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A theory to find attractors of dissipative structure is developed by using autocorrelations for distribu-
tions. It is shown that the realization of coherent structures in dissipative dynamical systems is
equivalent to that of self-organized states with the minimum change rate of autocorrelations for their in-
stantaneous values, which usually represent the system’s total energy. It is shown that attractors of dissi-
pative structure are given by eigenfunctions for dissipative dynamic operators and they constitute the
self-organized and self-similar decay phase. Three typical examples applied to incompressible viscous
fluids, to incompressible viscous and resistive magnetohydrodynamic (MHD) fluids, and to compressible
resistive MHD plasmas are presented in order to find attractors in the three dissipative fluids and to de-
scribe a common physical picture of self-organization and bifurcation of the dissipative structure.

PACS number(s): 52.30.—q, 52.55.Dy, 03.40.G¢c

I. INTRODUCTION

Dissipative structures realized in dissipating nonlinear
dynamical systems include various self-organized struc-
tures in thermodynamic systems [1,2], the force-free fields
of cosmic magnetism [3], and the self-organized relaxed
state of the magnetized fusion plasmas such as in the re-
versed field pinch experiment [4-6], in the spheromak ex-
periment [7,8], and in the simple toroidal Z pinch experi-
ment [9]. They also include the flow structures in in-
compressible viscous fluids such as the two-dimensional
(2D) flow patterns after grid turbulence [10] and the heli-
cal flow patterns which follow turbulent puffs [11]. We
can see some common mathematical structures among
the self-organized relaxed states of the dissipative struc-
ture and also among the proposed theories themselves to
explain those dissipative structures [3,12—19]. The study
of the common universal mathematical structures embed-
ded in dissipative nonlinear dynamic systems and leading
to those dissipative structures is an area of deep interest.
We have recently proposed a theory which clarifies that
attractors of the dissipative structure are given by eigen-
functions for dissipative dynamic operators in dynamic
systems of interest [20]. In this paper, we refine this
theory [20] by introducing autocorrelations between two
instants in time evolution in order to identify and/or to
define the realization of coherent structures. We also
present three typical applications of the refined theory in
order to find attractors in three dissipative fluids and to
describe a common physical picture of self-organization
and bifurcation of the dissipative structure.

We present the refined theory in Sec. II, where we clar-
ify that the realization of coherent structures in time evo-
lution is equivalent to that of self-organized states with
the minimum change rate of autocorrelations for their in-
stantaneous values, which usually represent the system’s
total energy. We present three typical examples applied
to incompressible viscous fluids in Sec. III, to incompres-
sible viscous and resistive magnetohydrodynamic (MHD)
fluids such as liquid metals in Sec. IV, and to compressi-
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ble resistive MHD plasmas in Sec. V in order to find at-
tractors of the dissipative structure in these dissipative
fluids and to describe a common physical picture of self-
organization and bifurcation of the dissipative structure.

II. GENERAL THEORY OF SELF-ORGANIZATION
AND DISSIPATIVE STRUCTURE

We present here a more refined theory, which stands
upon the concept of the coherent structure included in
the self-organized dissipative structure, than the theory
in a previous report [20]. In the previous report [20], we
assumed a priori a quasisteady state with approximate
equilibrium equations for the self-organized states. In the
present refined theory, however, it will be shown that the
self-organized states with a coherent structure have to be
in equilibrium states.

Quantities with n elements in dynamic systems
of interest shall be expressed as q(t,x)={q,(2,x),
q,(t,x),...,q9,(t,x)}. Here t is time, x denotes m-
dimensional space variables, and q represents a set of
physical quantities having n elements, some of which are
vectors such as the velocity u, the magnetic field B, the
current density j, etc., and others are scalars such as the
mass density, the energy density, the specific entropy, and
so on. We consider a dissipative nonlinear dynamic sys-
tem which may be generally described by

g,

S =LMal+LPlal, W
where L[ q] and LP[q] denote, respectively, nondissipa-
tive and dissipative, linear or nonlinear dynamic opera-
tors, such as ¢,=u, LN q]l=—Vp/p—Vu?/2+uXo,
and LP[q]=(v/p)V?u in the Navier-Stokes equation for
incompressible viscous fluid dynamics with the coefficient
of viscosity v. (In some cases, the operator L”[q] may
include negative dissipation terms such as energy input
terms.) When the dynamic system has some unstable re-
gions, the nondissipative dynamic operator L¥[q] may
become dominant and lead to the rapid growth of pertur-
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bations there and further to turbulent phases. This may
yield spectrum transfers or spectrum spreadings toward
both the higher and the lower wave number regions in g;
distributions, as in the normal energy cascade and also
the inverse cascade shown by 3D MHD simulations in
[21-23] or in the turbulent region of the turbulent puffs
in incompressible viscous fluids shown in Fig. 4 of [11].
When the higher wave number becomes a large fraction
of the spectrum, the dissipative dynamic operator L[q]
may become dominant to yield higher dissipations for the
higher wave number components of W;. In this rapid
dissipation phase, which is far from equilibrium, the un-
stable regions in the dynamic system are considered to
vanish to produce a stable configuration again. Since this
newly self-organized relaxed state is identified by the real-
ization of its coherent structure from the standpoint of
observation, we notice and find the following definition (i)
for the configuration of the self-organized relaxed state,
by using autocorrelations g;(z,x)q;(t5 +At,x) between
the time of relaxed state f; and a slightly later time
tg +At with a small At:
(i) The state with

[ 4i(tg,x)q, (15 +At,x)AV
fqi(tR ,X)q;(tg,x)dV

min

Substituting the Taylor expansion of g;(t;z +At,x)
=gq;(tg,x)+[3g;(tg,x) /0t |At + 1[0%q;(tg,x) /3t *](At )
+ -+ into definition (i) and taking account of the arbi-
trary smallness of Az, we obtain the following equivalent
definition (ii) for the configuration of the self-organized
relaxed state from the first order of At in definition (i):

(ii) The state with

fq,'(tR,X)[aqi(tR,X)/at]dV
fqi(tRyx)qi(tR,X)dV

min

On the other hand, if this dynamic system has no dissipa-
tive term of LP[q] and also has no external input
through its boundary, then global autocorrelations
W,~,~(t)=fq,-(t,x)q,»(t,x)dV=f[q,-(t,x)]de across the
space volume of the system, which usually represent the
system’s total energy, are conserved because there is no
dissipation by the nondissipative operator L'[q]. In this
case, we accordingly obtain dW; /3t =2 [ q;(3dq; /3t)dV
=2 f ¢;L}(q]dV =0, and therefore the definition of the
nondissipative operator L[q] (i.e., the conservative
operator) is written

IQiLiN[QJdV =0. (2)

Using Eq. (2), the dissipation rate or the change rate of
W (¢) in the dissipative dynamic system of Eq. (1) is writ-
ten as follows:

aW,,(t) aq,(:
- fql

L AL 2 [ q,LPlqldV .
3)

Using the term of W;(¢), the equivalent definition (ii) for
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the configuration of the self-organized relaxed state
shown above is rewritten as follows:
(iii) The state with

W, (15) /0t

min
Wi(tg)

This definition (iii) leads to the following two equivalent
definitions of (iv) and (v) for the configuration of the self-
organized relaxed state:

(iv) The state with min|3W,
W, att=tg.

(v) The state with maxW; for a given value of
|oW;; /0t at t =t.

These two equivalent definitions of (iv) and (v) belong
to typical problems of variational calculus with respect to
the spatial variable x to find the spatial profiles of
q;(tg,x), and they are known to be equivalent to each
other by the reciprocity of the variational calculus.

We find from the definitions (i)-(iv) shown above that
the realization of coherent structures in dissipative
dynamical systems is equivalent to that of self-organized
states with the minimum change rate of autocorrelations
for their instantaneous values.

If the dynamical system of Eq. (1) has both the nega-
tive and the positive dissipative terms in the dissipative
operator LP[q], and if it has a steady state such that it
satisfies dg; /0t =0 and therefore dW; /9t =0, then this
steady state may constitute the self-organized state de-
scribed by definitions (i), (ii), or (iii). In this case, if the
system has come to the steady state, then the system will
never deviate from the steady state because of dg; /3¢t =0.

On the other hand, if the total dissipation in the
dynamical system 1is always either positive (i.e.,
oW, /3t <0) or negative (i.e., dW,/dt>0), then the
steady state of dg; /3t =0 will never be realized in the
system. Hereafter, we consider those dynamical systems
with dW; /9t <0 or dW; /3t >0. We use the notation
q*(W;,x) or simply ¢;* for the profiles of g; that satisfy
definition (iv). The mathematical expressions for
definition (iv) are written as follows, defining a functional
F with use of a Lagrange multiplier a:

. /0t| for a given value of

oW
F=—¢ o —aW; , 4)
SF=0, (5
8*F>0, (6)

where e=1 for dW; /9t <0,e=—1 for dW; /3t >0, and
8F and 8°F are the first and the second variations of F
with respect to the variation 8q(x) only for the spatial
variable x. Substituting Eq. (3) into Egs. (4)—(6), we ob-
tain

8F =—2 [ {8q;(eLP(q]+aq,)+eq,6LP[q1}dV =0 .
)

8°F =—2 [ 8; |5LP(q]+ 2 8q; |dV >0. @)
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Using the same method as in [20], imposing and using the
following self-adjoint property upon the operators L[q],

[ a:8LP1q)dv = [8q,LP(qldV + P-dS , 9
we obtain the following from Eq. (7):
8F=—2 [ 8¢,(2¢LP[q]+ag,)dV —2H P-dS
=0, (10)

where §P-dS denotes the surface integral term which
comes out as from the Gaussian theorem. We then ob-
tain the Euler-Lagrange equations from the volume in-
tegral term in Eq. (10) for arbitrary variations of 8¢; as
follows:

_fa
2

where €2=1 is used. We find from Eq. (11) that the
profiles of g;* are given by the eigenfunctions for the dis-
sipative dynamic operators L?[q*] and therefore have a
feature uniquely determined by the operators LP[q*]
themselves. As a boundary value problem, we may as-
sume that Eq. (11) can be solved for given boundary
values of g;. The value of the Lagrange multiplier a is
determined by using the given value of W;; for the global
constraint, as is common practice in variational calculus.
Substituting the eigenfunctions ¢;* into Eq. (3) and using
Eqg. (11), we obtain the following:

oW
at

This equation leads to the following:

LPlq*]= g, (11)

=—eaf(q,-*)2dV=—eaW,"}‘ . (12)

Wi=e “Wir=e  [lgx(x)PdV
:f[qi}(x)e*(ea/z)t]ldV , (13)

qitzqi}(x)e*(eaﬁ)t’ (14)

where g%(x) denotes the eigensolution for Eq. (11)
which is supposed to be realized at the state with the
minimum change rate during the time evolution of the
dynamical system of interest. Using Eq. (14) at first and
then substituting Eq. (11), we obtain the following:

og;* €ea

o 5 9 =Lila"] (15)
Substituting the eigenfunctions ¢* into Eq. (1) and com-
paring with Eq. (15), we obtain the following equilibrium
equations at t =tp:

LM q*]=0. (16)

This result indicates that the self-organized states with
coherent structure have to be in equilibrium states of Eq.
(16). We find from Eqgs. (14)-(16) that the eigenfunctions
g;* for the dissipative dynamic operators L°[q*] consti-
tute the self-organized and self-similar change phase (de-
cay for €=1 and increase for €= —1) with the minimum
change rate and with the equilibrium state of Eq. (16) in

the time evolution of the present dynamic system. We
see from Eq. (12) that the factor a of Eq. (11), the
Lagrange multiplier, is equal to the time constant of
change of W at the self-organized and self-similar
change phase. Since the present dynamic system evolves
basically by Eq. (1), the dissipation by L?[q*] of Eq. (11)
during the self-similar change couples with L¥[q] and
the boundary wall conditions to cause gradual deviation
from self-similar change. This gradual deviation may
yield some new unstable region in the dynamic system.
When some external positive input for e=1 or negative
input for e=—1 is applied through the boundary in or-
der to recover the dissipation of W, the present dynamic
system is considered to return repeatedly close to the
self-organized and self-similar change phase. The obser-
vation of the time evolution of the system of interest for
long periods reveals a physical picture in which the sys-
tem appears to be repeatedly attracted towards and
trapped in the self-organized and self-similar change
phase of Eq. (14). On the other hand, if the dynamic sys-
tem has a steady state such that dq; /3t =0 is satisfied
and therefore dW; /3t =0, then this system will never de-
viate from the steady state after realization of the steady
state without external input.

Using the same method as in [20] for the discussion on
the mode transition point or bifurcation point of the dis-
sipative structure, we consider the following associated
eigenvalue problem for critical perturbations 8g; that
make 82F in Eq. (8) vanish:

a
e(8LP[q) +— 84 =0, an

with boundary conditions given for &¢;, for example,
8q;=0 at the boundary wall. Here o, is the eigenvalue
and (8LP[q]), and 8¢, denote the eigensolutions. Sub-
stituting the eigensolution 8¢;, into Eq. (8) and using Eq.
(17), we obtain the following:

8°F =(a; —a) [ 8¢4dV >0 . (18)

Since Eq. (18) is required for all eigenvalues, we obtain
the following condition for the state with the minimum
change rate:

O<a<a, (19)

where a, is the smallest positive eigenvalue and a is as-
sumed to be positive. When the value of a goes beyond
the condition of Eq. (19), as when a; <a, then the mixed
mode, which consists of the basic mode by the solution of
Eq. (11) where a=a;,, and the lowest eigenmode of Eq.
(17) become the self-organized dissipative structure with
the minimum change rate. The bifurcation point of the
dissipative structure is given by a=a,.

III. ATTRACTORS
IN INCOMPRESSIBLE VISCOUS FLUIDS

We apply here the theory from the preceding section,
which is based on the realization of the coherent struc-
ture and does not start with an assumption on the equilib-
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rium equation, to incompressible viscous fluids described
by the Navier-Stokes equation:

%‘tl =—Vp+wWa, (20)
where p, u, and p are the fluid mass density, the fluid ve-
locity, and the pressure, respectively, and V-u=0. For
simplicity, we assume v to be spatially uniform. Using
vector formulas, Eq. (20) is rewritten as

Qu__¥_lyiuxe—Yyxvxu, @1

ot p 2 P
where @ =V Xu is the vorticity. We find from Eq. (21)
that LM ql=—Vp/p—Vu?/2+uXe and LP[q]
=—(v/p)V XV Xu, where g; =u. Substituting these two
operators of LM[q] and LP[q] into Egs. (7)-(10)
and using 0=V Xbu, ®=V Xu, V -(aXb)=b-VXa
—a-V Xb, and the Gaussian theorem, we obtain the fol-
lowing:

8F=4 [ bu- av

lVXVXu——q-u
P 2

+—2;‘iﬁ[&uX(VXuH—(VXSu)Xu]-dS

=0, (22)

8F =2 [su- | LVXVXsu—bu[dV>0. (23)
P 2

Here the present operator L?[q] satisfies the self-adjoint
property of Eq. (9) as follows:

Ju

dv

YYXVXéu
p

=f5u.

+%¢[8uX(VXu)+(VX8u)Xu]-dS. (24)

%VXVXu dv

We obtain the Euler-Lagrange equation from the volume
integral term in Eq. (22) for the arbitrary variation u,
corresponding to Eq. (11), as follows:

vxv><u*=i;1:—u* i 25)

The eigenfunction of Eq. (25) can be obtained for a given
boundary value of u, as a boundary value problem. Us-
ing the eigenfunction of Eq. (25) and referring to Egs.
(12)-(15), we obtain the following:

Wi
o =—a [ dv=—aW}, (26}
Wi=e “Wizg=e —atf [uk(x))aV
=f[u§(x)e —tar2gy 27
u* =uf(x)e ~(@/2" (28)
aglt'=_%u:=_;‘)’_vxv><u* , (29)

where uj(x) denotes the eigensolution of Eq. (25) for the
given boundary value of u, which is supposed to be real-
ized at the state with the minimum dissipation rate dur-
ing the time evolution of the dynamical system of in-
terest. Substituting the eigenfunction u* into Eq. (21)
and using Eq. (29), we obtain the equilibrium equation at
t=tg:

vP*+§—v<u*)2=p<u*><w'> : (30)

We find from Eq. (28) that the eigenfunction u* for the
present dissipative dynamic operator —(v/p)VXVXu
constitutes the self-organized and self-similar decay phase
with the equilibrium equation (30) during the time evolu-
tion of the present dynamic system. We see from Eq. (26)
that the factor a of Eq. (25), which is the Lagrange multi-
plier, is equal to the decay constant of the flow energy
W,; at the self-organized and self-similar decay phase.

Referring to Egs. (17)-(19) for the discussion on the bi-
furcation point of the self-organized dissipative structure,
we obtain the associated eigenvalue problem from Eqg.
(23) for critical perturbations du that make 8*F vanish
and the condition for the state with the minimum dissipa-
tion rate that corresponds to Eq. (19) as follows:

a
vxvxsuk——z’;ﬁauﬁo, 31)

0<a<a, . (32)

Here a, is the eigenvalue, 6u; denotes the eigensolution,
a, is the smallest positive eigenvalue, the boundary con-
ditions are 8u,,-dS=0 and [8u, X(VX&u,)]-dS=0, and
the subscript w denotes the value at the boundary wall.
Owing to the self-adjoint property of Eq. (24), the eigen-
functions a, for the associated eigenvalue problem of Eq.
(31) form a complete orthogonal set and the appropriate
normalization is written as

fak-(VXVXaj)dV=faj-(VXVXak)dV

= %kP.
2v
_ QP

faj°ade

where VXV Xa; —(a;p/2v)a; =0 is used. The flow u
distribution at each instant can then be expanded by us-
ing the eigensolution u* for the boundary value problem
of Eq. (25) for the given boundary value and also by using
orthogonal eigenfunctions a; for the eigenvalue problem
of Eq. (31) as follows:

u=u*+ Y ca; . (34)
k=1

Here the spectrum component of ¢, by this eigenfunction
expansion corresponds to the basic component u* and
the spectrum of ¢, (k =0,1,2, . ..) depends now on time
t. Substituting Egs. (34), (25), and (31) into Eq. (21), we
obtain the following:
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du* > d(ciay) a > Qg
+ =LNq]——=u*— —_—
ot kgl ot i [q] 2 u k§1 ) Crap ,

(35)

where the eigenvalues a; are positive and a, is the small-
est positive eigenvalue. In the same way as that shown by
Egs. (28) and (29), we see from Eq. (35) that the flow com-
ponents of u* and ¢, a, decay approximately by the decay
constants of a/2 and «, /2, respectively. When the
flow-dynamics system has some unstable regions, the
nondissipative and nonlinear operator L} q]=—Vp /p
—(1/2)Vu’4+uXwe in Eq. (35) may become dominant,
leading to the raid growth of perturbations and to tur-
bulent phases. This nonlinear process may yield spec-
trum transfers in the spectrum of ¢, toward both the
higher and the lower mode number regions. At the same
time, since the components with the larger eigenvalue o,
decay faster, the selective dissipation for the higher mode
number components may take place. Due to these two
key processes of the spectrum transfer and the selective
dissipation in the spectrum of c;, the lowest mode with
the smallest decay constant will remain last after unstable
regions have vanished. If a <a;, the basic component u*
remains last. If the value of @ becomes greater than «;,
then the basic component u* decays faster than the eigen-
mode a,. This faster decay of u* continues to yield a fur-
ther decrease of W;;, resulting in the decrease of «a itself,
until a becomes equal to a, i.e., the same decay rate state
with the lowest eigenmode a;. Consequently, the mixed
mode which consists of both u*, having a=a,, and the
lowest eigenmode a; remains last. In other words, the bi-
furcation of the self-organized dissipative structure from
the basic mode u* to the mixed mode with u* and a,
takes place at a=a;.

If g(x) is a solution of Eq. (25), then another solution
h(x) defined by h(x)=V Xg(x) satisfies again Eq. (25)
and has the same decay constant a as that of the com-
ponent g(x), as is easily shown by taking the rotation of
Eq. (25). Linear combinations of u*=e g(x)+e,h(x)
also satisfy Eq. (25) and have the same decay constant a.
In a special case of e, =V 2v/ape,, the linear combina-
tions of u* can be shown straightforwardly to satisfy the
following:

VXu*=xu* ||k|=Vap/2v]|. (36)

In this special case, u* X @* =0, and then the equilibrium
equation, Eq. (30), becomes

vp*+f;—v<u*)2=o ) (37)

In the more general case with e,#V2v/ape,;,u* con-
tains another component so that u* X @*+0.

When self-organized relaxed states of interest have
some kind of symmetry along one coordinate x; in x, i.e.,
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d/0x,=0 (for example, translational, axial, toroidal, or
helical symmetry, or two-dimensional flow systems per-
pendicular to x,), then Eq. (25) can be separated into two
mutually independent equations by using two com-
ponents of u} along x; and u}, perpendicular to x,, as fol-
lows:

a
VXqu;=3€—u;, (38)
VXV xut, =Ly . (39)

2v

The time evolution of self-organized and coherent surface
flow structures after grid turbulence, shown in Figs. 1
and 4 in [10], is considered to be represented by Eq. (35)
with the use of Eq. (39). In three-dimensional flow sys-
tems, when self-organized states have a feature of
Vap/2vu? =V Xu?, then the total flow of u*=u?+u},
can be shown straightforwardly to constitute solutions of
the helical flow of Eq. (36), by using Eq. (39). This type
of helical flow solution for Eq. (36) is considered to
represent approximately the helical flow pattern after the
turbulent puffs shown in Fig. 4 of [11] with the use of the
NMR imaging observation.

IV. ATTRACTORS IN INCOMPRESSIBLE VISCOUS
AND RESISTIVE MHD FLUIDS

We show here another application of the theory in Sec.
IT to incompressible viscous and resistive MHD fluids
such as liquid metals which are described by the follow-
ing extended Navier-Stokes equation and the equation for
the magnetic field:

p%=j><B~vp_§V“2+puXw“VVXVX“’ 40

E;—lt’=v><(u><1a)——v><(m') , 1)

where Ohm’s law is used and du /dt is rewritten by du /d¢
in Eq. (40) in the same way as that used in Eq. (20) for
Eq. (21). In this system, the flow energy pu’/2 and the
magnetic energy B?/2u, interchange with each other
through the terms of jXB and VX (uXB) in Egs. (40)
and (41). The global autocorrelation W;;, corresponding
to the total energy, and its dissipation rate oW /ot
are written, respectively, as W =2f[(pu2/2)+(BZ/
2u0)ldV and AW, /3t=—2[[vu-VXVXu+B-V
X(mj)/uoldV. Using the vector formula V-(aXb)
b-VXa—a-VXb and the Gauss theorem, dW; /ot is
known to be rewritten by volume integrals of (vw?+7j?).
We assume here, for simplicity, that the resistivity 7 at
the relaxed state has a fixed spatial dependence like 7(x).
In the same way as that used in Egs. (22) and (23), substi-
tuting those equations of W, and dW;/dt into Egs.
(4)-(6), we obtain the following:
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vVXVXu—%pu

8F=4 Iau-

1 . a

+—8B- [VX(nj)—<B | (aV
e )=

+2§ v(duXw+dwXu)
+£—(8ij+8ij) -dS$=0, 42)
0
8F=2 [811- YW XVXbu— 2 pbu

+-1 8B [Vx(n8j)—Z8B | [dV>0, 43)

Ko 2

where 1,6j=V X 8B is used. Here we notice again that
the dissipative operator —VX(7nj) [ie, —VX(nV
XB/uy)] satisfies the self-adjoint property of Eq. (9) as
follows:

J b [VX(qVXb;)1dV
= [b,-[VX(qV Xb,)1dV
+ P [n(VXb,)Xb, —n(VXb,)Xb,]-dS .  (44)

We then obtain the Euler-Lagrange equations for arbi-
trary variations of 6u and 8B from the volume integral
terms of Eq. (42) as follows:

VXVxut=2ur, (45)

VX(nj*)=%B‘ , (46)

VXVXB*= ﬂLEB" for n=const 47)
29 K ’

where uyj=V XB is used. Using the eigenfunctions of
Eqgs. (45) and (46) and referring to Egs. (12)-(15), we ob-
tain the following:

oW? .
3 =—af P(u*)2+“Z—) V=—aW?. @9
0
=" Wik
B (x)e ~(a/2))2
=f {P[ufg(x)e_(a/Z)t]2+ [ R ] v
Ko
(49)
u* =u;(x)e —(a/2)t , “
B*=B}(x)e —(a/2)t ’ >
*
TN L AT (52)
*
B g _yx(i*), (53)

ot 2

where uj(x) and By (x) denote again the eigensolutions
of Egs. (45) and (46) for given boundary values of u and
B, which are supposed to be realized at the state with the
minimum dissipation rate during the time evolution of
the dynamical system of interest. Substituting the eigen-
functions u* and B* into Egs. (40) and (41) and using
Egs. (52) and (53), we obtain the equilibrium equation at
t=t R .

vp*+121w*2=j*x3*+p(u*x@*) . (54)

VX(u*XB*)=0. (55)

We find from Egs. (50) and (51) that the eigenfunctions
u* and B* for the present two dissipative dynamic opera-
tors —vVXVXu and —VX(nj) constitute the self-
organized and self-similar decay phase with the minimum
dissipation rate and with equilibrium equations of (54)
and (55) during the time evolution of the present dynamic
system. We see from Eq. (48) that the factor a of Eqgs.
(45) and (46), which is the Lagrange multiplier, is equal to
the decay constant of energy W, at the self-organized
and self-similar decay phase.

Referring to Egs. (8) and (17)-(19) for the discussion of
the bifurcation point of dissipative structure, we obtain
two associated eigenvalue problems from Eq. (43) for crit-
ical perturbations Su and 8B that make 8°F vanish and
the condition for the state with the minimum dissipation
rate that corresponds to Eq. (19) as follows:

arp _
VXVXSuk————Suk—O ’ (56)
2v
vxmvxsnk)—fﬁfianﬁo , (57)
0<a<a1,ﬁl . (58)

Here a; and B, are eigenvalues, du; and 8B, denote the
eigensolutions, a; and B, are the smallest positive eigen-
value of a; and By, respectively, and the boundary
conditions are 8u,-dS$S=0,[8u, X(VX&u,)]-dS=0,
6B, -dS=0, and [9(VX6B,)X8B,]-dS=0. Owing to
the self-adjoint property of Eq. (44), the eigenfunctions
b, for the associated eigenvalue problem of Eq. (57) for
the magnetic field form a complete orthogonal set and the
appropriate normalization is written as

[ b, [VX(qVXb)))dV= [b;-[VX(qVXb,)]dV
=%fbj.bkdy

= "23" S » (59)
where VX(nV Xb; )—(ueB; /2)b, =0 is used. Distribu-
tions of u and B at each instant can be expanded by using
eigensolutions u* and B* for the boundary value problem
and orthogonal eigenfunctions a; and b, for eigenvalue
problems as follows:

u=u*+ 3 cpa; , (60)
k=1
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B=B*+ 3 C/b, . 61)
k=1

We note here that the spectrum components of ¢, and C|,
by this eigenfunction expansion correspond, respectively,
to the basic components u* and B*, and the spectra of ¢,
and C, (k=0,1,2,...) depend on time z. Substituting
Egs. (60), (61), (45), (46), (56), and (57) into Egs. (40) and
(41), we obtain the following:

ut | & dga) o a . & %
ot +k:1 ot Ll [q] 2“ k§1 2 Crdy
(62)
JB* bt 8(Ckbk)
+ —_
at ,El ot
ad oy - By
=VX(uXB)——B*— ¥ —C;b, . (63)
2 = 2

When the present system has some unstable regions, the
nondissipative =~ and nonlinear  operators LJIV [q]
[=jXB—Vp—(p/2)Vu’+puXw] and VX(uXB) in
Egs. (62) and (63) may become dominant and yield spec-
trum transfers in the spectra of ¢, and C, toward both
the higher and the lower mode number regions. (Field
reconnections have features to induce spectrum transfers
toward both the lower and the higher mode number re-
gions.) We find again from Egs. (62) and (63) that the two
key processes of the spectrum transfer and the selective
dissipation in the spectra of ¢, and C, give us a detailed
physical picture of the self-organization and the bifurca-
tion of the dissipative structure, in the same way as that
shown after Eq. (33) in Sec. III. If a<a,,B,, then
through an interchange between two of the flow and the
magnetic energies by the two terms of jXB and
VX (uXB) in Eqgs. (40) and (41), and after the faster de-
cay component catches the slower decay component of
the two energies, the basic components of u* and B* with
the same value of a remain last. The bifurcation of the
self-organized dissipative structure takes place when the
value of a becomes equal to the lower one of a; and B,
where the mixed mode with (u* and B*) and the corre-
sponding lowest eigenmode (a, or b;) remain last.

In the same way as that used in Eq. (36), Egs. (45) and
(47) can be shown to have the following helical solutions:

VXu*=xu* (|k|=Vap/2v), (64)
VXB*=AB* (|Al=v"au,/27), (65)

where spatially uniform 7 has to be assumed. In this spe-
cial case, u* Xw*=0 and j* XB*=0, and then the equi-
librium equation, Eq. (54), becomes

vp*+§wu*)2=o . (66)

In more general cases, u* and B* contain other com-
ponents so that u* X @*+0 and j* X B*#0.

In the same way as that used in Egs. (38) and (39),
when self-organized relaxed states of interest have some
kind of symmetry along one coordinate x; in x, i.e.,
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d/0x; =0 (two-dimensional systems are included in this
case), Egs. (45) and (46) can be separated into two mutu-
ally independent equations, by using two components of
u; and B} along x,, and u}, and B}, perpendicular to x,,
as follows:

VXV xur=2Lyr | 67)
2v
VXVXut=2Ly . (68)
2v
Q,
vx(nvxa;)———%B; , (69)
Qa
VX (qVXB?)= 5" ., (70)

where 1,j=V XB is used. In three-dimensional systems,
when self-organized states with uniform 7 have a feature
of Vau,/2nB*=VXB?, it can be shown by the
straightforward use of Eq. (70) that the total field of
B*=B; +B;, constitutes solutions of the helical force-
free field of Eq. (65) in the same way as that used for u*
after Eq. (39).

V. ATTRACTORS IN COMPRESSIBLE RESISTIVE
MHD PLASMAS

We show here the third application of the theory in
Sec. II to compressible resistive MHD plasmas described
by the following simplified equations:

du _ . ..
P =iXB=Vp (71)
%‘ti=v><(ux13>—vx<nj) : (72)

where the viscosity is assumed to be negligibly small. In
this system, W; and its dissipation rate dW;; /9t are writ-
ten, respectively, as W;=2 f [B%/2uy+pu?/2)dV and
oW, /3t=—(2/py) [[B-VX(nj)]dV. We assume here,
for simplicity, that the resistivity 7 at the relaxed state
has a fixed spatial dependence such as 7(x), as is indeed
the case in all experimental plasmas where 7 goes to
infinity near the boundary wall. Substituting those equa-
tions of W, and oW /3t into Egs. (4)-(6) in the same
way as that used in Egs. (42) and (43), and taking account
of compressible p, we obtain the following:

2 a
SF=— 26B- [V X(7j)——B
uof mi)=3
u2
—apy 8p7+p6u-u dv
2 . ) _
+;—§(n8Bx1+n81><B)-dS—0, (73)
0
82F =2 [ 18B- |vx(n8j)— 25B
Ho 2
du?
—au, 8p8u-u+pT dv>0. (74)
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We obtain the Euler-Lagrange equation from the volume
integral term in Eq. (73) for arbitrary variations of 3B,
8p, and Su as Eq. (46) and the following:

u*=0, p*u*=0, (75)

Using Egs. (46) and (75), and referring to Eqs. (12)-(15),
we obtain the following that lead to Eqgs. (51) and (53):

ow?* *)2
e G av=—am, (76)
0
B* (x)e—(a/Z)t 2
,.,f=e“a'W,.;R=f[ 2 “ Py a7
0

Substituting u* and B* into Egs. (71) and (72), and using
Egs. (46), (75), and (53), we obtain the equilibrium equa-
tion at t =t1p:

Vp*=j*XB*, (78)
VX (u*XB*)=0. (79)

We find again from Egs. (76) and (51) that the eigenfunc-
tion B* for the present dissipative dynamic operator
—V X(7nj) constitutes the self-organized and self-similar
decay phase with the minimum dissipation rate and with
equilibrium equations of Eqgs. (78) and (79) during the
time evolution of the present dynamic system. We also
see from Eq. (76) that the factor a of Eq. (46), which is
the Lagrange multiplier, is equal to the decay constant of
energy W, at the self-organized and self-similar decay
phase, as was shown in Eqgs. (11)-(16) in the general self-
organization theory.

Referring to Egs. (8) and (17)-(19) for the discussion of
the bifurcation point of dissipative structure, we obtain
the associated eigenvalue problem from Eq. (74) for criti-
cal perturbations 8B that make 82F vanish and the condi-
tion for the state with the minimum dissipation rate that
corresponds to Eq. (19) as Eq. (57) and the following:

with the boundary conditions of 6B, ,-dS=0 and
[p(VX86B,)X8B,]:dS=0. In the same way as that
used in Eqgs. (59), (61), and (63), we obtain the same eigen-
function expansion of B by the eigensolution B* for the
boundary value problem and the orthogonal eigenfunc-
tion b, for eigenvalue problems, and also the same field
equation with Egs. (61) and (63), as follows:

B=B*+ 2 Ckbk N (81)
k=1
JB* = 9(Cyby) a
+ = XB)——B*
ot k§1 or VX(uXB) 2B
- 2 &Ckbk . (82)
k=1 2

We find again from Eq. (82) that the two key processes of
the spectrum transfer and the selective dissipation in the
spectrum of C; give us a detailed physical picture for the
self-organization process and the bifurcation of the dissi-
pative structure at a=J, in the same way as that shown
after Eq. (63) in Sec. IV. The flow energy in the present

system dissipates to vanish by the dissipation term of
—VX(7nj) in Eq. (72) through the interchange between
the flow and the magnetic energies by the two terms of
jXB and VX (uXB) in Egs. (71) and (72).

In the same way as that used in Eq. (36), it can be
shown that Eq. (46) has the same force-free field solution
with Eq. (65) for the case with spatially uniform 7:

VXB*=AB* (|A|=V au,/27) . (83)

In this special case, j* XB* =0, and then the equilibrium
equation, Eq. (78), becomes

Vp*=0. (84)

In more general cases, B* contains other components so
that j* X B*#0.

In the same way as that used in Eqgs. (38) and (39),
when self-organized relaxed states of interest have some
kind of symmetry along one coordinate x; in x, i.e.,
9/3dx, =0 (two-dimensional systems are included in this
case), Eq. (46) can be separated again into the two mutu-
ally independent equations, Eqs. (69) and (70). Conven-
tional notations of B}=B; (toroidal component) and

s.=B; (poloidal component) are used for the case of
toroidal symmetric relaxed states. As one branch of the
toroidal relaxed states, the field reversal configuration
(FRC) plasma without B} has been observed recently in
merging experiments of two spheromak plasmas, as
shown in Fig. 2 in [8]. This FRC branch of the relaxed
states can be represented by Eq. (70).

When self-organized states with uniform 7 in a three-
dimensional system have a feature of V au,/2uB?
=V XB},, it can be shown straightforwardly with use of
Eq. (70) that the total field of B* =B} + B}, constitutes a
solution of the helical force-free field of Eq. (83), as
shown after Eq. (70). This force-free field is realized ap-
proximately in experimental low B plasmas (i.e., negligi-
ble pressure gradient of Vp* ~0) when spatially uniform
resistivity 7 is assumed. In more general cases with
nonuniform 7, substituting j*=j/+jI and poj;
= f(x)B* into VX (7j*)=(a/2)B* of Eq. (46), using )
=V XB, and comparing the factor of B*, we obtain the
following approximate solution for j at the self-
organized relaxed state:

toif =V poa/27B* , (85)

where the subscripts || and 1 denote, respectively, the
parallel and the perpendicular components to the field
B*. As reported in [24], a comparison between this
theoretical result of Eq. (85) and the results of 3D MHD
simulations with both ‘“nonuniform 1” and “uniform %"
supports this dependence of j; on 7 profiles.

VI. SUMMARY

We have presented a theory, more refined than that in
[20], which stands upon the concept of the coherent
structure included in the self-organized dissipative struc-
ture, and its application, which is in further detail than in
[20]. As one of the universal mathematical structures
embedded in dissipative dynamic systems of Eq. (1), we
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have clarified in Sec. II that the realization of coherent
structures in time evolution, which is expressed by
definition (i) with use of autocorrelations, is equivalent to
that of self-organized states with the minimum value of
|dW,; /3t| for instantaneously contained W, expressed
by the equivalent definition (iv). It is seen from a com-
parison of definitions (i)-(iv) and Egs. (1)—(3) that this
coherent structure of the self-organized state with the
minimum change rate is determined essentially by the
equations of the dynamic system themselves, which rule
the time evolution of the system, and key terms are dissi-
pative dynamic operators LP?[q] in the system. We find
the following features (a)—(e) from the variational cal-
culus of Egs. (4)-(11) and from Egs. (12)-(16): (a) The
attractors of the dissipative structure are given by eigen-
functions ¢* of Eq. (11) for dissipative operators L”[q].
(b) The attractors constitute the self-organized and self-
similar change phase with the minimum change rate of
the autocorrelation W;;. (c) The Lagrange multiplier a
becomes equal to the time constant of change of W; in
the self-similar change phase. (d) The self-organized
states with coherent structure have to satisfy the equilib-
rium equation Eq. (16). (e) The bifurcation point of the
dissipative structure is generally given by a =a; with use
of the smallest positive eigenvalue a, for the associated
eigenvalue problem of Eq. (17).

We have presented three typical examples of detailed
applications of the present refined theory to incompressi-
ble viscous fluids (Sec. III), to incompressible viscous and
resistive MHD fluids such as liquid metals (Sec. IV), and
to compressible resistive MHD plasmas (Sec. V) and have
derived attractors of the dissipative structure in these dis-
sipative fluids. We have clarified that all of the attractors
in the three dissipative fluids have the same features as
those of attractors in the general theory mentioned
above. Using eigensolutions of basic modes for boundary
value problems and complete orthogonal sets by eigen-
functions for associated eigenvalue problems for the three
dissipative fluids, we have presented detailed physical pic-
tures of the self-organization of these dynamic systems
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approaching basic modes and also of the bifurcation of
the dissipative structures from basic modes to mixed
modes. Those physical pictures consist of the following
two common key processes: The first is the spectrum
transfer toward both the higher and the lower eigenmode
regions for dissipative dynamic operators, caused by such
as instabilities and field reconnections. The second is the
selective dissipation for higher eigenmode components
associated inevitably with dissipative operators. Results
of 3D MHD simulations show that these two key pro-
cesses take place almost simultaneously during fast relax-
ation phase, as reported in [25].

Corresponding to the Fourier spectrum analysis shown
in [21-23], Egs. (35), (62), (63), and (82), with the use of
the eigenfunction expansion, suggest that an eigenfunc-
tion spectrum analysis associated with dissipative dynam-
ical operators LP[q] will be useful to understand self-
organization processes. This type of eigenfunction spec-
trum analysis for our computer simulations of self-
organization processes in resistive MHD plasmas [24]
and in incompressible viscous fluids is under investigation
and the results will be reported elsewhere [25].
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