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Temporal relaxation of excited-level populations of atoms and ions in a plasma:
Vahdity range of the quasi-steady-state solution of couyled rate equations
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By solving the coupled rate equations for excited level populations for an abrupt change of plasma pa-
rameters, we have examined the transient characteristics of these populations which approach the
steady-state values with time. For hydrogen atoms under the ionizing plasma condition the transient
time of the levels lying lower than Griem s boundary, i.e., the level at which the radiative and collisional
depopulation rates are equal, is determined by their natural lifetimes, and that of all the higher-lying lev-
els is given by the relaxation time of the boundary level. Under the recombining plasma condition the
transient time of the levels lying higher than the boundary is determined by their own relaxation times,
and that of the lower-lying levels is given by that of the boundary level. Thus, the overall response of ex-
cited level populations is determined by the relaxation time of Griem's boundary level. The effective
rates for ionization and recombination are also examined.

PACS number(s): 52.25.Jm, 32.70.—n, 34.10.+x, 52.70.—m

I. INTRODUCTION

Spectroscopy of radiation emitted from a plasma is a
powerful technique for studying the nature of the plasma.
Emission lines constitute the dominant part of the spec-
trum, and intensity of a line corresponds to the excited-
level population of atoms or ions. The population distri-

bution over their excited levels is determined by the col-
lisional and radiative processes taking place in the plas-
ma.

We take hydrogen atoms as an example in the follow-
ing study. We assume that levels are distinguished by
their principal quantum number p. The temporal devel-
opment of population n(p) is described by the rate equa-
tion,

dn(p)/dt = g C(q p)n, n(q)+ g [F(q p)n, + A(q p)]n (q)+[a(p)n, +P(p)]n, n,
q&p e)p

Q F(p, q)+ Q C(p, q)+S(p} n, + g A(p, q} n(p) (p =1,2, 3, ...},
q&p e&p

which is coupled with similar equations for other levels.
Here C(p, q) and F(q,p) are the excitation rate
coefficient by electron collisions from state p to q and its
inverse deexcitation rate coefficient, respectively, A (q,p}
is the spontaneous transition probability from q to p,
$(p) and a(p) are the ionization rate coefficient and the
three-body recombination rate coeScient, respectively,
and P(p) is the radiative recombination rate coefficient.
We assume that the electron density n„ion density n„
and the electron temperature T, are given. Thus we have
a set of coupled differential equations, and, in principle,
we have to solve it under a given plasma condition. The
quantity in the large square brackets in the second line of
the right-hand side of Eq. (1), i.e., the total depopulation
rate of level p, is the inverse relaxation time, r(p), of
this level.

More than 30 years ago the collisional-radiative (CR}
model, or more specifically, the method of the quasi-
steady-state (QSS} solution, was proposed [1—3] for the
set of rate equations (1). According to this method, Eq.

(1) is set equal to zero for excited levels:

dn(p)/dt =0 (p =2, 3,4, . . . ), (2)

dn(1)/dt = ScRn(1—)n, +acRn, n, , (4)

where ScR and acR are the collisional-radiative ioniza-
tion and recombination rate coe@cients, respectively, and
functions of n, and T, .

The QSS has been extensively used in interpreting the
observed spectral line intensities from various plasmas.
QSS proved useful also in understanding the general

resulting in a set of coupled linear equations for these lev-
els. These equations are readily solved in the form

n(p)= R(po)n, n+R, (p)n(1)n, (p=2, 3,4, . . . ), (3)

where Ro(p) and R i(p) are functions of n, and T, .
The rate equation, Eq. (1), for the ground state is

rewritten in terms of Ro(p) and R, (p) for p & 2, viz. ,
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characteristics of the population kinetics of excited levels

[4—8].
Reference [1] gives the validity conditions of the QSS

approximation, viz. ,

n(p) «n, and n(p) «n(1) (p=2, 3,4, . . . ) . (5)

The authors say "In such plasma a quasiequilibrium
number density of excited system is established almost in-

stantaneously without the number densities of free elec-
trons and bare nuclei being appreciably altered. " They
continue "An instructive complementary description of
the situation is that the relaxation times for the excited
levels are very much shorter than the relaxation time for
the ground levels or for the free electrons. " In addition to
Eq. (5), they require that "the life of an electron in any
level of importance exceeds the time the electron takes to
describe its orbit. "

With regard to the validity of QSS, Limbaugh and
Mason took helium and examined the validity by calcu-
lating the temporal development of the excited-level pop-
ulations [9]. However, the helium system has metastable
levels, which have exceptionally long relaxation times
and their plasma conditions were rather limited. Thus
their result turns out not to be useful to predict the valid-

ity of QSS in more general situations.
Recently, plasmas under rapidly changing conditions

have become realized, in which the approximation of QSS
may be violated or the transient characteristics of the
populations, before they reach the QSS values, are essen-

tial. Examples are the neutral beam particles injected into
a plasma, which experience a rapid change in plasma
conditions, and rapidly cooled laser produced plasmas.
For the latter plasmas, several theoretical studies are re-

ported, in which the rate equations are numerically
solved and the population inversion density and the laser
gain are presented for the purpose of examining perfor-
mance of the short wavelength lasers on hydrogenlike
ions [10—17]. However, little attention has been paid to
the transient characteristics of the populations.

In view of the above situations it appears desirable to
examine systematically the transient characteristics of the
excited-level populations before they reach the QSS
values, and on the basis of these characteristics, to
present the validity criterion for the QSS approximation.

II. TRANSIENT POPULATIONS
AND TRANSIENT TIME OF EXCITED LEVELS

The right-hand side of Eqs. (3) contains, as parameters,
n(1) and n, as well as n, and T, . The approximation,
Eq. (2), corresponds to the assumption that the popula-
tion densities of excited levels adjust themselves instan-
taneously to the changing n (1),n„n„andT, . However,
each of the excited levels should have a finite response
time to these parameters. In the following, in order to
see the response of the excited-level populations, we solve
the set of Eq. (1) under typical conditions without the
QSS assumption.

The atomic data used are given in Refs. [18,19]. We
solve the populations for 2~p ~ 35. The populations for
36 ~p ~ 76 are given appropriate values on the basis of

reasonable approximations depending on the particular
situations. The limit p =76 corresponds to the last bound
level under our condition of n, =10' cm; this is de-
rived from the result of Ref. [20] which treats the discrete
levels and the continuum states on the basis of an ion-
sphere model.

According to Eq. (3), an excited-level population in

QSS consists of two components: the second term is

called the ionizing plasma component and the first the

recombining plasma component [4]. It turned out useful
to treat these two components separately and to examine
the population kinetics for each of these two components
[5—7]. Following this spirit we solve the set of the rate
equations under the conditions corresponding to these
cases; under the ionizing plasma condition n (1) is kept
constant and n, is set equal to zero, and vice versa under
the recombining plasma condition.

A. Ionizing plasma

The condition for calculation is that for t (0, popula-
tions of excited levels are zero, which may correspond to
n (1)=0 or n, =0 or T, =0, and at t =0 an abrupt change
takes place to constant values of n(1) =1 cm, n, =10'
cm, and T, =10eV. This latter condition corresponds
to a high temperature case of ionizing plasma [5]. In the
calculation, we assume that the population density divid-

ed by the statistical weight for higher-lying levels with

p ~ 36 is proportional to p starting from p =35 [5,21].
The validity of this approximation will be discussed later.

Figure 1(a) shows the transient populations, where

population of excited levels has been divided by its sta-
tistical weight g(p). The thin dashed lines show the re-
sult of the QSS, which is the final value of the transient
populations. Figure 1(b) is another plot of Fig. 1(a). The
QSS values are shown with the closed circles. It can be
seen that for t & 1X10 sec all n(p) in Fig. 1(a) are pro-
portional to t, and n(p)lg(p) is approximately propor-
tional to p [Fig. 1(b)]. For t)1X10 sec, with the
course of time, level 2 reaches its final value first, level 3
second, and then level 4. At t=1XIO sec, all the
higher-lying levels p ~ 5 reach the final values at the same
time. We define the transient time r«(p) at which, in Fig.
l(a), the transient population reaches 63% of its final

steady-state value. In Fig. 2, r„(p) for each level is

shown with the crosses. We define the response time v„„
which is the largest among r„(p)'s.

Figure 3(a) shows the dominant flows of electrons in

the simplified energy level diagram at t=1X10 sec.
From t =0 to 1X10 sec, the dominant populating pro-
cess of all the levels is the direct excitation from the
ground state and depopulation is insignificant (compare
the corresponding fiows). This means that, in this period,
the population is simply accumulating without depopula-
tion. Therefore the populations of the excited levels are
approximated by

n(p)=C(l, p)n, t .

As we have seen, n(p)/ g(p) is approximately proportion-
al to p . This is in accordance with the above populat-
ing mechanism; i.e., C(l,p) ~p 3 for large p. This last
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relation stems from the p dependence of the absorption
oscillator strengths.

Figure 2 shows the depopulating rate by electron col-
lisions and that by radiative transitions. Levels p =4 or
5 establish the boundary between the higher-lying levels,
for which the electron collisional depopulation is dom-
inant, and the lower-lying levels, for which the radiative
decay is dominant. The level is called Griem's boundary,

pG [5,6,22]. In the present case pG —-4.5.
For a lower level than pG, Eq. (1) can be approximated

by
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FIG. 2. Depopulating rates for T, =10 eV and n, =10'2
cm 3. Triangle: radiative decay rate; circle: total collisional

depopulation rate. Among the collisional rates the dominant

one is the excitation to the adjacent higher-lying level. Square:
sum of these rates which is the inverse relaxation time gp)
Cross: transient time ~„(p)determined from Fig. 1(a). Plus: the
time when the transition, Eq. (9},takes place. These times refer
to the right-hand side ordinate.

dn(p)/dt=C(l, p)n, n(l) —g A(p, q)n(p) .
q&p

This is readily solved as

10

n(p)= C(l,p)n, n(1) g A(p, q)
q&p

E
10 X 1 —exp —g A(p, q)t (8)
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FIG. 1. (a) Transient populations of excited hydrogen atoms
under the ionizing plasma condition for T, =10 eV, n, =10'
cm ', and n (1)=1 cm '. Population density has been divided
by the statistical weight. The numbers at right denote p.
Dashed line: the QSS values. Dash-and-dotted line: Eq. (8).
Open circle: the time at which the populating mechanism of the
level changes from the direct excitation to the excitation from
the adjacent lower-lying level, or the ladderlike excitation. (b)
Temporal development of the population density distribution.
Closed circle: QSS values. Square: the levels undergoing the
transition in populating process. Levels lying lower than this
have n (p)/g (p) ~p and those higher than this have
n {p)/g {p)~p . Time t (sec) is indicated in the figure. C( l,p —1)n (1)n, tC(p —l,p)n, =n(1)C( l,p)n, . (10)

The dash-and-dotted curves in Fig. 1(a) indicate Eq. (8).
Slight differences at the final steady state come from the
neglect of the cascading effect in Eq. (7). For these levels,
r„(p)is given by [g & A(p, q)]

Figures 1 and 2 show that levels higher than pG have a
common r„(p). For t) 1X10 sec, populations of ex-
cited levels become higher, and the populating process of
levels higher lying than pG changes from direct excitation
[Fig. 3(a)) to the excitation from the adjacent lower-lying
level as seen in Fig. 3(b), which shows dotninant flows of
electrons at the final steady state. With an increase in t
this change takes place from higher-lying levels. In Figs.
1(a) and 2 the time of this transition or the level which is
undergoing this transition is plotted. At the time of the
transition of level p,

n (p —1)C(p —l,p}n, =n (1)C(l,p)n,

holds. At this time, level (p —1) is still in the initial
phase, Eq. (6},
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t= 1/[C(p, p +1)n, ] . (12)

Remembering the fact that the dominant depopulating
process of these levels is the excitation to the adjacent
higher-lying level, we obtain t =r(p} Fig.ure 2 shows this
approximate relationship to be valid within a factor of 2.
At a given time, the ladderlike excitation mechanism is
established among all the levels lying higher than the lev-
el which is undergoing this transition, and their popula-
tions are determined by the population of this lower end
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This is readily solved for t,

t =C(l,p)/[C(l, p —1)C(p —l,p)n, ]

[p/(p 1}] /[C(p —1 p}n, ]

where use has been made of the relation C( l,p) ~p for
large p. With the aid of the relation C(p,p+1) ~p [5],
Eq. (11) is approximated to

of the excitation ladder. This is because the relaxation
time for p ~pG is shorter for larger principal quantum
numbers as shown in Fig. 2. Therefore these populations
appear in Fig. 1(a) as strictly parallel and in Fig. 1(b) pro-
portional to p . It is concluded from the reasoning in

[5] that the lowest level that undergoes this transition is
approximately equal to Griem's boundary level, pG. This
is the reason why levels p &pG have the common r„(p)
and why this is given by r„(pG), or the maximum of
r(p)'s (see Fig. 2).

The approximation of n (p)/g(p) for p & 36 adopted in
our calculation is thus exact for t ~10 " sec and is
reasonably good at earlier times because, under the ioniz-
ing plasma condition, the cascading effect is insignificant
and a small error in n(p) ( ~p or p ) for p & 36 would
result in no serious error in n (p) of our interest.

Figure 4 shows the effective depletion rate coefficient of
n(1} and the production rate coefficient of n, . The
difference between these rate coefficients is the produc-
tion rate coefficient of total populations of excited levels.
The depletion rate coefficient at t =0 is equal to the sum
of the excitation and ionization rate coefficients. With an
increase in t, populations of the excited levels increase
(Fig. I) and thus the returning electron ffows into the
ground state increase [Fig. 3(b)]. Accordingly, the
effective depletion rate coefficient decreases. The amount
of this decrease (=1.3X10 cm sec ') is approximate-
ly equal to g & C(l,p) (=1.4X10 s cm3sec ' with

P +Pg

pG
——4.5). The production rate coefficient of n, at t =0 is

nothing but the direct ionization rate coefficient. The in-

crease in the populations of excited levels with t (Fig. 1)
results in the slight increase in the rate coefficient. The
magnitude of this increase (=0.9X10 cm sec ') is
given by the ladderlike excitation ionization and is ap-
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FIG. 3. For each level the largest populating Aow to this lev-

el and the largest depopulating Sow from this level are given.
The solid arrow is for the collisional transition, and the dashed
one the radiative transition. The number attached to the arrow
indicates the magnitude of the How, where 4.44 (3) should read
4.44X10 cm 'sec '. Level "ION" denotes free electron leve1

and 11 p 35. (a) At 1X10 sec. (b) At 5X10 sec.

FIG. 4. Effective depletion rate coefficient of n (1)
[ dn(1)/dr]—/n (1)n, and production rate coefficient of
n, [dn, /dt]/nl l)n, Sca is al.so shown. In our calculation,
n (1) and n, are assumed constant. This is equivalent to assum-

ing that the lost n(1) is supplied and the produced n, is re-

moved.
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B. Recombining plasma

The condition for calculation is that before t =0, popu-
lations of excited levels are zero, which means n, =0 or
n, =0 or T, =DO, and at t=0, an abrupt change takes
place to constant values of n, =1 cm, n, =10' cm

10 I I I I Ill( I I 1 I I IIII

15 14 13 12 11 10
I l I I I ill(
8 7 6 5

I I I I I If%( I I I I I I PT'

10
8 S 8 8 2 8 0

~PgF/l'/ / I I I /

1.0
Ul

1 0-10

10'
10" 10-10 10 10

t (sec}
10

proximately equal to g & C( l,p} ( =0.9X 10
P +PG

cm sec '). Finally, at t=r„,these two rate coeScients
agree with Scz. The values of the depletion and produc-
tion rate coefficients at t =0 are independent of n, . SCR
takes a value between these coefficients and its depen-
dence on n, is through the n, dependence of pG. For the
low density limit, for example, SCR is given by the direct
ionization rate coefficient. For high density limit, SCR is
approximated to [gz&zC(l, p)+S(l)]=C(1,2) [8].

and T, =0.1 eV. This condition corresponds to a low
temperature case of a recombining plasma [7]. Results
for a high temperature case will be shown in Appendix A.
We approximate the population density of higher levels
with 36+p ~76by

n(p) =a(p)n 2n, t, (13)

until it reaches the final steady-state value Figures 5(a)
and 5(b) show transient characteristics of the population
densities. Dashed lines in Fig. 5(a) and the closed circles
in Fig. 5(b) show the QSS values. In Fig. 5(b} the Saha-
Boltzmann local thermodynamic equilibrium (LTE} pop-
ulations are given with the squares. Figure 6 shows r„(p)
determined from Fig. 5(a) together with the collisional
and radiative depopulation rates and r(p).

We now examine the transient popuIation. Figure 7
shows the rate coefficients for radiative recombination
and three-body recombination. For levels p&4 the
three-body recombination dominates over the radiative
recombination, which in turn is dominant for p &4. In
the early times of t &10 ' sec the population density
distribution in Fig. 5(b) directly reflects Fig. 7, suggesting
that the dominant populating process is the direct recom-
bination. Remember that in Fig. 5(b) the population has
been divided by the statistical weight. This is actually
seen in the dominant flow diagram of electrons in Fig.
8(a) and is consistent with n (p) ~ t in Fig. 5(a). In this
figure the dash-dotted lines show Eq. (13). It may be in-

teresting to note that population inversion is established
for p & 4 because of the p dependence of a(p) o- p .

With an increase in t the populations of levels p & 4 de-
viate upward from Eq. (13},and they reach the final QSS
values starting from the higher-lying levels However,
rt (p) is appreciably longer than r(p) as seen in Fig. 6.
These two observations are explained from the fact that
these high-lying levels, when their popuIations are close
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FIG. 6. Depopulating rates r(p) and r„(p)for the recombin-
ing plasma. See Fig. 2 for notations. Griem s boundary is level
6. Byron's boundary lies between levels 6 and 7; the dominant
depopulating collisional transition for higher-lying levels is the
excitation to the adjacent higher-lying level, and for the lower-

lying level is the deexcitation to the adjacent lower-lying level.
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to the QSS or LTE values, are strongly coupled to each
other by collisional transitions. This is seen in Fig. 8(b).
As a result, a level, when its population is lower than the
LTE values, receives additional populating flow from the
neighboring higher-lying levels, or it is "pulled" upward
toward its LTE value. Level p reaches its final value only
when deexcitation flow from this level to the adjacent
lower-lying level (p —1) is balanced by the excitation flow
from (p —1) to p. In other words, when the population
of a level is close to the LTE value, it is "pulled" down-
ward by the lower-lying levels which are still far from
LTE.

Among lower-lying levels, but still higher than pG,
there is a boundary level, Byron's boundary [7] ptt; for
levels lying higher than this the excitation rate from this
level is larger than the deexcitation rate and for levels ly-

ing lower than this the situation is reversed. In the
present example this level, which is approximately given

by (13.6/3kT, )
t/2 [7], is between p =6 and 7 (see Fig. 8).

For levels lower than pa (and still higher than pG), the
collisional coupling becomes only downward and the
population of a level is controlled by that of the adjacent
higher-lying level. It might thus be assumed that r,„(p)
for these levels, as in the ionizing plasma case, is given by
r„(ptt}. It turns out not to be the case. This is because
lower levels have longer r(p)'s and lag behind p~.

In Fig. 5(a) the slope of the population of level 2 devi-
ates downward from the linear relationship, Eq. (13) with
the a(p)n, replaced by P(p), at t=2X10 sec, which
corresponds to r(2). If the cascading contributions from
levels p &2 were absent, the population would have
reached a final value at this time. In fact, the cascading
contributions are substantial and even dominant at later
times. Depending on the time dependence of populations
of the levels that contribute to the cascading population
of level 2, its population increases with time. A similar,
but less prominent, feature is seen with level 3. This is
the reason these lower-lying levels cannot reach their
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III. CONCLUSION AND DISCUSSION

We have shown that, for both the ionizing plasma con-
dition and the recombining plasma condition, the overall
response time of the system of excited levels is given by
the transient time of Griem's boundary level v„(pG},
which is equal to the longest relaxation time among r(p}.

In our calculation we took as an example T, =10 eV
and n, =10' cm for the ionizing plasma condition and
T, =0. 1 eV and n, =10' cm for the recombining plas-
ma condition. Griem's boundary pG depends on n, and,
to a lesser extent, on T, . Figure 10(a) shows the bound-
ary for a broad range of plasma parameter. Figure 10(b)
shows the relaxation time of the boundary together with
the response time as determined from Fig. 2 or 6 and
similarly for other conditions.

We consider the validity of the QSS. First we assume
n, and T, are Sxed, so that ~„,is constant. We have
shown that if the transient population of level pG, which
determines r„„reahces its QSS values, QSS is valid for all
the excited levels. We examine a temporal change in
n (1) for ionizing plasma. The temporal development of
the population of level pG is approximately expressed by
[see Fig. 1(a)]

dn(t)/dt =C( l,pG )n, N(t) —r,„'n(t), (14)

where n(t) and N(t) stand for n(p )Gand n(1), respec-
tively, at t. In the QSS approximation, the time deriva-
tive is set equal to zero and the population is given as

n(t)cR=~„,C(1,pG )n, N(t) . (15)

We assume that the temporal change of N(t) is expressed
in terms of a time constant T as

N {t) =Noexp{ t /T), — (16}

QSS values until Griem's boundary level KG =6, which
has the largest r(p}, reaches its QSS value (see Fig. 6}.

Figure 9 shows effective depletion rate coefficient of n,
and production rate coefficient of n(1). The difference
between these rate coefficients is the production rate
coeScient of total populations of excited levels. At t =0,
the depletion rate coefficient diverges because of the p
dependence of a(p), but the production rate coefficient is
equal to a{1)n,+P(1). With an increase in r, populations
of the excited levels enter into Saha-Boltzmann equilibri-
um starting from higher-lying levels (Fig. 5), and the re-
turning ionization flows balance with the recombination
flows [Fig. 8{b)], making the effective depletion rate
coeScient decrease. The increase in the populations of
excited levels with t results in the increase in the produc-
tion rate coefficient. The magnitude of this increase
( =4 X 10 " cm3 sec '

) is given approximately by
A (p, 1 )n (p)/n, n, with pG =6, or by

n (ps )F(ps,ps —I)/n, with ps =7. The latter quantity is
2X10 " cm sec ' [see Fig. 8(b)]. Finally, for
t ~ ~„,=3 X 10 sec, the effective depletion rate
coeScient and the effective production rate coefBcient
agree with acR.

where No is the initial value and T is positive for decreas-
ing N(t) and negative for increasing N(t). For t and

~ T~ &&r„„Eqs.(14)—(16) lead to

n(t)cR/n(t)=[T r—„,]/T . (17)

Next we examine a temporal change in n, for recom-
bining plasma. The dominant populating flow of level pG
is deexcitation from the adjacent higher-lying level. We
now take into account "the time lag" of this population.
Then the population ofpG is approximately given as
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FIG. 10. (a) Griem's boundary pG for T, =0.1 and 10 eV. (b)

The relaxation time of Griem's boundary; this corresponds to
the overall response time of the system of the excited levels.
Open circle: v; for the ionizing plasma with T, =10 eV deter-
mined from calculation similar to Fig. 1. Cross: corresponding
result for the recombining plasma with T, =0. 1 eV. Plus: simi-
lar result for T, =10eV.
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This relation indicates that the parameter (r„,/T) gives a
measure of deviation of the CR population from its actu-
al value. Thus the validity condition of QSS is that

(18)
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dn (t) ldt =F(pG+ l,pG )n, RO(pG+1)N(t —~„,)n,

—~,„'n(t), (19)

where N (t) is the ion density in this case at t .In the QSS
approximation, the population ofpG is expressed as

n (t)cR=~resF (pG+ l,pG )n, RO(pG+ 1)N(t)n, . (20}

If N(t) is again expressed by Eq. (16), then Eqs. (18)—(20)
lead to

n (t)c„/n(t)=exp( r„,—/T) [T r„,—] IT (21)

for t and iTi »r„,. The validity condition of QSS is
again given by Eq. (18).

When n, changes with time, we may start with Eq. (14)
or Eq. (19). Instead of N(t) or N(t —r„,), the factor n,
changes now. We may proceed with our discussion in a
similar way to the above cases. We then reach the same
conclusion as for the previous cases. The change in po or
~„,with the change in n„which we have neglected so
far, affects little in the above reasoning. This is because
n (pG ) is almost linearly dependent on n,

The case of a temporal change in T, is not straightfor-
ward because the collision rates have nonlinear depen-
dence on T, . First we examine ionizing plasma and start
with Eq. (14). Instead of the change in N(t), C(l,pG)
changes this time. When we note that ~„,is very weakly
dependent on T„wecan proceed with our discussion in
much the same way as for the previous cases. Validity of
the QSS would then be iw„,dC( i,pG )Idt/C( l,pG )i «1.
The excitation rate coeScient C( l,pG) may be approxi-
mated as

If the above conditions are satisfied, the validity condi-
tion Eq. (5},which was proposed by Bates et al., may not
be necessary. In fact, the ionizing plasma and the recom-
bining plasma violate this condition but we cannot find
any reason that QSS cannot be applied to these plasmas.
Their third statement, in particular, is concerned with
the existence of the level itself [20], not with the QSS ap-
proximation.

For other hydrogenic ions, the foregoing results can be
applied on the basis of the scaling summarized in Appen-
dix B.
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APPENDIX A: HIGH TEMPERATURE CASE
FOR RECOMBINING PLASMA

For a high temperature recombining plasma, which
may be important for very high z ions [3,8, 18], the magni-
tude and the p dependence of the recombination rate
coefticients are different from those for the low tempera-
ture case as seen in Fig. 7. Figure I I shows the transient
population distribution for T, =10 eV. The initial distri-
butions are appreciably different from those in Fig. 5(b)
because of the different p dependences of P(p) and a(p).
It is also noted that the population inversion among the
levels p &pG has disappeared. This is also explained by
the p dependence of P(p}.

C(l,pG) =const X T, ~exp[ E(l,pG )Ik—T, ], (22)

where T is the time constant of the change in T, . For
recombining plasma, except for the case of p& (pz, i.e.,
low temperature and high density, the QSS value of
n(pG ) is approximately given by its LTE value,

n(t)cR- Z(pG )n, n, . — (24)

Here the Saha-Boltzrnann coefBcient is

Z(pG ) =g(pG )l2[h /(2vrmkT, )] exp[y(pG ) IkT, ],
(25)

where E(l,pG) is the excitation energy of pG from the
ground state. Except for very high temperature, the tem-
perature dependence of Eq. (22) is mainly determined by
the exponential factor and the T, factor may be
neglected. Then the validity condition is written as

(23)

APPENDIX 8: SCALING LAW
FOR HYDROGENLIKE IONS

Atomic parameters for hydrogen1ike ions follow scal-
ing laws depending on the nuclear charge z.

1 0-11 1 5N] 0 9.7x10

- 1.3x10

q
p-1& 7.1x10

:3.9x10

-2.1xl0

1.1N10

:6.1x10
Cl

3.3x10

1.8x10

sec

where g(pG) and g(pG } are, respectively, the statistical
weight and the ionization potential of level p6, and the
other symbols have the usual meanings. Equation (24)
suggests that the validity condition for QSS would be
given by

ir„,dZ(pG)ldt/Z(pG)i «1 .

g
0-15 Te

principal quantum number
10

FIG. 11. Temporal development of the population density
distribution similar to Fig. 5(b), but T, =10 eV, the high tem-

perature case.
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A(p, q)=z A(p, q) (B1) for t,

C(q,p) =z C(q,p)

F(p, q)=z F(p, q)

S(p)=z S(p)

a(p) =z sa(p)

P(p) =zP(p )

(B3)

(B4)

(B5)

(B6)

(B7)

The z scaling of the right-hand side of Eq. (1) can be
simplified if we adopt

n =z'nH (B8}
—4~H

g z

The abave scaling laws, as applied to the right-hand side
of Eq. (1), result in z scaling. This results in the scaling

where the superscript H indicates the quantity for neutral
hydrogen. If we scale T, according to

T, =z'T,", (B2}

collision rate coefficients approximately scale as

—4tH (B10)

In our preceding results parameters should be understood
to have the superscript H; for example, t in Fig. 1 is t"
If we intend to apply our present result to, for example,
z =10 hydrogenlike neon, the following procedure should
be applied: T, =10 X10 eV, n, =10 X10' cm
t =10 t sec.

For recombining plasma, instead of the scaling (B9)
and (B10),we may adopt another scaling;

n, =n, and t=z t (B1 1)

Finally, we give a few examples of the actual scaling in
our figures for the case of z =10; in Fig. 1(a) t = 10 ' sec
should read 10 ' sec. In Fig. 2 rate 10s sec ' should
read 10s sec '. In Fig. 4 rate coefficient 10 (cm /sec}
should read 10 " (cm /sec). In Fig. 7 rate coefficient
10 's (cm3/sec) should read 10 ' (cm /sec). In Fig. 9
rate coefficient 10 ' (cm /sec) should read 10
(cm /sec), where we use Eq. (B9).
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