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We investigate in this paper the origin of the “butterfly” patterns that were discovered during small-
angle-neutron-scattering studies of uniaxially stretched gels and rubbers and of polymer blends in exten-
sional flow. We present a general formalism for both gels and liquids which shows that when material
parameters such as shear modulus or viscosity are allowed to depend on the internal degrees of freedom
(e.g., the monomer concentration), then butterfly patterns are naturally encountered in the isointensity
contours of the structure factor. We also show that for higher strains (or strain rates for liquids), one en-
counters strain-induced decomposition. The dynamics of strain and of flow-induced decomposition are
shown to be closely similar. To test the theoretical description, we compute the inelastic-light-scattering
spectrum and the time evolution of the small-angle neutron-scattering cross section.

PACS number(s): 82.70.Gg, 61.41.+e, 62.20.Dc

I. INTRODUCTION
A. Classical theory

A gel or rubber is a complex network consisting of a
mesh of randomly cross-linked polymer chains. The con-
necting sections of the network are polymer coils which,
due to their great extensibility, allow the network to have
a very low rigidity (i.e., low shear and low Young’s
moduli [1]). The first description of the physical proper-
ties of such networks was provided by the classical theory
of rubber elasticity, which dates back to the 1940s [2-4].
For the classical theory, strain is the only macroscopic
collective variable because the monomer concentration of
a connected network is assumed to be locked to the
strain. For networks swollen by a solvent (gels), the clas-
sical theory assumes that the free energy is the sum of a
purely liquidlike part and a purely elastic part. The equi-
librium state is, consequently, characterized by a balance
between the “liquid” pressure—which tends to expand
the network—and the isotropic elastic stress in the net-
work which tends to contract it.

At the microscopic level, a gel is believed to behave as
an elastic solid only beyond a certain characteristic
length scale. At shorter length scales, it is better de-
scribed as a liquid [S]. An elegant, intuitive picture
which captures this microscopic regime has been provid-
ed by the so-called “c* theorem” [6]. This principle
states that at the microscopic level, an equilibrium gel
resembles a semidilute polymer solution at the overlap
concentration ¢*. In the language of solid-state physics
we might interpret this ¢ * theorem as saying that a gel is
to be considered as a random mesh with every unit of the
mesh (the “basis”) containing a liquid polymer coil (or
“blob”) whose size is the same as that of the mesh [see
Fig. 1(a)]. The blobs are connected by the cross links of
the mesh. If, following the ¢* theorem, we set the blob
size equal to the usual Flory radius R, <N 3/5 of a poly-
mer coil—with N the number of monomers per blob (and
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thus, roughly, per cross link)—then the monomer con-
centration ¢ is N/Rf3 0 co < N #5735 78/5 (here v is
the excluded-volume parameter and a is the monomer
length).

The earlier mentioned crossover from liquidlike to
solidlike behavior thus occurs at length scales of order
R,. Since in this description there is only one relevant
length scale (the Flory radius) and only one relevant ener-
gy scale (the entropic energy scale kgzT) it follows from
dimensional analysis that the gel elastic moduli are of or-
der kzT/R} [6]. As a consequence, the elastic moduli
are strongly dependent on monomer concentration (as
co’*)—a fact which will play an important role later.
Using the same argument, let I be the osmotic pressure
(“swelling pressure”) inside the gel. This swelling pres-
sure is, as noted, the sum of two terms: (i) the osmotic
pressure of the equivalent semidilute solution (Il ), and
(i) the negative elastic contribution (II.), so
IM=I;— I, From dimensional arguments, both Ilj,
and II,,, again must be of order kz T /R} < c{’*. Notice,
incidentally, that since at the microscopic level a gel
behaves like a liquid, strain and monomer concentration
are, at this level, not locked together because liquids can
support concentration gradients but not elastic strains.

For polymer networks close to equilibrium swelling,
i.e., [I=0, the above description is well confirmed by
osmotic and mechanical measurements [7-9]. However,
a series of recent small-angle neutron (SANS) and small-
angle x-ray (SAXS) studies of strained gels [10—12] have
produced results in great disagreement with the classical
theory. The aim of this paper is to address the origin of
this discrepancy. Small-angle scattering is usually the
most direct way to test the hydrodynamic response of a
system. Since the hydrodynamic response of a system in
general only depends on the symmetry of the basic collec-
tive variables and on the conservation laws, a serious
discrepancy between theory and experiment is a funda-
mental challenge to the validity of a theory. Gels far
from swelling equilibrium in excess solvent are much less
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well described by the classical theories [13—15], even with
no applied strain. We will restrict ourselves in this paper
to gels close to swelling equilibrium.

B. Elastic moduli and small-angle scattering

If we probe a system by small-angle elastic scattering,
we are in effect measuring the (static) structure factor
S(k), the Fourier transform of the density-density corre-
lation function, for small wave vectors k. In the case of a
gel there are two contributions to the static structure fac-
tor: one associated with thermally driven, dynamic con-
centration fluctuations and one associated with the static
heterogeneous structure of a randomly cross-linked net-
work. In light-scattering experiments the two com-
ponents can be conveniently separated by time-resolved
measurements, e.g., by measuring the decay of the two-
time intensity-intensity correlation function. In analyz-
ing SANS experiments the separation is done empirically,
by assuming a given functional form (usually Gaussian) of
the k dependence of the scattering intensity from frozen-
in inhomogeneities [16]. In this work we concentrate on
the thermal diffuse-scattering contribution due to mono-
mer concentration fluctuations which is given (for
k <<1/R[) by a Lorentzian structure factor:

So(k)=(c2kpzT/E)/(1+k2E?) (1.1
with E an as yet unspecified modulus and with £ the
correlation length for concentration fluctuations. As we
will show in the following, the physical interpretation of
the modulus in Eq. (1.1) is intimately related to the ques-
tion of whether, on length scales probed by scattering ex-
periments, gels behave as liquids or as solids.

Both light [17]- and neutron [18]-scattering studies re-
veal that the small-angle-scattering intensity of gels is
considerably stronger than that of an equivalent but un-
cross-linked semidilute solution. Although this enhance-
ment is usually attributed to scattering from static inho-
mogeneities, recent experiments suggest that, at least in
the vicinity of the volume-phase-transition point of the
gel, the thermal fluctuation contribution to the scattering
is much larger than that of a corresponding semidilute
solution [19]. It is believed that there is a strong correla-
tion between the observation of enhanced scattering in
unstrained gels and the appearance of scattering
anomalies in strained gels. For this reason we will exam-
ine in this section the interpretation of small-angle
scattering from unstrained gels.

The c¢* theorem indicates that for length scales less
than the Flory radius Ry, we should treat the gel as a
liquid. For liquids, the compressibility sum rule [6],
S(k=0)=cykz Tdc /3Il, must be strictly obeyed, which
would suggest that the modulus in Eq. (1.1) should be
identified with the osmotic modulus E, =c,dIl1/dc. Be-
fore discussing the applicability of the compressibility
sum rule to gels, we first compute the osmotic modulus
E, using the classical theory. According to the additivity
assumption underlying the classical theories of gels
[2—4], the free energy (per “site” a3) for isotropic expan-
sion or contraction of a gel is given as a sum of a “liquid”

and an elastic contribution:
F(®)=(kgT /a*){(1—®)In(1—®)+x(T)®(1— )

+1Q®!3/N*73) (1.2)
where ®=ca?® the monomer volume fraction. The first
two terms constitute the “liquid” contributicn to the free
energy given by the usual Flory-Huggins free-energy mix-
ing between monomers and solvent (but excluding the
chain translational entropy as chains are now connected
to an infinite network), with (T the Flory parameter for
the monomer-solvent interaction. It is important to em-
phasize that the usual assumption of strict additivity im-
plies that the y parameter of a gel is the same as that of
an equivalent polymer solution. The third term is the
(entropic) elastic free energy kz T R2/Na? of a polymer
coil, multiplied by the blob density 1/R? (Q is a con-
stant).

It is important to note here that F(®) is a (mean-field)
estimate of the free energy assuming mechanical equilib-
rium. If, for a given ®, we would apply a pure shear
stress which does not alter the mean concentration or
blob radius, then the associated free-energy increase is
clearly not included in F(®). However, we can use F(®)
to compute the osmotic pressure and osmotic modulus
assuming that homogeneous osmotic swelling or deswel-
ling is not accompanied by shear stress.

For low monomer concentrations, the gel osmotic pres-
sure [I=®%3(F /®) /3 is now

I/(kgT /a*)=i[1=2x(T)]®*—Q®'*/N*?,  (1.3a)

where the first term is the osmotic pressure I, of the
equivalent semidilute solution and the second term is the
negative network pressure —II, . (II=0, in swelling equi-
librium). The gel osmotic modulus E, =®3Il /3P is now
E,/(kyT/a*)~[1—2x(T)]®*—1Q®'3/N*3 . (1.3b)

The first term in the above equation is the osmotic
modulus of a polymer solution, so it is clear from Eq.
(1.3b) that classical theory predicts that the osmotic
modulus of a gel should always be smaller than that of the
equivalent semidilute solution. This means that if we
reduce solvent quality then a gel must decompose before
the equivalent semidilute polymer solution.

We now return to the question of the applicability of
the compressibility sum rule to gels, to see whether we
can understand the enhanced scattering of gels. If we
consider concentration fluctuations in gels from the
viewpoint of macroscopic elasticity theory of solids, then
the fluctuation free-energy must have the form [1]

AF= [d*rL{re}+2uel)

with p the shear modulus and K=A+2u the bulk
modulus. Mechanical stability requires both moduli to be
positive [1]. The strain tensor € is, for small displace-
ments, given by

(1.4)

du;  Ju;
€:: _—
dx;  dx;

1
y=7 (1.5)
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with u(x) the displacement field. The long-wavelength
fluctuation spectrum is found by decomposing the dis-
placement field into orthogonal longitudinal and trans-
verse parts and inserting the result in AF:

AF=3 L1k*E|u(k)*+plu,(k)]?}
k(+0)

with u;(k)=k-u(k)/k, u,(k),=(8, ; —k;k; /k*)u;(k), and
with E;=K +%u the so-called “longitudinal” modulus.
As we noted, in the classical theory of rubber
elasticity—and in elasticity theory in general [1]—a con-
centration fluctuation 8c(x) is locked to the displacement
field u(x). Using mass conservation, it follows that the
required relation is dc(r)/cy= —V-u. This means that
the longitudinal part of the spectrum must also represent
concentration fluctuations. If we now apply the equipar-
tition theorem to Eq. (1.6), we can compute the thermal
average {|(u,(k)|*) of the longitudinal fluctuations and
then, using the relation between concentration and longi-
tudinal fluctuations, the structure factor (|(8c(k)|?) for
long-wavelength thermal diffuse scattering. This leads to
the well-known result [20] that S(k=0) <k, T /E,.

To estimate K and u, we return to our calculation of
the osmotic modulus E,. Since it did not involve any
shear deformation, we must identify E,=K. A recent
model calculation by Onuki ([21] confirms this
identification. As a consequence we have the relation

(1.6)

E,=E,+3%u (1.7)
so we cannot apply the compressibility sum rule to gels,
assuming we restrict ourselves to scattering wave vectors
k <<1/Ry; so we are in the regime of “solidlike”
behavior.

We now return to the question of the enhanced scatter-
ing of gels. Flory theory predicts that the osmotic
modulus of gels is reduced as compared to semidilute
solutions but we must include the factor %u to decide
whether or not the longitudinal modulus is reduced.
Onuki’s calculation [21] produces E; =E (sol) +pu, so the
cross-linking would enhance the longitudinal modulus
and thus reduce scattering in gels. This would provide an
argument in favor of enhanced scattering due to inhomo-
geneities, but as both dynamic light scattering [22] and
SANS [19] experiments suggest that even the thermal
diffuse-scattering component from gels is stronger than
from the equivalent solution, one must reexamine the ad-
ditivity assumption of classical theories which leads to
Onuki’s result. A recent calculation which goes beyond
the Flory-Huggins scheme suggests that solubility is re-
duced by the introduction of cross links [23], a prediction
which appears to be supported by the analysis of
differential-swelling experiments [15,24]. In this case, the
resulting gel longitudinal modulus may be reduced below
that of a solution, in agreement with the experimental ob-
servations [19]. In the following we will assume that
E,(gel) < E/(sol).

Notice that classical theory predicts that if the quality
of solvent is reduced while maintaining swelling equilibri-
um, the gel simply readjusts to a new state of swelling
equilibrium, up to the point at which the osmotic gel

modulus vanishes [this can be seen by applying the swel-
ling equilibrium condition II=0 to Egs. 1.3(a) and 1.3(b)].
Under a fast temperature quench (“7”’ jump), according
to Eq. (1.3b), the osmotic gel modulus can change sign be-
Jore we reach this point, leading to a pure k=0 mechani-
cal instability. Since at this point the longitudinal
modulus is still positive, no unusual growth of concentra-
tion fluctuations takes place and therefore a continuous
phase transition with a diverging correlation length takes
place only upon further reduction of solvent quality,
when the longitudinal gel modulus vanishes. If, as we
have argued, gels are inherently less soluble than the cor-
responding solutions, this gel decomposition point
(E;=0) can be reached even for nominally good solvents
[E,(sol) >0]. Such gel demixing phenomena were report-
ed by Tanaka [17,20].

Let us now discuss the prediction of classical theory
concerning the effect of applied strain on the structure
factor. Classical theory asserts that under strain, the
monomer concentration “follows” the applied strain.
More precisely, if r is the position vector of a monomer
in the network, then under an applied strain €, r is as-
sumed to be displaced to (roughly) (1+e€)r. We will
denote this as the “strong” self-affinity assumption. Un-
der conditions of strong self-affinity, the density fluctua-
tions deform conformally to the macroscopic strain de-
formation of the sample. Thus, if g(r)={|c(0)c(r)|) is
the density correlation function in the absence of applied
strain then strain should act like a mathematical opera-
tion which performs on g(r) the affine transformation

g(r)=g([1+€] ') (1.8)

because the joint probability to encounter monomers at 0
and r in the unstrained gel and at O and (1+e€)r in the
strained gel must be the same. As an example, assume
that for the unstrained gel, we have a correlation function
whose Fourier transform agrees with Eq. (1.1), i.e.,
glr)<(1/r)exp(—r /&), with & the correlation length for
concentration fluctuations. Under an extensional,
volume conserving strain €, = —2¢€, = —2¢€,, =2¢, the
correlation length along the strain direction is, according
to Eq. (1.8), increased while perpendicular to the strain
direction it is reduced:

§,=(1+2€)¢, (1.9a)

§i=l—ek . (1.9b)
The static structure factor itself transforms as

Satiine (k) =So([1+€]k) (1.10)

since it is the Fourier transform of g(r). The resulting
isointensity contours are concentric spheres for the un-
strained case and oblate spheroids, contracted along the
strain direction for the strained case. Physically, this is a
very reasonable result. Elongation of the polymer springs
along the strain direction should reduce their elasticity,
and thus increase the spring constants. Note that the
longitudinal modulus now should be dependent on the
direction of k, with E;(k) larger along the strain direc-
tion. Since the structure factor in the long-wavelength
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limit equals c3k T /E,(k), we must expect a reduction of
the structure factor along the strain direction [25].

For liquids, the analog of the strong self-affinity as-
sumption is known as the “Maxwell construction” [26].
If the shear-rate tensor of a liquid is A =0d€/9¢t and if 7 is
the lifetime of a density fluctuation, then density fluctua-
tions typically should undergo a shear of order A7 before
they expire. The Maxwell construction thus asserts that

Stow(K) =810 fow([1+ AT]k) (1.11)

in perfect analogy with Eq. (1.10). If ¥ is a typical shear
rate then the dimensionless parameter controlling the
amount of deformation of the structure factor is the
well-known Deborah number De=y7.

SANS and SAXS experiments [10—-12] on elongational-
ly strained gels and on blends in extensional flow revealed
that the structure factor S(k)—and thus the density
correlation function—grossly deviates from the predic-
tions of Egs. (1.9) and (1.10). In one particularly reveal-
ing case [12], S(k) actually did initially show oblate ellip-
soidal isointensity contours immediately after the uniaxi-
al stress was imposed but after a period of waiting—or
upon heating—the contours rearranged themselves
dramatically, assuming a butterflylike shape directed
along the applied strain (obviously suggesting that a slow,
internal degree of freedom is responsible for the transfor-
mation). The correlation length along the strain direc-
tion had decreased and in the perpendicular direction it
had (weakly) increased, in complete disagreement with
Eq. (1.9).

Previously, Wu et al. [27] had found that, for polymer
solutions under pure shear flow, the analogous Maxwell
construction is invalid, at least near the phase boundary
for phase separation. The explanation of this latter effect,
as given by Helfand and Frederickson and others [28], is
that it is due to flow enhancement of concentration fluc-
tuations originating from the dependence of the viscosity
on concentration. It was recently found that semidilute
solutions in extensional [29] and in shear [30] flows, un-
der conditions of reduced solvent quality, show butterfly
patterns which are quite similar to those of strained gels.
As we have argued, gels are intrinsically disposed to
decomposition phenomena and they also have
concentration-dependent moduli. It would thus seem to
be at least suggestive that the breakdown of classical
theory in strained gels originates in strain enhancement
of fluctuations triggered by concentration dependence of
material parameters.

C. Mesoscopic physics of gels

In this paper, we will base our discussion of concentra-
tion fluctuations in strained gels, as well as the appear-
ance of the butterfly patterns, on the idea that there is a
large mesoscopic range of length scales which is probed by
the small-angle-scattering experiments and which is nei-
ther well described by a purely macroscopic classical elas-
ticity theory of solids, with its condition of slaved con-
centration fluctuations, nor yet by a “liquid” microscopic
model where concentration is the only collective variable.

In a previous paper (hereafter referred to as I) [31], the

authors constructed a Landau theory of homogeneous,
soft, two-component solids which was meant to describe
this range. The condition of strong self-affinity was re-
placed by a “soft” linkage of concentration fluctuations
to strain, i.e., both concentration and strain were includ-
ed as separate—albeit coupled—collective variables. If
the elastic moduli were assumed to be concentration
dependent, then butterfly-shaped isointensity contours
were encountered, provided the preexisting elastic anhar-
monicity is weak. The butterfly pattern was, in this case,
a precursor of strain-induced spinodal decomposition, a
well-known effect in the theory of stressed alloys [32].
Physically, the decomposition is due to the fact that alter-
nation of layers of large and small elastic modulus
reduces the work done in stretching a solid, thereby
lowering the free energy.

There is no fundamental basis for the validity of the
strong self-affinity assumption on all length scales since
the degrees of freedom describing the structure of gels at
length scales shorter than the Flory length do not obey it.
Neutron scattering from labeled network chains in swol-
len gels [33] indeed clearly reveals that the internal defor-
mation of individual polymer chains is not slaved to the
strain. There is however a weaker constraint which must
be satisfied for a fully connected gel, namely, that a mac-
roscopic deformation u(x) necessarily produces, by mass
conservation, a change in monomer concentration given
by the “slaving” relation 8c(r)/co=—V-u. We will call
this the “weak” self-affinity condition and it must be
obeyed by any theory of fully connected gels. Weak self-
affinity was not obeyed in I, since it only aimed to provide
a description of fluctuations at the mesoscopic range. We
thus still need a theory which in the limit of macroscopic
length scales (millimeters to centimeters) obeys self-
affinity and which for short length scales incorporates
liquidlike behavior with no self-affinity. Also, reference I
did not address the striking similarity in the diffraction
patterns of stressed gels and of polymer liquids in exten-
sional and shear flow. In the polymer liquid case, strain
is at best a transient variable so the treatment of I cannot
possibly apply. Finally, any theory of the butterfly pat-
tern in gels must go beyond a purely phenomenological
Landau description and be consistent with those key
ideas of the classical theory which have been well
verified. The aim of the present paper is to present such a
unified approach to the appearance of butterfly patterns
in both gels and polymer liquids.

Finally, we would like to comment on other ap-
proaches to the problem. Our whole discussion has fo-
cused on the contribution of thermal-diffuse concentra-
tion fluctuations to the small-angle scattering but, as
mentioned, it is known from the observation of (quasi-
static) laser speckle patterns that there is a static hetero-
geneous contribution as well. It would, naively, seem
that far from the percolation threshold of gels, hetero-
geneous scattering should not be important at small wave
vectors but Bastide, Leibler, and Prost [34]—and other
authors [35]—showed that static heterogeneous scatter-
ing from a stretched gel can also produce butterfly con-
tours, independent of any thermal concentration fluctua-
tions. Similarly, they attribute the enhanced long-
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wavelength scattering of (unstrained) gels not to
thermal-diffuse scattering from concentration fluctua-
tions but to the increase in static heterogeneous scatter-
ing in going from a homogeneous liquid to a randomly
connected gel. We would like to stress that the observa-
tion of laser speckle patterns is by itself not proof that
quenched disorder controls the small-angle scattering.
Any system which is on the border of spinodal
decomposition—such as swollen gels—would be highly
sensitive to static disorder since this could produce local-
ly regions of decomposition, the further growth of which
could well be arrested by development of elastic stresses
during the decomposition process. Such ‘“heterogeneous
nucleation” in the presence of modest quenched disorder
could produce quasistatic speckle patterns which would
evolve slowly in time. This appears to be supported by
the observation of very slow relaxation dynamics (on time
scales of order of minutes or hours [22]) of the so-called
“‘static” speckle patterns.

There is another argument in favor of the thermal-
fluctuation explanation of the butterfly effect in gels. Be-
cause polymer blends and semidilute solutions under ex-
tensional and shear flow (presumably) are homogeneous,
yet still show the butterfly effect, the static hetero-
geneities argument would require a separate explanation
for the case of fluids. At any rate, it will be difficult to
decide between these two different approaches on the
basis of a measurement of the static structure factor
alone. However, scattering from quenched inhomo-
geneities ought to be a truly static effect and should not
show up at finite frequencies while, as we shall see, if
thermal-diffuse scattering dominates, then the appear-
ance of the butterfly pattern should have important, and
testable, consequences for the dynamics.

II. STATICS

Landau theory

In this section, we will introduce our model for the
mesoscopic physics of gels. In a purely hydrodynamic
(i.e., purely macroscopic) theory, the only degrees of free-
dom would be the gapless hydrodynamic variables. As
for any solid, these are the strain tensor €, the concentra-
tion ¢, and the temperature. The strain tensor

du;  Odu,

a—rj or;,

(r)= L (2.1)

(=7

ij

is expressed in terms of the vector field u(r) which we will
take to be the continuum limit of the displacements of the
position vectors R; of the cross links. Since at hydro-
dynamic length scales, concentration and strain are relat-
ed through the weak self-affinity condition, it follows that
concentration is not a separate hydrodynamic variable.
We will assume isothermal conditions, leaving us only
with the strain as a hydrodynamic variable.

Next, since we are also interested in the behavior at in-
termediate length scales, we must include long-lived but
nonhydrodynamic modes which describe the liquid inter-
nal degrees of freedom of the polymer blobs. Assume we
deform a given polymer blob and expand the blob shape

in spherical harmonics, without changing the mesh of
cross links. The / =0 spherical harmonic of the shape de-
formation describes isotropic changes in the blob radius.
We will define the scalar field 1(r) to be the relative
change in the radius of blobs located around r. For poly-
mer coils in solution, this /=0 mode is known as the
Zimm mode. It has a spring constant of order k5 T /R}
and is believed to be the mode of free polymer coils in
solution with the lowest energy gap. It is easy to show
that if we place an ideal coil in a mesh fixing its ends,
then this mode still survives and with a similar spring
constant. The polymer coils of a gel also may have side
chains of, presumably, comparable length as the links of
the mesh. Changes in the mean radius of these side
chains will also be described as a Zimm mode.

This scalar field ¥(r) will describe the effect of local
“liquidlike” fluctuations of the internal structure of the
blobs at larger length scales. Higher-order blob modes,
with nonzero [, are neglected here as they would produce
internal order parameters of a more general tensorial
character, associated with more exotic phase transitions
such as the appearance of liquid-crystalline order [36]. In
Fig. 1, we illustrate the difference in the definitions of
€;;(r) and ¥(r). If we keep the blob radius fixed, but swell
the cross-link network, then this must be a “pure” ¢;
strain deformation [Fig. 1(b)]. If, on the other hand, we
fix the cross links but swell the blobs, we have a pure ¢
deformation [Fig. 1(c)]. Clearly, in both cases we pro-
duce variations in the monomer concentration on length
scales of order the mesh size (Flory radius), so the fluc-
tuation free-energy cost must be high for each of these

FIG. 1. Possible deformations of polymer gels: (a) swelling
equilibrium (undeformed gel), (b) expanded cross-link network,
equilibrium blobs, (c) expanded blobs, cross-link network at
equilibrium, and (d) both blobs and cross-link network are ex-
panded. Note that while cases (a) and (d) correspond to uniform
monomer density, there are large variations in the local mono-
mer density in cases (b) and (c).
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“pure” modes. A low free-energy fluctuation ¥°(x) with
no large local concentration variations clearly requires a
combination of €;;(r) and ¢(r) [see Fig. 1(d)]. Since ¢ is
the relative change in blob radius, it follows from Fig.
1(d) that ¥%(x)~e¢; for a low-energy fluctuation.

The fluctuation free energy of our coupled degrees of
freedom is, to lowest order in the amplitudes,

AF= [ d*rL{M¥)E}: +2u(P)el + L(Ve, )

+2C, 6,0+ M(Vy)*+By?} . 2.2)

This free energy is the general Landau free energy of any
scalar order parameter coupled to the strain energy of an
isotropic solid. A related free energy (but with coupling
term quadratic rather than linear in ) is encountered in
the case of deformable magnets [37], as well in the study
of structural transformations of solids with a nontrivial
unit cell [38]—a problem which has obvious analogies
with the present case.

We now must identify the various phenomenological
parameters entering the Landau free energy. The first
two terms of Eq. (2.2) produce the conventional elastic
free energy Eq. (1.4) of an isotropic gel with Lame con-
stants A(vY) and wu(y), with both constants of order
kpT/R}. Note however that these are the elastic con-
stants for fixed ¢ so they are not the measured elastic
constants. They must in general be considerably larger
than the measured elastic constants because, as we saw,
the “unit cells” of the mesh suffer from concentration in-
homogeneities if we fix ¢. The third term is also conven-
tional [6] with L of order kz T /Ry (it controls the corre-
lation length &).

The last two terms give the free-energy cost of fluctua-
tions of ¥ at fixed strain. To estimate the restoring
modulus B, recall that the spring constant per coil is of
order kz T /R} and since there is one spring per volume
R}, B must be of order kzT/R3. The constant M mea-
sures the degree of coherence of the internal order pa-
rameter: if we expand or contract the radius of a given
blob we will induce a change in radius in nearby blobs.
The equilibrium “healing” length of such a perturbation
in blob radii, £,=(M /B)'’?, must again be the Flory ra-
dius so M x L «kyT /Ry. Finally, the €;9 term couples
between the liquid and the solid degrees of freedom and
introduces a free-energy penalty for creating local con-
centration inhomogeneities (Fig. 1). To find the coupling
constant C, between strain and blob radius degrees of
freedom, we minimize the free energy with respect to ¢
for long wavelengths at fixed finite strain. The result is
that ¥°(x)~ —(C,/B)e;. This must represent the low-
energy mode, for which we saw that ¢y%x)=e¢;, so we
conclude that (C,/B)= —1.

The key difference with classical elasticity theory is not
only the introduction of the internal order parameter, but
also the fact that we will allow the elastic constants to lo-
cally depend on the internal order parameter. Expanding
to lowest order
oA

A=A, + a0 | Y (2.3a)

9 (2.3b)
o | Y

with both (dA/3¢), and (3u/dY), negative. As we saw,
the ¢* theorem demands that for a uniform system the
elastic moduli are dependent on the global monomer con-
centration through a power law. To estimate the param-
eters (3A/3¢), and (Qu/d),, recall that ¥°(x)~¢,; for
low-energy fluctuations and that 8c(r)/cy is of order
—¢€;;. Assuming that the elastic moduli also locally have
a power-law dependence on concentration, it follows that
(OA/3¢), < (3 /3Y), <kyT/R}.

It is important to be somewhat more precise about the
relation between our scalar field ¢¥(r) and the monomer
concentration. Although for long-wavelength, low-
energy fluctuations ¥(r) is proportional to €;;, and thus to
the concentration, it is, unlike the concentration, not a
conserved variable. Blobs can increase (or decrease) their
radius over a large volume without requiring transport
across the boundary of that volume. However, it is
shown in the Appendix that for long wavelengths, the
monomer concentration 8c(r) must be related to the
internal order parameter and to the strain by

8c(r)/co~—e€; +TREV*Y+0O (V)

pP)=p, +

(2.4)

with T' a numerical constant. The first term is the usual
self-affine contribution and the second term is the correc-
tion due to the internal order parameter. For a low-
energy mode with ¥°(x)=¢;, the self-affine contribution
dominates at long wavelengths so Eq. (2.4) obeys the con-
dition of weak self-affinity.

We can once more decompose our new free energy into
orthogonal modes by going to longitudinal and transverse
Fourier components. Including only harmonic terms we
find

AF= 3 {L[LK*+E, 1k |u/(k)*+1p,k?|u, (k)|
k(#0)

+ L [MKk2+B]|y(k)|?

+ LikC, [ (k) *u; (k) —c.c. ]} (2.5)

with E;=A,+2u,. This parameter E, is however no
longer the longitudinal modulus. To find the true longi-
tudinal modulus, we diagonalize AF and use the equipar-
tition theorem with the result

(l$(®)[*) =kp T /[B+Mk>—CZ2/(E, +Lk?)]

~kpyT/(B'+M'k?), (2.6a)
k*(|u)(k)|*)=kyT/[E,+Lk>—C?2/(B+Mk?))
~kpT/(E'+L'k?), (2.6b)
—ik{P(k)*u;(k)) =[C, /(E, +Lk)[{|$(k)|?) , (2.6¢c)
where
E'=E,—C}/B, (2.7a)
'=(B/E,)E’, (2.7b)
M'=M+L(C,/E,), (2.8a)



560 R. BRUINSMA AND Y. RABIN 49

L'=L+M(C,/B)*. (2.8b)

If we use Eq. (2.4) for the concentration fluctuations we
find, from Eq. (2.6), for the structure factor
So(k)={(|c(k)|?) of unstrained gels a conventional
Lorentzian line shape:

So(k)=kpTcy/(E'+L.k?) (2.9)

with L, =~L'+2TR}C,E'/B. The compressibility sum
rule then informs us that the parameter E’ is the true, ex-
perimentally accessible longitudinal modulus. The corre-
lation length & for concentration fluctuations is now of
order (L,/E")"/%. In the following, we will always use
primed quantities, e.g., E’, to indicate “relaxed” moduli
while unrelaxed moduli are indicated with the subscript g
(e.g., E,).

The spinodal boundary E’'=0, where concentration
fluctuations become large, is now located at E, =C?/B.
Note that there is a second instability: fluctuations in the
order parameter ¢ diverge when B’ =0, indicating the ap-
proach of a phase transition to a state where {Y(r)) is
finite. This second instability is however also at
E, =C?/B, so at the spinodal boundary both concentra-
tion fluctuations and order-parameter fluctuations be-
come gapless highlighting the importance of including
the nonhydrodynamic degree of freedom as we reduce
solvent quality. In fact, it would be perfectly consistent
to treat ¥(r) as the primary order parameter driving the
onset of strong fluctuations near the spinodal boundary,
and to treat the strain as the “‘slaved” variable. Notice
finally that Eq. (2.9) is again an illustration of weak self-

+iek

9 |,

Unlike the strain-free case [Eq. (2.5)], the concentration
dependence of the elastic moduli now explicitly enters the
second-order fluctuation energy.

If we minimize AF with respect to ¢ to find the low-
energy hybridized mode, we find a more complex rela-
tionship:

vUk)=—i[Mk*+B]"!

X 1[C, +2€ % (3k2/k>—1))ku,(k)
! 4
+6ek, —g/i zu,(K) @.11)
g

For long wavelengths and €=0, Eq. (2.11) reduces to our
old relation ¢°(x)= —(C, /B )¢;, but for finite strain, our
internal order parameter is no longer proportional to the
trace of the strain tensor. The two anisotropic correction
factors are both controlled by the dependence of the elas-

O | k) uy (K)(3K2/k2— 1) —c.c. ]+ Biek,

affinity: in the long-wavelength limit, S(k=0)
=c3(le;(k=0)|?) as required by self-affinity, but since
L, differs from L’, S(k) is not proportional to {|e; (k)|*)
for finite wave vectors.

For a gel with no applied strain, we recovered the stan-
dard gel concentration fluctuation spectrum, except that
the longitudinal modulus was renormalized. We would
like to emphasize that the reduction of the longitudinal
modulus which controls concentration fluctuations at ar-
bitrarily large (but finite) wavelengths, compared to its
“bare” value, is a consequence of coupling solid elasticity
to “liquid” degrees of freedom and reflects the intermedi-
ate nature (in between solid and liquid) of the mesoscopic
physics of gels. We now turn to the behavior under ap-
plied external strain—in essence the key question of gel
elasticity—on which the internal order parameter will
have a major effect. Assume the gel is subjected to a
volume preserving external extensional strain along the z
direction. The strain tensor € is

—e 0 O
€=|0 —€ O
0 0 2

with € less then 1 (this requires a force per unit area on
the end surfaces of the sample equal to 4ue, and a force
per unit area of —2ue on the side surfaces).

Decomposing the free energy into longitudinal and
transverse modes and expanding to second order in the
mode amplitudes gives

HLK*+E k2 u)(k)|*+ Lp k2 u, (k) |*+ L[ Mk *+ B ]|$(k) >+ LikC, [$(k)*u;(k)—c.c.]

o

v [¥(k)*z-u,(k)—c.c.]

g

(2.10)

f

tic moduli on ¥ (which played no role for the unstrained
case). We can now compute the structure factor by ex-
panding (k) around ¥°(k) and inserting the result into
AF. We find

S(k)=kgTcl /(E.q(k)+Lk?) (2.12)
with
E k)~E'—2¢(C,/B) gfj [3(k,/k)P?—1]. (2.13)
! g

The structure factor in the presence of strain, Eq.
(2.12), is no longer a simple Lorentzian because the
effective longitudinal modulus of a strained gel, E q(k),
depends on the direction of the wave vector. As dis-
cussed in the Introduction, it is not surprising that the
longitudinal modulus of a strained material is direction
dependent—it should be expected from any system
whose rotational symmetry is broken. What is surprising
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is that along the strain direction k,=k, the modulus
E (k) is less then E’, since C (du/09y), is positive,
whereas classical theory predicts an increased modulus.
The analogy of strained gels with flow induced decompo-
sition discussed in the Introduction is thus meaningful:
strain enhances concentration fluctuations.

The new isointensity contours S(k)=const are shown
in Fig. 2. We indeed find a butterfly shape oriented along
the direction of imposed strain. The appearance of
butterfly contours is thus the by-product of the existence
of a “hidden variable,” our internal order parameter.
The macroscopic consequences of this effect will become
dramatic when E’ is less then €(du/0¢),. In that case,
our effective modulus E 4(k) becomes negative along the
strain direction, predicting an anisotropic decomposition
of the gel. This requires a strain bias € of order
E'/[kpT/R}]. For a gel in good solvent, E’ is of order
kpT/R}? and the required bias would be rather consider-
able (strains of order 1). The present theory is not really
valid for such large strains—even though butterfly effects
ought to be expected. However, if we begin to reduce sol-
vent quality to the point that E’ becomes significantly
smaller than kzT/R7, then the threshold strain can be
written as (Rp/&). This critical strain is now quite
small, even though the concentration correlation length &
exceeds Ry by only a modest amount. The intensity of
the butterfly pattern in a strained gel should thus be
directly correlated with the reduction of E’, i.e., with the
degree small-angle scattering is enhanced in the un-
strained gel.

Our conclusions must however be qualified. At the
purely macroscopic level, our hidden parameter
effectively produces third-order anharmonic elastic terms
in the elastic free energy of the unstrained gel [see Eq.

\
/

FIG. 2. A contour plot of the structure factor in the (Q,,Q,)
plane where Q =k¢ is the dimensionless wave vector measured
in units of inverse correlation length (@} =Q?+ Q2. The cou-
pling constant which determines the asymmetry of the profile,
8=2€C.(3u/dy), /BE', is taken as 0.4.

(2.2)] which become second-order harmonic terms in
strained gels. Consistency requires us to include third-
order anharmonic elastic terms from the start, describing
the stiffening of polymer chains on extension. As dis-
cussed in the Introduction, stiffening of chains is expect-
ed to produce results more in agreement with classical
theory and in opposition to the butterfly effect. Indeed, if
this type of elastic anharmonicity is included, we find for
the effective osmotic modulus [31]

o
oY

X[3(k,/k)*—1]

E (k)=~E'—2¢(C./B) —~C,A/E,

g

(2.14)

with 4 >0 an anharmonic elastic modulus which is relat-
ed to chain stiffening. The butterfly effect should only be
observable if (du/dy), exceeds C. 4 /E,.

III. DYNAMICS: TWO-FLUID MODEL

A. Semidilute solutions

We discussed in the Introduction that butterfly-type
effects are encountered not only in uniaxially strained
gels but also in polymer liquids in extensional flow, in
particular if the monomer solubility has been reduced.
The equilibrium treatment of Sec. II cannot apply to
liquids. In this section we will give a purely dynamical
interpretation of butterfly patterns, both for gels and for
polymer liquids. Such a dynamical interpretation is most
straightforward for the second case, so in this subsection
we discuss first the dynamics of semidilute solutions in
extensional flow.

For incompressible semidilute solutions, the only gap-
less collective mode is collective diffusion. At higher re-
laxation rates, we encounter internal relaxation modes of
polymer blobs. For good solvents, these blob modes relax
rapidly and play no important role in the hydrodynamics.
For theta solvents longitudinal transient strain relaxation
by chain reptation is so slow however, due to entangle-
ment effects, that the blob mode hybridizes with the col-
lective diffusion mode [39]. This hybridization occurs at
unexpectedly large wavelengths and at unexpectedly low
frequencies (i.e., at wavelengths much larger than the
blob radius and at relaxation rates much slower than the
reptation rate) and it strongly affects the mode spectrum
in the optical range (and for shorter wavelengths).

If we recall, from the discussion of Sec. II, that we ex-
pect butterfly effects when the monomer solubility has
been reduced, then we should expect theta solvents in ex-
tensional flow to be more likely to exhibit significant
butterfly effects than semidilute solutions in good solvent.
Following this argument, hybridization should be expect-
ed to play an important role in a dynamical interpreta-
tion of the butterfly effect. We will adopt the description
of mode hybridization in semidilute solutions given by
Brochard and de Gennes (BG) [39] which agrees with in-
elastic light-scattering data [40].

The key idea of the BG theory is that polymer blobs in
a semidilute solution act independently on the solvent,
with a Stokes friction coefficient {=6m7,£ (7, is the sol-
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vent viscosity and £ is the blob size). If v(x,?) is the ve-
locity field of the blobs and if u(x,?) is the solvent velocity
field, then since 1/£° is the blob density, the frictional
force density on the blobs is &(v—u)/&’. This
counterflow force density must be balanced by some
external force density f on the blobs:

n,(v—u)=Af . (3.1

Here, A < £? is the “permeability,” interpreting Eq. (3.1)
as Darcy’s law for permeable media. The force density in
a semidilute solution is a combination of a purely osmotic
pressure II and a transient elastic stress term (describing
unrelaxed entanglements)

f=V-o—VII (3.2)

with o the transient stress tensor. The osmotic pressure
due to a concentration fluctuation 8¢ is 8II=E'dc /c,
(with E'~kpT/&® the equilibrium osmotic modulus—
recall that osmotic and longitudinal moduli are identical
for solutions). If we set the transient stress o and the sol-
vent velocity u equal to zero in Egs. (3.1) and (3.2), we
find a diffusion equation with the well-known collective
diffusion constant of semidilute solutions, D, =(A /7)E’,
which is proportional to the osmotic modulus.

For the residual stress of a polymer solution, BG as-
sume a simple Maxwell model:

90 , o _ 9 8F,
b€

at 7 ot 33

Here, 7 is the entanglement stress-relaxation time (by rep-
tation) while F, and € are, respectively, the elastic free
energy and the strain of that “gel” we would obtain if we
had forbidden reptation (“plateau” moduli):

Fo= [dri{r ek +2u,eh) . (3.4)
The “gel” elastic moduli are of order kp T /&> with £, the
typical distance between entanglement sites. For theta
solvents, these unrelaxed moduli are large compared to
the equilibrium osmotic modulus E’ (A, /E'~§/a). For
short time scales, the stress o in Eq. (3.3) is close to the
stress 8F, /8€ of the unrelaxed gel with its relatively large
moduli. For long time scales, the solution of Eq. (3.3) as-
sumes the form of a purely viscous stress of a liquid with
a viscosity 7= 7k T /> (which is large compared to the
solvent viscosity 7,). Note that Eq. (3.3) assumes that the
relaxation rate is the same for shear and for longitudinal
strain. During the stress-relaxation process, mass conser-
vation demands that the trace of the strain tensor pro-
duces a concentration fluctuation:

d€;;
. (3.5a)
3 Vv
and
. —a(8
O€;; _ d(8¢c /cy) . (3.5b)
at at

The solvent itself must obey the Navier-Stokes equa-
tion:

po%=nsv2u+v-a—v1? (3.6)
with p, the mean solvent density and P the pressure in-
side the solvent. This pressure can be eliminated if the
system of monomers plus solvent together is assumed to
be incompressible. Mass conservation then imposes the
continuity equation
d
v-u=(9mco/nsp0)a—f (3.7)
with Q, and Q, the solvent and monomer atomic
volumes. For a dilute gel with ¢y <<py, V-u=0 so the
solvent flow fluctuations are predominantly transverse.
Assuming this, Eq. (3.6) gives VV:o =V?P.
Restricting ourselves to longitudinal modes for which
we thus can neglect the solvent flow, the mode spectrum

of a concentration wave e T~ %) can be found using
Egs. (3.1)-(3.5) with the result

[0(k)—(A/nE'+E k] [w(k)—7 ']

—k’E,7 ' (A/n)=0, (3.8)

where E, =A, +2pu, is the unrelaxed longitudinal *“gel”
modulus. There are two solution branches to Eq. (3.8):

o (k)~D k*/[1+7(A/m)Ek*], (3.92)

o' (K)=7 '+ (A/n)Ek* . (3.9b)

The o™ (k) branch represents, for small wave vectors, the
collective diffusion spectrum. As the wave vector in-
creases, collective diffusion hybridizes with stress relaxa-
tion when k is of order [7(A/n,)E, ]~ '/* and for larger k
this branch saturates at TilE'/Eg. For theta solvents,
with E’ small compared to E,, 'r_lE'/Eg 1s small com-
pared to the stress relaxation rate 7~ '. The crossover
length scale [7(A /7, )Eg]l/z—called the “‘gel length” —
is much larger than the Flory radius (it is in the optical
range). The upper branch represents (for small wave vec-
tors) pure stress relaxation while for large k it crosses
over to the “bare” longitudinal mode spectrum of a gel.

How will this BG formalism be affected if we impose a
background flow? In analogy to the extensional strain
imposed in Sec. II, we now impose an extensional flow
field on the monomers:

vo=y(—x,—y,2z) (3.10)
with y the elongational strain rate. The Deborah number
De=1y7 is normally assumed to be the critical index for
significant flow deformation of the internal structure.
When De exceeds 1, non-Newtonian flow behavior is ob-
served, while for De small compared to 1, the polymer
liquid should obey the Navier-Stokes law. We will al-
ways assume the Deborah number to be small compared
to 1.

We will assume that the material parameters are all
concentration dependent:

oA

o | 8. (3.11a)

g

Me)=hg+
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ple)mpy + 9&] 5, (3.11b)
dc .
or

c)=7+ |— | &8¢, (3.11¢)
dac ¢

Alc)=A+ A 5c , (3.11d)
oc ¢

where 8¢ is again a concentration fluctuation. Both
(3A/3c), and (du/dc), are to be assumed positive since
an increased monomer concentration of gels means in-
creased moduli, as discussed in the Introduction. Note
that we included also the concentration dependence of
dynamical parameters like the relaxation time (and thus
of the effective viscosity 7.4 7kp T /£3). Since increased
monomer concentration must mean increased viscosity,
we also will assume (37/3c ), to be positive.

In the presence of flow, we first must everywhere re-
place the d/9t operator by d /dt=9/dt+v-V. Taking
the divergence of Eq. (3.1) and combining Egs. (3.1), (3.2),
and (3.5) then gives, to lowest order in 8¢, an advection-
diffusion equation:

aa_Stc +v,-V8c =D, V¢ —(Acy /7, )3;00; -
We will start by initially ignoring all advection terms.
For relaxation rates small compared to 7~ !, the solution
of Eq. (3.3) is then the purely viscous stress:

o =2u(c)r(c) A+Alc)r(c)1(V-v)

(3.12)

(3.13)

with v the flow velocity field, 1 the unit tensor, and
A;;=4(dv; /3x;+0dv;/3x;) the strain-rate tensor. The
effective viscosities in Eq. (3.13) are of order 7.4, but of
course concentration dependent. Assume now that the
flow velocity is the sum of the background flow v, plus an
infinitesimal part v' due to concentration fluctuations.
Inserting this in Eq. (3.13) and expanding to lowest order
in concentration gives

o =2, TAgt 2, TA'+ATHVV')

or
dc

p

+2
dc

T (3.14)

g

g

with the strain-rate tensor decomposed in the same way
J

S(k,w)={(c3kzTA/n)k*/[rot(K)]} {0t (k)/[®*+oT(k)?]+77 1 /[0*+0 ™ (k)]} .

The second term, associated with the hybridized collec-
tive diffusion branch ™ (k ), dominates. Using Eq. (3.17)
and performing an integration over all frequencies pro-
duces the static structure factor:

S(k)=kpTci/{E 4k)[1+J(k&)*]} (no advection) .

The J(k&)? term was added “by hand” to allow for the
usual exponential decay of correlations (J is of order 1).

as the flow velocity so

-y 0 O
A=|0 —y O
0 0 2

Inserting Eq. (3.14) into Eq. (3.12), using Eq. (3.5), and
again neglecting advection, gives to lowest order in 8¢

dd¢ _ 2 dlint oy
Y D V8¢ +2De(Acy/7;) | g 3 3¢ L
3%c , 3%c ., 9%c¢
X + -2 3.15
ax?  oy? az? 3.13)

The new term entering in the diffusion equation is entire-
ly due to the concentration dependence of the effective
viscocity and, by construction, unrelated to any
advection effects. The mode dispersion o (k)
=(A/7,)E 4(k)k? of this anisotropic diffusion equation

has an angle-dependent diffusion constant D, (k)
=(A /7, )E .(k)k? with an effective “modulus”
—p -1|97 S
E.4(k)=E'—2Decg |u, 3% "
g g
X[3(k,/k)*—1] . (3.16)

The similarity of this result with Eq. (2.13), the
effective longitudinal modulus of a gel, is immediately ap-
parent. The Deborah number in Eq. (3.16) plays a role
analogous to that of the strain in Eq. (2.13). Recalling
that the material parameters generally have a power-law
dependence on concentration, it follows from Eq. (3.16)
that the Deborah number required to see strong flow
effects on the mode spectrum is of order E’/u,. For the-
ta solvents, this number is of order N ~!/? so strong flow
effects on the fluctuation spectrum are expected long be-
fore we reach the non-Newtonian regime De> 1. The an-
isotropic collective diffusion spectrum again will hybri-
dize with strain relaxation for wave vectors in excess of
[(A/n,)E,] 7172,

To find the experimental signature of flow deformation
of fluctuations, recall [39] that the dynamic structure fac-
tor S(k,w) of a semidilute solution is the sum of two
Lorentzians associated with the two branches of the
mode spectrum:

(3.17)

[
This static structure factor of a polymer liquid in exten-
sional flow is mathematically of exactly the same form as
the equilibrium structure factor of the strained gel [Eq.
(2.12)]. The equiintensity contours thus must produce
butterfly patterns. The butterfly effect becomes dramatic
when De=~E’/pu, so, as expected, for semidilute solutions
it should be most prominent for the case of theta sol-
vents. As mentioned, butterfly effects indeed are ob-
served in extensional flow of semidilute solutions [29]
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where they were assumed to be due to heterogeneities.
We propose that flow deformation of thermally produced
concentration fluctuations may be a more natural ex-

planation.
Our analysis consistently neglected advection terms. It
has been the experience of other problems involving ad-
|

~—1
CO I.Lgl

S(k)szTcé/ [E’[1+J(k§)2]—2De o

The condition that the Maxwell effect does not suppress
our butterfly pattern is that the coefficient in curly brack-
ets is positive. Just as for gels, we have found two com-
peting effects but for wave vectors comparable to, or less
then, the correlation length, and for theta solvents the
butterfly effect is always guaranteed to ‘“‘win” since
¢o(d1In7/3c), is of order 1 while u, /E" is large compared
to 1. We thus may conclude that the Maxwell effect is
not important for low Deborah numbers and that the
butterfly effect should be a generic feature of semidilute
solutions in theta solvents in extensional flow.

B. Stretched gels

We will now apply the dynamical formalism developed
for liquids to the case of stretched gels. We can use some
of the earlier results if we keep in mind (i) that there are
two length scales (the Flory radius and the correlation
length) and (ii) that we must account for the transverse
mode spectrum. Starting with Darcy’s law [Eq. (3.1)] and
the Navier-Stokes equation for the solvent [Eq. (3.6)],
they remain valid provided we replace £ by R in the
Stokes friction coefficient and in the permeability. We
can however no longer use the Maxwell model for the
stress tensor since (shear) elastic stress no longer can re-
lax. We will use instead the stress tensor o0 =dF /d€ with
F the free energy used in our discussion of the equilibri-
um properties [Eq. (2.2)]:

o=A1)e;1+2u(Ple+C. 91 . (3.19a)
The force density f=V-o is then
f=(hg+py VV 141, Vir+C Vy+2 {—g% €-VV
t g
(3.19b)

with the bias shear strain €, used in Sec. II. Recall that
both purely elastic and purely osmotic (i.e., “liquid”)
effects are lumped together in the fluctuation free energy
Eq. (2.2) so we should not add a separate osmotic pres-
sure as in Eq. (3.2).

We still need a dynamical equation for the internal or-
der parameter. For a single blob in good solvent, the am-
plitude r of the Zimm mode obeys (in the Kirkwood ap-
proximation [42])

or _

or__k
Y g

(3.20)
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vection of fluctuations [41] that for Deborah numbers
small compared to 1, the Maxwell construction Eq. (1.11)
accurately predicts the effects of advection on the struc-
ture factor. Applying the Maxwell construction on the
result we just obtained gives, to first order in the Deborah
number:

—JE'(kE)? (3.18)

l5)
+ | o
‘ac

[3(k,/k)*—1] ] .
g

with K <kyT/R} and {=6mn, Ry the blob friction con-
stant. The relaxation time 7=£ /K is of order 10" sec in
good solvents. The natural continuum generalization of
the Zimm model for a collection of blobs attached to the
“basis” of a random network is clearly

Y _

21
£y (3.21)

SOF
(Rp/8) 50
with F the free energy and assuming we have one blob
per volume R}. Using Eq. (2.2) for Fin Eq. (3.21) gives a
conventional time-dependent Ginzburg-Landau equation
for a nonconserved order parameter, except that now
there are coupling terms connecting ¢ to the strain ten-
sor:

3 , a | ,
¥ R, IBY—MVH+C.oe,+ |5 | &
5 al F w 1[/ ceu 81/} geu
NS KCTH e (3.22)
|,

The terms in Eq. (3.22) which are of second order in the
strain can at this point be neglected but they must be in-
cluded when we later discuss the effect of bias strains.

1. Mode dispersion (zero bias)

To simplify the discussion of the gel mode spectrum,
we first investigate the dynamics in the absence of an ap-
plied strain, in which case our results must be consistent
with known results on the longitudinal and transverse
mode spectra of gels. For the longitudinal modes, the
solvent velocity u is still negligible. Combining Egs. (3.1)
and (3.19) gives, with 6c /c,= —V'r,

dd¢

U =AVHE 8¢ —c,C.¥) , (3.23a)
g%lg:—RFEBIIJ*CCSC/Co} , (3.23b)

where we neglected terms which were small for wave vec-

tors small compared to the Flory length. Looking again

for modes proportional to ek 1ol the mode spectrum

is found to obey

[0 (k)= (A/n)Egk* o (k) =7 1]
—kXC2/B)yr "(A/n,)=0 (3.24)

with 7 '=R.B /6. Mathematically, this mode disper-
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sion has the same “hybridized” form as that of a semidi-
lute solution [Eq. (3.8)]. To make the mapping formally,
first define E'=E,—C2/B and E;=C}/B and then use
these quantities to eliminate E, and B, after which we re-
cover Eq. (3.8). The new effective osmotic modulus E’ is
of course just our familiar gel longitudinal modulus en-
countered in the discussion of the statics (Sec. IT). In the
interesting regime where E'/E, <<1, E,~E,.

The discussion of the longitudinal mode dispersion of a
gel is from here on completely analogous to that of a sem-
idilute solution. There are again two branches:

o (k)= (A/M)E'K*/[1+7(A/n,)Ek?],
o () =[17 "+ (A/mEK?] .

(3.25a)
(3.25b)

The lower branch shown is, for small k, the well-known
collective diffusion spectrum of a gel with a diffusion con-
stant D, =(A /7, )E’. It was found experimentally by Ta-
naka, Hocker, and Benedek [20]. For larger wave vectors
Eq. (3.25) predicts some new results: collective diffusion
should first hybridize with order-parameter relaxation
and then saturate to a dispersionless relaxation spectrum
with a relaxation rate 7~ 'E’ /E4. Also, there should be a
“forbidden” gap in the relaxation spectrum for rates in
the range 7 'E'/E to 7~ ! followed by order-parameter
relaxation for higher relaxation rates.

Should the new effects be observable? The crossover
takes place around k., =[7n,/(ATE, )]'/2, just as for semi-
dilute solutions. For pure Zimm relaxation k., ~R; ' so
for gels in good solvents with highly swollen coils, hy-
bridization should not play an important role and the
new effects are not important. If, however, we reduce
solvent quality, then the relaxation time is expected to be
increased, in analogy with the case of theta solvents dis-
cussed earlier. The crossover wave vector k., could be-
come much smaller and hybridization may become im-
portant in light-scattering experiments on gels made of
high molecular weight chains between cross links. Possi-
ble origins of anomalously long stress-relaxation time in
gels which may lead to observable hybridization effects
could be the presence of dangling chains and topological
entanglements between different network chains [43].
Both effects depend strongly on the conditions under
which the network was formed. Theoretical estimates of
the stress-relaxation time are quite difficult, although in-
formation about it can be obtained from mechanical re-
laxation studies.

Turning to the transverse modes, we now must allow
for transverse solvent flow so we must include the full
Navier-Stokes equation. The coupled equations for trans-
verse solvent and monomer velocities (ur and v, respec-
tively) are

dur )
p0~aT=nSV ur+(n,/ANvy—ur), (3.26a)
(/AN vr—urp)=p,Vry (3.26b)

with V-u;=V-v,=0 and with dr;/dt=v,. Note that
the internal order parameter does not enter. These two
coupled equations for v and u; are identical to those of
the de Gennes—Pincus theory of transverse modes in

semidilute polymer solutions [44] (applied to gels). The
mode spectrum for the two propagating (degenerate)
transverse modes is

k=~ilo(k)/c,][1+o(k)(n /)]~ (3.27)

with ¢, =(u, /p,)'/? the transverse velocity of sound (as-

suming k <<Ry ' and p, << n?/Apy). Note that o(k) has
both an imaginary part (corresponding to transverse
sound propagation) and a real part (corresponding to
transverse sound damping). We thus conclude that for
the case of good solvents, the dynamic mode spectrum of
our theory reduces to well-known results while for gels
with reduced solubility it predicts the type of mode hy-
bridization encountered in theta solvents.

2. Mode dispersion (with strain bias)

Having ascertained that in the absence of strain our
theory is in good agreement with the known mode disper-
sion of gels, we now turn on the strain. Assuming, as be-
fore, an extensional strain, €,,=¢€,,=—€ and €, =2¢,
the equations of motion become more complex because
the transverse and longitudinal modes are now coupled.
The time-dependent amplitudes of the longitudinal and

transverse modes of wave vector k obey

our , _ 2
Po—gt—“_k MUy T /ANVE ,—ury5),
(s /A)Nvp —up)=—k’u,rr ,

(ns/A)(Vrz_“n)

=—k’ugrr, +6ie %’j] Uk, (k2 + k)2 /k e,
\ & (3.28)
ry
T —A —Egk’r,
+i|C,+2e S (3k;/k*=1) |k¢ |,
W |,
g%’tﬁ=—RF By+il|C.+2e —gl‘— (3k2/k*—1) |kr,
g
9
_66 _l'l_ kzz.r .
W |, ””

We decomposed the polarization of the transverse modes
along two unit vectors e; and e, in the plane perpendicu-
lar to k, with e; perpendicular to z and with e, perpen-
dicular to e, (and k):

e, =(—k,,k,,0)/(k}+k2)?,
e,=(k/k)Xe; .

(3.29)

The amplitude r;,; of the e, polarization is not affected by
the bias strain so we recover the de Gennes—Pincus result
[44] for the T, spectrum. The mode dispersion for the
remaining modes is, to second order in the strain bias,
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polo—o (k) ][o—w* (k) ][o—o (kK)][o—o’ (k)]

2

(k,/k)?
4

=36(Ry /)€

o
oY

X(kI+kD[o—(A/m)EK?] . (3.30)

Here, (k) is the (complex) de Gennes—Pincus spectrum
while > *(k) is the hybridized collective-diffusion—
internal-relaxation spectrum Eq. (3.25) except that (to
first order in €) we must replace E' by the anisotropic
angle-dependent longitudinal modulus

2
o

E'(k)—(4/B)é?
(k)—(4/B)e o

o(k)=(A/7,)

g

with 6 the angle between the wave vector and the strain
direction. In complete analogy with the case of semidi-
lute solutions we encounter, to lowest order in the strain,
an effective diffusion constant D, (k)=(A/%n,)E'(k)
which is controlled by the anisotropic longitudinal
modulus. The collective diffusion constant has decreased
along the strain direction and increased in the perpendic-
ular direction. The collective mode spectrum
saturates—because of hybridization—at larger wave
vectors. The crossover wave vector has not been affected
by the applied strain.

The second-order term in Eq. (3.32) is due to strain-
induced mixing between collective diffusion and the
transverse modes. If the second-order term becomes
comparable to the first-order term, then the butterfly pat-
tern is severely deformed which, in general, happens
when the strain € becomes of order one.

The dispersion law Eq. (3.32) is our key result in this
section. Experimentally, it can be directly checked
through dynamical light scattering. The dynamic struc-
ture factor S(k,w) can be found by inserting Eq. (3.32) in
Eq. (3.17). The collective-diffusion constant measured
this way should exhibit an “inverse” butterfly pattern
with D_;(k)=(A/n,)E'(k), i.e., it should be inversely
proportional (for small wave vectors) to the equilibrium
static structure factor S(k) [Eq. (2.12)]. On the other
hand, the quenched-fluctuation theory of the stress-
induced butterfly pattern predicts only anomalies at zero
frequency and should show no such anomaly in the
diffusion constant. Although dynamic light scattering on
swollen, stretched gels has already been done [45], we are
unaware of direct light-scattering measurements of the
static structure factor under these conditions. A com-
bination of both static and dynamic measurements on un-
charged deformed gels is needed to provide a comprehen-
sive test of our theory (a separate treatment is required
for polyelectrolyte gels in which the counterion osmotic
pressure plays an important role [46]).

An alternative experimental test of the theory is pro-
vided by a measurement of the time evolution of the stat-
ic structure factor following the imposition of a strain at

[[3cos(0)— 11" —9(E, /p, Jcos*(O)sin*(0)} |k*/[1+7(A/n)E k7]

E'(K)=E'—(2C./B)e | 94 | (3k2/k?=1) .

g

(3.31)

Note the similarity with angle-dependent osmotic
modulus encountered for semidilute solutions [Eq. (3.16)].
Note also that for e=0, we recover the usual mode spec-
trum.

It follows from Eq. (3.30) that there is no stress-
induced hybridization between the transverse and the
internal modes. The reason is that the transverse modes
are propagating so they can never be degenerate with the
purely overdamped i mode. As a result, we can use sim-
ple perturbation theory to include the mode mixing. The
collective-diffusion mode branch of Eq. (3.30) is given by

(3.32)

[

t=0. Assume that at 1 =0 we have a concentration fluc-
tuation spectrum Sy(k) given by Eq. (1.1). Apply instan-
taneously an extensional strain €. This will advect the
concentration fluctuations and produce a structure fac-
tor:

S(k,t=0+)=S,[(1+€)k] . (3.33)

This structure factor necessarily exhibits isointensity con-
tours consistent with the “strong self-affinity”” assumption
discussed in the Introduction [Egs. (1.8)-(1.10)]. Im-
mediately afterwards, relaxation processes will start to
deform these contours. The ‘‘high-frequency” (k)
part of the branch is isotropic and will not change the
geometrical shape of the contours significantly. The
“low-frequency”” branch »~ (k), which is strongly aniso-
tropic, will take longer to develop. To find its time evolu-
tion, note that the amplitude c(k,?) of a concentration
wave with wave vector k must, in a harmonic theory,
obey a Langevin equation of motion:

dc(k,t) _
ot

where the Gaussian noise source 7(k, ) has a noise spec-
trum consistent with the fluctuation dissipation theorem.
To solve Eq. (3.34), we must specify the initial conditions.
The initial value c(k,?=0) is taken to be a Gaussian ran-
dom variable with a spectrum {|c(k,¢ =0)|?)
=S(k,t=0+). The resulting time evolution of the static
structure factor is

—o (k)e(k,t)+n(k,t), (3.34)

S(k,1)=S(k,t =0+ )e 20 ®ipg(k)(1—e 2 KN
(3.35)

with S(k) the static structure factor given by Eq. (2.12).
Notice that S(k,?) is the one-time ({|c(k,?)|?)) density-
density correlation function (and not the dynamic struc-
ture factor which is a two-time {|c(k,0)c*(k,¢)|) corre-
lation function).

The resulting time evolution of the intensity contours
is shown in Fig. 3. The self-affine pattern seems to



FIG. 3. Contour plots of the structure factor in the (Q,,Q))
plane (z is the horizontal axis), taken at different times. Time is
measured in units of the relaxation time  of the scalar order pa-
rameter ¢: (a) t=0, (b) t=2, (c) t=3, (d) t=4, (¢) t=10, and (f)
t =10°. The applied strain €=0.3 and the coupling constant is
§=0.3.

smoothly transform to the butterfly pattern. This pro-
gression qualitatively reproduces the experimental obser-
vations of [12]. There is however a surprise during the
later stages: for late times, Eq. (3.35) predicts maxima in
the scattering intensity along the stretching direction (see
Fig. 3). With time, these maxima move in towards the
origin k=0 after which the equilibrium butterfly pattern
S(k) is obtained. Such maxima have indeed been report-
ed in one case. The appearance of the maxima is due to
“interference” between the butterfly anisotropy of S(k)
and the anisotropy of o™ (k) so it should be a good diag-
nostic of the applicability of our dynamic description.
The maxima suggest that during the evolution of a gel,
after stress is applied, it passes through a stage where
there is a modulation in the concentration with a
wavevector along the strain direction. Indeed, it can be
shown that our theory predicts that the decomposed
phase has a concentration modulation of this type with a
wave vector of order the system size.

IV. CONCLUSIONS

We presented a theory of the combined effects of strain
and concentration fluctuations in gels swollen in excess
solvent. According to our view, the behavior of gels on
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mesoscopic scales cannot be understood in terms of a
purely “solid” or a purely “liquid” picture and, therefore,
we constructed a model which incorporates both aspects
of gel behavior by combining the macroscopic theory of
elasticity of solids with a microscopic order parameter
which describes the fluctuations of the size and the local
stress of individual polymer chains in the network. The
introduction of microscopic “liquidlike” degrees of free-
dom leads to the breakdown of the geometrical relation
between concentration and strain (the strong-affinity as-
sumption), on length scales comparable to the size of net-
work chains. Although this relation is recovered in the
macroscopic limit, the presence of microscopic degrees of
freedom affects the long-wavelength density fluctuations
in the gel. In particular, when the symmetry is broken by
externally applied strain, the coupling between micro-
scopic and hydrodynamic degrees of freedom produces
butterfly patterns akin to those observed in SANS experi-
ments. We analyzed the dynamics of concentration fluc-
tuations and showed that following the externally applied
deformation, the structure factor evolves with time from
the initial affine profile to the final butterflylike one, in
qualitative agreement with experimental observations.
Other predictions of our theory such as the explicit pre-
dictions for the mode dispersion are yet to be tested. The
close connection between the dynamics of deformed gels
and that of semidilute polymer solutions subjected to
elongational flow was also demonstrated. The agreement
between our static and dynamic results and experimental
observations appears to support our assertion that the ob-
served butterfly patterns originate in thermal fluctuations
rather than in quenched inhomogeneities in the gel, at
least in the range of length scales probed by SANS. Still,
the more general issue of the relative importance of
quenched vs annealed concentration inhomogeneities in
the physics of gels remains open and comprehensive ex-
perimental studies of static and dynamic scattering from
gels which probe all length scales in the 10~ 10*-A range
are clearly needed.
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APPENDIX

To find the relation between our order parameter and
the monomer concentration, let gg(r) be the density-
density correlation function of a single N monomer self-
avoiding blob of mean radius R. It is well known that
gr(r) obeys a scaling form

gr(r)=(N/R*G(r/R) (A1)

with G(x)=1/x%3 for x <<1 and G(x)=0 for x >>1.
Its Fourier transform
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Frlq)= [d’r e"9gs (r) (A2)
behaves in the small-q limit as
Fr(q)=N[1—T(gR )] (A3)

with T" a numerical factor of order 1. Now consider a
random network of such blobs, with the center of mass of
the ith blob at r;. For a gel at swelling equilibrium, we
expect from the ¢ * theorem that the blobs are not greatly
deformed so the equilibrium monomer concentration
¢o(r) should be approximately

=zgR(r—r,)

(A4)

In the presence of fluctuations, we allow the positions
of the blobs to be displaced (by the strain displacement
vector) and we allow the blob radius to be altered (by the
internal order parameter):

r,=r;+u,, (AS)
R=R (1+%;)

(with R the Flory radius) so the monomer concentration
is

(f):EgRFur.«w,;(r“r,-—u,-) . (A6)
i

Define the Fourier transform

= [d’reiac(r) (A7)
Linearizing Eq. (A6) gives
c(q)=colq)+iFy (g Eque i
+Rp3Fg (q)/3R; 3 e (A8)

Going to the long-wavelength limit, where the summa-

tions over units of volume R} can be treated as integra-

tions, gives
c(r)/co=1—¢€; + TR}V Y+0(V*Y) (A9)

which is Eq. (2.4).
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