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We introduce several models of irreversible adsorption in which nonrigid particles are deposited
sequentially at random positions onto a line. Once adsorbed, a particle can immediately undergo an ir-
reversible transition in which its size changes from 1 to o > 1. In the first model, the center of mass of a
particle remains unchanged during the spreading so that the transition occurs if there is enough room on
both sides of the particle. In the second model, a particle grows if the total available space on both sides
of the particle is larger than o, irrespective of how it is distributed on the two sides; if the particle en-
counters its closest neighbor during the transition, it continues to spread on the unbounded side until it
reaches a size 0. In the last model, the spreading transition is equivalent to a conformational change re-
sulting from a tilting process; once adsorbed, the particle grows either to the right or to the left, provid-
ed that there is space available. We obtain expressions for the kinetics of these three models by intro-
ducing a gap density function. A comparison of results from each of these models allows us to determine
the influence of the detailed mechanism of the spreading transition on the overall adsorption process.

PACS number(s): 81.15.Lm, 68.10.Jy

I. INTRODUCTION

The physical adsorption of latexes [1,2], polyelectro-
lytes [3], and proteins [4—11] on solid surfaces is often a
highly irreversible process in which surface diffusion and
desorption play a minor role. Latexes can be well
represented as rigid spherical objects, but some polymers
[3] or proteins [4,6—8] may undergo, once adsorbed some
structural or orientational changes due to the strong in-
teraction with the substrate. Surface-induced conforma-
tional changes not only greatly decrease the tendency of
proteins to desorb [6], but are also related to protein
denaturation [6,8,11], a process which changes the terti-
ary structure and function of the adsorbed proteins.

As desorption is negligible and surface diffusion is very
slow on the experimental time scale, the adsorption pro-
cess evolves rapidly far from equilibrium and is essential-
ly limited by geometrical exclusion effects between parti-
cles. Under these conditions, use of the random sequen-
tial adsorption (RSA) model, which takes into account
both irreversibility and geometrical exclusion effects [12],
is appropriate. In RSA, particles are deposited sequen-
tially onto a surface. The position of a trial particle is
chosen randomly, and the particle is adsorbed on the sur-
face if it does not overlap previously adsorbed particles.
If overlap occurs, it is rejected. In one dimension, this
model is referred to as the “car parking problem” [13]
and is exactly solvable.

The above discussion points to the desirability of ex-
tending the RSA model in order to include conformation-
al and orientational changes of the particles on the sur-
face [3]. As a first step in this direction, we introduce in
this paper several solvable models which allow us to
study qualitatively, but in great detail, the influence of
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surface-induced conformational changes. In these mod-
els, the particles are deposited at a constant rate k per
unit length like in an RSA process, but, in addition, they
can instantly undergo an irreversible two-state transition
on the surface. This transition represents, in a simplified
way, a change of conformation (or orientation) of an ad-
sorbed particle that is driven by a maximization of the
area in contact with the substrate. We consider here the
one-dimensional (1D) version of the problem, i.e., the
deposition of rods on an infinite line. The diameter of the
rods in solution is chosen as the unit of length. A
configuration of adsorbed particles consists of a mixture
of segments of sizes 1 and o > 1, the latter corresponding
to the final state of the structural transition on the sur-
face.

Exclusion effects due to preadsorbed particles must be
taken into account, not only for the insertion of a new
particle, but also for the growth of a particle on the sur-
face. In the first of the models we will consider, a particle
spreads symmetrically from a size 1 to a size 0 immedi-
ately following adsorption, given sufficient space on ei-
ther side. Otherwise, its size remains equal to 1. In the
second model, a particle again begins to grow symmetri-
cally upon adsorption, but if it encounters its closest
neighbor during the transition, it continues to spread on
the unbounded side until it reaches a size o (unless anoth-
er neighbor prevents the full growth). Thus, the particle
is prevented from spreading only if the interval in which
it adsorbs is smaller than o. In this model, particles can
spread more easily and a larger saturation coverage is ex-
pected. The third model differs from the first in that the
position of one of its ends is fixed during spreading. This
model then mimics the adsorption process of elongated
particles, which reach the surface “end on” and “tilt”
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over if enough room is available either on the right or on
the left. If space is available on both sides, the spreading
direction is chosen randomly. This model is thus
equivalent to an asymmetric spreading which occurs on
one side or the other, but never both (unlike the second
model). The three models are schematically depicted in
Fig. 1.

For all models, we assume that the transition from size
1 to o, if possible, occurs instantaneously following ad-
sorption. In this limit, all the models can be solved exact-

(a)

S8
AN
N

ly. The next three sections are devoted to the derivation
of the solutions to each of these models, and in the last
section, their behavior is compared.

II. MODEL I: ADSORPTION
WITH SYMMETRIC SPREADING

We introduce the gap distribution function G (h,1),
which is defined such that G (h,t)dh represents the num-
ber density of gaps having a length between h and h +dh

FIG. 1. Illustration of the deformation of a particle on the surface. We consider two states of the particle on the surface. (a) Mod-
el I: the particle is a rod of size 1 when it reaches the adsorbing line. If the neighbors are sufficiently far, the particle grows symme-
trically. (b) Model II: growth can occur also close to a neighboring particle (black), but the particle spreading is asymmetric. (c)
Model III: the particle adsorbs side on and tilts to the left or the right if space is available.
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which are bounded by two particles of unspecified length
(1 or o). The rate equations of the gap distribution func-
tion can be written in a closed form by considering all the
ways in which intervals may be created or destroyed dur-
ing the deposition spreading process. For a given interval
of length h > o, the available length for the insertion of a
particle of length 1 that eventually will stretch to a length
o is the inner interval of length h — o, whereas the avail-
able length for the insertion of particles of length 1 that
cannot undergo a transition is the sum of the right and
left subintervals, each having length (o +1)/2. For an in-
terval of length o > h > 1, particles of length 1 can be in-
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serted in the available length & —1, but cannot expand.
Conversely, an interval of length 2 > (o0 —1)/2 can be ob-
tained by inserting either a particle of length 1 that
stretches to a length o on an interval of length ' >h + o0,
or by inserting a particle of length 1 that cannot undergo
a transition on an interval of length A’ such that
h+(oc+1)/2>h’>1+h. Finally, an interval of length
h <(o—1)/2 can be obtained by inserting either a parti-
cle with a final length o in an interval of length
h’'>h +o0, or by inserting a particle of final length 1 in an
interval of length A’ >h +1. From the above arguments,
we obtain the following set of coupled equations:

~th=06mo+2 [ G o+ [T TG (o for h>1, (1)
AGhD _ o (M 2 G hr, 02 [T 7dn G () for 1>k > (0172, @
ot hitl p hto
2[ "“an'Gn,n+2[ " “dn'G(h',0) for (6—1)/2>h >0, 3)
h+1 h+o

where, without loss of generality, we have set the rate of adsorption per unit length to unity. The factor of 2 in the
creation terms of the right-hand side of the preceding equations reflects the two possibilities of breaking a larger inter-
val by inserting a particle. Equations (1)—(3) correspond to the case of a moderate deformation of the particles (o <3)
[3]. The process for o > 3 can also be described using the same method, but its solution, which requires successive itera-
tions, will not be given here for the sake of simplicity. The solution of the above equations can be obtained by consider-

ing first the intervals larger than 1. Inserting the following ansatz,

G(h,t)=F(t)exp(—(h —1)t) for h >1,
in Eq. (1) gives
F(¢)

dF(t) =2 e~ (e~ (0= _g=llo=1/2ly )
dt t

the solution of which is

¢ l_e—at’ e~t'_e—[(a+1)/2]t‘
F(t)=t%xp (=2 [ dt’ —
p fo t ’ t ’
Introducin the exponential-integral function

E,(x)= fx “exp(—1)/t, the function F(t) can be rewrit-
ten as

o+1 o+1

F(t)= oy

-

where ¥y =0.577 - - - is the Euler constant. Once G (A,t)
is known for A > 1, one finds by integrating Egs. (2) and
(3)

2
exp [—2

+E,(2)

G(h,t)=2f0tdt’¥[1—-e[("_”m"+e'(“_”"]e_h"

for 1>h>(c—1)/2, (8)

4)

(5

I

and

G(h,t)=2f0'dt’¥[l+e““’””"]e”’"'
for (c—1)/2>h>0. (9)

The gap distribution function has a finite discontinuity at
the point (o —1)/2, which is due to the influence of the
spreading transition on the creation of gaps of this length
[see Egs. (2) and (3)]. At the end of the process, G (h, )
is discontinuous at h=1 because there are no intervals
larger than 1 [G (A, 0 )=0 for A > 1], whereas also the in-
tervals of length A<1 cannot be destroyed (Fig. 2).
Moreover, as in conventional RSA, G(h, o)~ —In(h)
when A —0. A similar logarithmic divergence is expect-
ed in higher dimensions.

From the gap distribution function, it is possible to ob-
tain the number density p,(¢) of particles of length 1 and
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G(h,e)

FIG. 2. Model I: gap distribution function G (h, « ) vs h for
0=1,1.5,3.0 at the jamming limit. Note the finite discontinui-
ties at the points # =(0—1)/2 and h=1, and the logarithmic
divergence when A —0.

the number density p,(¢) of particles of length . The
kinetic equations satisfied by these two quantities can be
written as

dp,‘(t) .
=d,(2), i=1,0, (10
dt

where ®,(t), the probability of adding one more particle
of final size i, is equal to the fraction of line that is avail-
able for particles i. Since, for a given interval of length
h>1, the available length for inserting a particle that
remains of length 1 is equalto o —1if A >0 or A —1 for
1 <h <o, the function ®,(?) is equal to

® (0= [ " “an(min(o,h)~1)G (h,1) . (1)

The insertion of particles of final length o is only possible
for intervals larger than o, and the function ®(¢) is thus
given by

<I>(,(t)=f+

Inserting Eq. (4) in Egs. (11) and (12) and using Eq. (10)
leads to the following expressions for the number densi-
ties p,(¢) and p,(¢):

fd,F(t

“dh(h—0)G(h,t) . (12)

—(U—I)t') , (13)
and

= [lar £ et (14)

At short times, p,(t)=t+0(t?) and p,(t)=[(c

pl( 0 )—‘pl(t)“’p( o)

—1)/2]t* +0(t®). The latter expression results from
the fact that a particle of final size 1 can appear only if its
spreading is prevented. This is only possible when a first
particle has been already adsorbed.

The covered fraction of line, which we denote 6(t) as in
the two-dimensional system, and the total number density
p(t), are obtained from Egs. (13) and (14) by linear com-
binations,

8()=p,(1)+ap,(1), (15)
p(t)=p1(t)+pg(t) , (16)

and one may easily check that they 1ndeed satisfy the sum
rules, 6(1)=1— [ dh hG (h,t) and p()= [ *dh G (h,1).

Close to the jamming limit, p,(¢) approaches its satura-
tion value exponentially:

2 e—(a—l)t
e %

t

o+1
20

poloo)—p (1)~ 5 (17

The largest particles do not contribute significantly near
the end of the filling process since most intervals become
smaller than o. The particles that are adsorbed in the
asymptotic regime are thus prevented from growing,
which results in the following algebraic law:

2
e
t

o+1
20

—p(t)~ (18)

The asymptotic behavior of p(¢) and 6(t) is thus similar
to that of a simple RSA process.

Figure 3 compares the time evolution of the partial and
total coverages p,(t), p,(t), and 0(¢) for different values of
the size 0. At short times, the filling is essentially due to

L o(t) 0=3.0 |
[

o=1.5
= g=1.0 |
oy /,//"—’—_:
SQ < - _______og=1b_4
2 op,(t) 0=3.0 |

py(t),

py(t) 9=3.0
b 2T 15 7

t

FIG. 3. Model I: time dependence of the total covered frac-
tion of line 6(2), the fraction covered by particles of size 1, p(?),
and op,(t), which is covered by particles of size o, for
0=1.0,1.5,3.0.
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FIG. 4. Model I: o dependence of the saturation densities,
pi( ) and p( o), and partial and total coverages, op,( ) and
0( ).

the particles which can grow [p,(¢)~6(¢)], but, for long
times, the adsorption proceeds with practically no
spreading [p()—p,(#)~p(ew)—p(t)]. At short times,
the partial coverage of largest particles is more efficient if
the size is larger, but their corresponding saturation den-

sities are lower.

Figure 4 displays the o dependence of the partial and
total saturation coverages, p;( ), op (), (), as well
as that of the total density p( ). The saturation cover-
ages have a relatively weak dependence on the final size
o. But the partial densities, p;() and p (), change
rapidly around o=1. A close examination of Eq. (13)
and Eq. (14) reveals a nonanalytic behavior,

pi()=p,(0)—p,_ ()
~—e M(o—1nlc—1)+0(c—1) . (19)

II1. MODEL II: ADSORPTION
WITH ASYMMETRIC SPREADING

To solve the second model, we again focus on the gap
distribution function G(h,t). For a given interval of
length k > o, the available length for the insertion of par-
ticles of final length o is the inner interval of length
h —1: in this model, if a particle lands in a space of
length o, it is able to grow. For intervals of length
o >h > 1, only particles of final length 1 can be inserted
in the available length 2 —1. Similarly, an interval of
length h > (0 —1) can be obtained by inserting a particle
of final length o in an interval of length 2’ >o. Finally,
an interval of length A <(o—1) can be obtained by in-
serting either a particle of final length ¢ in an interval of
length h' > o, or by inserting a particle of final length 1 in
an interval of length 0 >h’'>1. From the above argu-
ments, the following set of coupled equations can be de-
rived. For o <2, one obtains

~(h=DG(m0+2 [ " "dh'G (W, 0+~ DG (h +a,1) for h>1, (20)
o
%= 2fh:mdh’G(h’,t)+(a—-1)G(h +o,t) for 1>h>(0c—1), 21
27 awG ', n+2 [ 7dh'G (h,n+(c—1)G(h +a,1) for (6—1)>h >0 (22)
h+1 h+o

As in the symmetric model I, this asymmetric model can be solved for o > 2, which implies slight modifications in the
above equations. However, we restrict ourselves here to the case of moderate spreading.
The rate equations may be solved by inserting the ansatz of Eq. (4) in Eq. (20). The function F(¢) obeys

dF(1)

— —at
@t F(t)e

’

2 i o—1)
t

which gives

—ot’

—2flar1= " 4+ 2L
0 o

F(t)=t%exp T

o—1

=0 Zexp | —2[y+E,(ct)]+

(l—e—‘”)l ,

(23)

(24)

where E(t) is the exponential-integral function. By integrating Eq. (21) and (22), one obtains the full solution for the

gap distribution function G (h,t):
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[larFae= " o=+ Z0e ™ for 1>k >(0—1), 5)

G (h,t)=

zfotdtl%.).[e—ht'_e—(o'—l)t']+ fotdtlF(tl)e—(o—l)t'

Contrary to model I, the gap distribution function G (h,?)
is now a piecewise continuous function, but
(0G (h,t)/0h) has a finite discontinuity at h =c —1. At
the jamming limit, G (h, « ) is discontinuous at ~=1 (Fig.
5). Also, at the jamming limit, G (h, « ) does not diverge
as —In(h) when h —0. Instead, G (A,t) has a finite value
at contact. Another importance difference is that the
spreading mechanism leads to cluster formation. There-
fore, in addition to the regular gap distribution G (h,1),
there exists a singular contribution G,(¢)8(h), which
represents the density of particle contacts and whose time
evolution is governed by

dGS(t)_ +
S =le=D["TdnGh1). 27)

After insertion of Eq. (4), one obtains

G.(0)=(o— 1T g—te-1r

(28)

To derive expressions for the number densities p,(t)
and p,(t), we again start with Eq. (10). Since, for a given
interval of length 4> 1, the available length for inserting
a particle of final length 1 is equal to # —1 for # <o and

FIG. 5. Model II: regular part of the gap distribution func-
tion G(h, ) vs h for 0=1,1.5,2.0 at the jamming limit. Note
the small cusp at the point h =(o —1)/2.

(a—lH-% e for (6—1)>h>0.  (26)

f

0 for h > o, the function ®,(¢) is given by
®(0= [ "dh(h =G (k1) . (29)

The addition of particles of final length o is only possible
for intervals larger than o, but the available length is that
in which a particle of initial size 1 can adsorb, i.e., h —1.
The function ® () is then equal to

®,(0=[""dh(h—1)G (h1) . (30)

Introducing Eq. (26) in Egs. (29) and (30) and using Eq.
(10) yields

W F(t')
P](I):fordt 7‘“

__fldt'__.F(f )e“(o'*l)t' (0.__1)+__1'_
0 t t

and

F(t') _o-nr
pa(t): fotdtl (t: )e (o—1)t

(cr—1)+t—1,]. (32)

At short times, p ()=t +0(t?) and
pi()=[(c—1)2/6]t>* O(¢*). The latter can be interpret-
ed by noting that an adsorbed particle remains at size 1
only when it is inserted in an interval of length smaller
than o. This condition requires that at least two particles
have already adsorbed.

The asymptotic approach towards the jamming limit is
described by

-y 2e[(0—1)/0]
pil0)—p(t)~ ; , (33)
and
2
_ ooale | e—see
poloo)—p t)~(og—1) o e ;
(34)

The asymptotic kinetics are thus essentially the same for
model II as for model I. Note, however, the 1/¢ depen-
dence in Eq. (34) in place of 1/¢t2 in Eq. (17). The late
stage of the filling process is dominated by the insertion
of particles of size 1 that have no space to stretch on the
line. The approach to saturation for the particles which
grow on the surface is fast (essentially exponential).

In Fig. 6, we display the time dependence of p,(?),
po(t), 6(t), and p(t) for various values of . The partial
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6(t)

ap,(L),

P,y (L),

FIG. 6. Model II: time dependence of the total fraction of
covered line 6(¢), the fraction covered by particles of size 1,
pi(t), and op,(t), which is covered by particles of size o, for
0=1.0,1.5,2.0.

and total saturation coverages and the total saturation
density are plotted in Fig. 7. Note that, contrary to mod-
el I, even op, () increase with o. This reflects the
higher efficiency of the spreading mechanism in model II.

It is worth noting that in this model the addition of
particles of final size o is independent of the presence of
particles of final size 1. The reason is that a particle of
size 1 can only occupy a gap of length less than o, which
is in any case unavailable for large particles. Moreover,
the adsorption-spreading process for the o particles is ex-
actly equivalent to a generalized ballistic deposition mod-
el in which o particles can adsorb on the line either by
direct deposition or after “rolling” over a preadsorbed
particle [14]. The ratio of the rate of direct deposition
versus the rate of rolling is equal to

_(o—1)
200

As in the generalized ballistic deposition model, o parti-
cles form connected clusters and the cluster densities can
be directly obtained from the solution given in Ref. 14.
[See Eq. (32) of this reference, in which ¢ should be re-
placed by ot and a by (35).] For instance, at the jamming

(35)
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FIG. 7. Model II: o dependence of the saturation densities,
pi( ) and p( ), and partial and total coverages, op,( ) and
0().

limit, the behavior of the density of clusters formed by s
particles, p (o), for asymptotically large clusters
(s—+ ) is given by

(Cod VA §

- (36)
o !

ps(e)~
The density of the clusters decreases very fast (faster than
exponential) with their size. As noted by Evans and
Nord [15], this seems to be a general feature of irreversi-
ble filling which does not allow for cluster-cluster coales-
cence.

IV. MODEL III: ADSORPTION WITH TILTING

For this model, examination of the time evolution of
the gaps also leads to a set of closed equations for the dis-
tribution function G(h,t). For a given interval of length
1<h <o, only end-on (unspread) particles can be insert-
ed. For o0 <h <(20—1), the available length for parti-
cles which cannot spread, or tilt, is (20 —1—#), whereas
the available length for particles which adsorb ‘“‘side on”
(i.e., spread) is equal to 2(h —o). For larger intervals
(h >20—1), an adsorbed particle may always tilt. Thus,
for o <2, the gap distribution function G (A,t) evolves ac-
cording to

|
~th=0Gh0+3 [ awc 2 [0 aw'Ghn forh>1, 37
AG (1) _ |, phtzo=t o, e, _
o 3f0 7 Ao+ " dw'G(h',n for 1>h>0—1, (38)

h+20—-1 ., , + , , h+ , ,
af G n+3 [ dh'GhLn+2 [ dh'G (k') for o—1>h>0. (39)
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The different factors in the creation terms of the right-hand side of the equations take into account all the ways of
breaking a larger interval by inserting a particle which tilts either randomly (if a space is available on both sides), or
only to the left or to the right (if a neighboring particle is nearby). The last right-hand term of Eq. (39) corresponds to
the adsorption of particles which do not have space for tilting. A slightly different set of equations is obtained for o > 2,
but it will not be detailed here. Using the ansatz of Eq. (4), Eq. (37) can be solved by means of a function F(¢) which
obeys

dF(t) _ F(t)
dt t

and is thus given by

(3e~at_e*(20'l)t)’ (40)

20—1

F(1)=
t) 3

exp(—2{y+3E,(ct)—E[(20—1)]}), (41)

where E,(t) is the exponential-integral function. By integrating Egs. (38) and (39), one obtains the full solution for the
gap distribution function:

foldt'—Fi—f)—Ge_“’_”"—e_2“’_”")e"'" for 1>h >(c—1), (42)
G(h,t)=

ftdt'f—(tf—)—(2+2e“"_”"—e_2“’“)")e"‘" for (c—1)>h >0. (43)
0

[

In this model, G (h,t) is discontinuous at h =0 —1. At and the probability of adding one particle of final size o is
the jamming limit, G (h, « ) is also discontinuous at h=1 _ [20-1
and has a logarithmic divergence when 4 —0+ (see Fig. ®,(1)= fo dh 2(h —a)G (h,t)
8). w
+ h(h —1)G (h,t) . 45
From arguments similar to those discussed above, the f 20-1d ( G (hD) “3)
probability of adding one particle of final size 1 is

()= [ "dh (h =1)G (h,1)

By introducing Eq. (43) in Egs. (44) and (30) and using
Eq. (10), one may obtain the number densities

1
20—1 [ F@) ey
+ [ dh 20 —1—h)G (h,1) , @y pn=[lar =21, P, (46)
g
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FIG. 8. Model III: gap distribution function G (h, ) vs h
for 0=1,1.5,2.0 at the jamming limit. Note the finite discon-
tinuities at the points # =0 —1 and h=1, and the logarithmic
divergence when 7 —0.

FIG. 9. Model III: time dependence of the total fraction of
covered line 6(t), the fraction covered by particles of size 1,
pi(1), and op,(t), which is covered by particles of size o, for
0=1.0,1.5,2.0.
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FIG. 10. Model III: o dependence of the saturation densi-

ties, py( ) and p( ) and partial and total coverages, op,( o)
and 6( ).

po(t)= fotdt’ Ft(’l; )e—(a—l)t'[z_e—((r-l)t'] . (47)

As in models I and II, the fractional coverage of the line
0(t) and the total number density p(¢) are obtained by
combining Eqgs. (46) and (47) and Egs. (15) and (16) and
the sum rules are obviously satisfied. The short time ex-
pansions of p,(¢) and p,(t) are the same as in model I, as
are the asymptotic kinetics (up to trivial multiplying con-
stants). The time evolution of the partial and total densi-
ties and coverages is illustrated in Fig. 9 and the o depen-
dence of their saturation values in Fig. 10.

V. DISCUSSION

The three models considered above have many similar
features, like, e.g., the asymptotic kinetics and greater
coverage compared to RSA without spreading. Model 11
differs in that it leads to cluster formation of large parti-
cles and represents a more efficient way of filling the
space. In order to estimate the spreading effect during
the adsorption process, the ratio 6(¢)/p(¢) can be inter-
preted as a mean size of adsorbed particles &(¢). Figure
11 compares the time evolution of &(¢) for the three mod-
els at two different sizes.

An interesting quantity is the partial coverage of the
large particles op,( ). It is reasonable to assume that in
many experimental scenarios the particles of size 1 are
more weakly bound to the substrate than the particles of
size 0. These particles may be washed out by replacing
the protein solution by a pure buffer solution, and
op,( o) could be experimentally determined [16]. It is

1.8 = ) |

1.6 - .

o(t)

— Model I
L Model 1II |
L _ _ Model 1II |

1.2 —

0 2 4 6 8 10

FIG. 11. Time evolution of mean size of adsorbed particles
for the three models and for 0 =1.5,2.0.

easy to show that the analytic solutions obtained for
0 =3 [Eq. (14), model I] or o <2 [Eq. (32), model II and
Eq. (47), model III] are valid for the whole range of o. In
all cases, op,() reaches an asymptotic value when
o — + o which is different from zero, and hence the
number density p () goes to zero as 1/0. The o depen-
dence of op,( ) is plotted in Fig. 12. For all models,
op,(oo) rapidly reaches a plateau value when o in-

1 T — T — T T T T T
L Model II 4
Model 111 i
Model I .
02 -
0 L 1 s L L 1 ' s L | L L s | L n L
2 4 6 8 10

FIG. 12. Comparison of o dependence of the coverage of the
largest particles, op,( « ) for the three models.
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creases. As expected, Model II leads to a highest fraction
of line covered by largest particles.

In this paper, we have investigated three adsorption
models in which particles undergo a conformational or
structural change once adsorbed. Assuming that the
transition is instantaneous, we are able to obtain solutions
for these one-dimensional adsorption-spreading models
with different spreading mechanisms, and hence analyze
their influence on the overall adsorption process.
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