, for A, B, and F rings of
Saturn and Uranus rings ~qfo/T ~

& 1 while the charge on
the dust is small. This may imply Gmd/qd »O(1) and
thus both the assumptions of the present calculations are
not valid.

In our calculations, we have not included any damping
process. Inclusion of such processes will lead to a damp-
ing of nonlinear oscillations and a static equilibrium
where the unshielded electric field balances the gravita-
tional field. The compression of the dust density in the
process of condensation can be enormous, i.e.,
nd(xo, t)/nd(x0, 0)»1. At these extreme compressions,
the thermal energy of the dust, which has been neglected
here, becomes important. This may have important
consequences for the process of star formation.

To summarize, we have studied the Jeans instability of
a dusty plasma. The charge and mass of the dust are in
the range where Gmd /qd =O(1) and electric and gravita-
tional forces operate on the same scale. The linear insta-
bility is studied in two ways. First, linear instability of an
infinite, homogeneous dusty plasma is studied using Jeans
swindle. This analysis shows that if k2A, n~ &&1, the
unshielded electric field inhibits condensation. If
k A,D «1, then the pressure of the background electrons
and ions can inhibit the gravitational condensation of the
dust. Next, an equilibrium of dusty plasma is construct-
ed, where a finite space charge field balances the gravita-
tional field. The equilibrium is homogeneous only asymp-
totically. In the limit k A,n»1, the stability of the
asymptotically homogeneous equilibrium is analyzed. Fi-
nally, using the method of the Lagrange variable due to
Shu and Sturrock, the time dependent nonlinear solutions
are studied in the limit ~qgo/T~ &&1. From these solu-
tions, various conditions on the plasma background for
stable levitation against self-gravity, condensation, and
dispersion of charged grains are delineated.

Gmd/qz & 1
n, &n;
n =n.e i

n, &n;
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