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Monte Carlo simulations of a single polymer chain under an external force
in two and three dimensions
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The deformation behavior of a single polymer chain subjected to an external force was studied by
computer simulations. Both random walks and self-avoiding walks were investigated. The simula-
tions were performed in two and three dimensions using the bond fluctuation model. The projection
of the end-to-end vector in the force direction as a function of the applied force was compared to
the scaling function obtained from renormalization group studies, covering the full interesting force
regime. The differences in the crossover between the linear force and Pincus-scaling regime were
studied.

PACS number(s): 64.70.—p, 05.40.+j, 83.10.Nn, 83.20.Jp

I. INTRODUCTION

The excluded volume or self-avoiding efFect of polymer
chains is one of the most discussed problems in polymer
physics. The theoretical understanding has made great
progress and the mathematical techniques are well devel-
oped. They can be read in many publications or surveys,
cf. [1—3,6]

If an external force is applied to a single polymer chain
the deformation behavior of such a chain is quite di8'erent
from a Gaussian one [4,5]. A scaling solution of this prob-
lem was first given by Pincus using the blob picture [7].
However, such a scaling discussion can only describe the
limiting cases of weak and strong forces but not the be-
havior between both regimes. To get the behavior over
the full force range it is necessary to use a more detailed
mathematical analysis.

The starting point is the partition function of a contin-
uous chain with both ends subjected to an external force
in opposite directions:

1 BP cl ln (Z(f))
k~T ctf Bf (2)

I" is the free energy as a function of the force: F =
k~Tln(Z(f)). Th—e Green's function of the excluded

volume chain can be presented in the following scaling
form, see for example Refs. [1 and 6]:

s(f) = z~ f d sp(RI, II exp(f R), ,

P(R, L, I) is the exact Green's function of the excluded
volume chain. L is the "contour length" of the chain, 1

the elementary step length, and R the vector connecting
both chain ends. fk~T represents the applied force. Zp
stands for the number of con6gurations of the excluded
volume chain without any further constraints and d is
the dimension of space.

Using Eq. (1) the mean value of the projection of the
end-to-end vector in force direction (RI) can be calcu-
lated as

P(R, L) = dhi —
i

(II, I
Xd gX)

(R)=N l =X d (4)

where v is the critical exponent and X the number of
segments. For large z the function h(z) can be approxi-
mated in the following manner [6]:

h(z) - z" exp( —Dz )

where D is introduced for a proper normalization of the
moments. The exponents b and K scale according to the
following scaling relations [9,10]:

1

1 —v

1 —p+ vd —d/2
1 —v

(6)

where p is a critical exponent [6,8].
%e now assume that the external force has only a com-

ponent in z direction. Furthermore, we define f = fX
In three dimensions (d = 3), we get, after performing the
angle integrations,

Z(f) - 4' dz z'+" exp( —Dzs) =sinh(z f)
p

(7)

If this integral is dominated by a sharp maximum, we can
use a saddle point approximation. This approximation is
good if f )) 1, i.e.,

f&X ' 1
or f) (8)

The saddle point approximation yields the well-known
result for the averaged deformation in direction of the
forces:

The Green's function of a free excluded volume chain
is isotropic. Thus, the function h is only a function of
the absolute value of the end-to-end vector. X is de6ned
as
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(9)

In the case of f ( 1/(N"t) the saddle point approxima-
tion is no longer valid. A better way is to expand here
the exp function of Eq. (1). The result is

(Rg) = —(R )f = N —"1 f (10)

Note that Eq. (7) is only correct in three dimensions,
but the scaling laws Eqs. (9) and (10) are also valid in
two dimensions.

An experimental verification of the results, especially
of Eq. (9), is, in contrast to the undeformed state, quite
difEcult. With some idealizations the deformation of
ideal chains, as they are represented in polymer melts,
can be observed in the deformation behavior of polymer
networks. But the network chains cannot be separated
from each other. Even totally swollen networks can only
be regarded as semidilute. Real polymer networks ex-
hibit additionally a large polydispersity of the network
chain lengths [12]. Another possibility to study the defor-
mation behavior are flow experiments of dilute polymer
solutions in extreme shear gradients as already proposed
by de Gennes [1]. But in that case hydrodynamic ef-
fects must be included. Therefore, the interpretation of
such results would be quite difFicult with regard to Pincus
scaling.

In this situation computer experiments are almost the
only reliable and simple possibility to check the theo-
retical results. Computer simulations have shown their
great possibilities, for example, in investigating the un-
stretched state of single random walks and self-avoiding
walks (Baumgartner, Binder, and co-workers [13]) or in
calculating some aspects on the deformation of short
chains, i.e., the transportation of force through the back-
bone, excluded volume contacts, etc. , and the force Buc-
tuations in time (Weiner and co-workers [14]). Also, the
mechanical properties of networks were studied exten-
sively under various viewpoints (Gao, Weiner, and Ter-
monia [15]). Polymer melts and glasses were simulated
mainly by molecular dynamics [16]. At T = 0 K the me-
chanical properties of polypropylene were computed by
energy minimizations (Suter and co-workers [17]). Molec-
ular dynamics simulations on the deformation of glasses
show similarities between these short time ( 1 ns) sim-
ulations and laboratory measurements obtained on time
scale orders of longer magnitude [18]. Dickman and
Hong [19] simulated the force between grafted polymeric
brushes.

Directly related to our topic is a work of Webman,
Lebowitz, and Kalos [5]. They have observed the Pincus
scaling in three dimensions. Also, the weak force regime
has been obtained. The crossover region between both
scaling regimes appears very narrow in contrast to the
first order renormalization group calculations given by
Oono et al. [4]. On the other hand, this first order calcu-
lation is not very convincing with respect to this topic, so
that a decision about these facts as well as a quantitative
analysis over the full force range are outstanding up to
now.

A problem, which arises in the comparison of the simu-
lated results and the theoretical results, is due to the fact
that the continuous chain model used so far is infinitely
stretchable. The scaling behavior obtained in Eq. (9) is
no longer valid if the Pincus blobs [7] are of the order of
the real statistical segments [11], i.e. , f t . In this
case the scaling law breaks down and the response of the
chain is governed by the orientation entropy of rigid, free
rotating, and independent statistical segments, which can
be described by means of a Langevin function.

In this strong force region the microscopic properties
begin to influence the behavior, therefore, it is interest-
ing to know the exact solution for the bond Buctuation
model. Generally for the case of a lattice model the poly-
mer segment cannot rotate &eely. Some corrections to
the Langevin function appear if the exact partition func-
tion for the lattice model is calculated regardless of the
monomer interactions.

Calculating the exact partition function in the bond
fluctuation model with the use of Eq. (2) leads to

(Ry) = N&HFM(f)

with

BFM ~& (g)
~ exp( fb&

where b is the projection of the bond vector in the forcef
direction. k runs &om 1 to M~, with M~ the number
of bond vectors (for example, M~ = 108 in three di-
mensions). The function ZHFM(f) is a generalization of
the classical Langevin function for the bond fluctuation
model and is easy to compute numerically. The function
ZHFM(f) is appropriate to test the strong force proper-
ties of a chain with excluded volume and the behavior of
random walks simulated by the bond fluctuation model.

II. SIMULATION
OF THE DEFORMATION BEHAVIOR

OF A SINGLE CHAIN

We used the bond fluctuation model in two and three
dimensions. On the lattice the monomers are represented
by plaquettes, respectively, cubes of 2" places connected
by a set of possible bond vectors (36 in two dimensions
and 108 in three dimensions). The difl'usion dynamics is
simulated by randomly chosen jumps (accepted by check-
ing certain conditions) of the monomers in the spatial
directions. By forcing self avoiding of the monomers ex-
cluded volume is fulfilled (this leads automatically to cut
avoiding for the used set of bonds). The simulation was
athermal since no interactions between the monomers
were taken into account. For more details of the bond
fluctuation model we refer to the original papers [20].

We have studied chains of (N + 1) = 20, 40, 60, 80,
and 100 monomers on lattices with periodic boundary
conditions. In two dimensions the lattice extensions were
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functions Eqs. (14) and (13) (solid line) and the simula-
tions (points). The only free parameter is D W. e have
Gtted it so that the theoretical values match the exper-
imental ones. D does not change the behavior of the
curves in the log-log plot in Figs. 2(a) and 2(b), but only
shifts the values. With D = 0.11 for d = 2 and D = 0.35
for d = 3 we got the best agreement. Note that lat-
tice artifacts are also included in D. Thus, the presented
values of D may differ kom values of off-lattice calcula-
tions. At low forces the statistical Buctuations become
larger. Nevertheless, it can be clearly seen that the shape
of the theoretical curve —for instance, in the cross over
regime —is in good agreement to the simulated values.
At strong forces the simulated values are below the theo-
retical curve and the scaling breaks down since the chains

are not infinitely stretchable. The Pincus-scaling Eq. (9)
should describe the deformation behavior in an interme-
diate force region N "l i ( f ( l i. In the bond Huc-

tuation model —where l is the mean bond vector length—l i is 0.34a i (d = 2) and 0.37a (d = 3). A lower
limit for Eq. (9) is given by the condition f ) I/(N"I)
In Figs. 3(a) (d = 2) and 3(b) (d = 3) (Rf) is plotted
versus f for various chain lengths.

In both figures the simulated (Rf) (points) can be fit-
ted by a single proportional factor k in the scaling law
Eq. (9) (solid lines). We used k = 0.635 (d = 2) and
k = 0.455 (d = 3). Due to the fact that the lower limit
of the range of validity is proportional to 1/N" the short
chains reach this scaling law at higher forces. In contrast
to that the upper limit f l i is independent of the
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FIG. 2. (a) and (b) (zf) = D& J versus f = D &Xf
both the theoretical function (solid line) and the simulations
(points) for various chain lengths in two (a) and three (b)
dimensioas. The parameters are tc = 0.625, b = 4.0, D = 0.11
for d = 2 and ~ = 0.249, b = 2.427, D = 0.35 for d = 3.

FIG. 3. (a) and (b) Comparison of the projected
end-to-end vector (Rr) of the simulated SAW's (points) with
the linear response (Rr) = ~(K )f (dashed lines) and the

1
Pincus-scaling law (Rr) = kNl (fl) ~ (solid lines) in two (a)
and three (b) dimensions. k = 0.635 for d = 2 and k = 0.455
ford =3.
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numbers of monomers.
Also, the linear force behavior Eq. (10) is drawn in

these figures (dashed lines). There is no fit parameter
((R ) of the difFerent chain lengths were computed in
a separate simulation). Although the statistical fiuctua-
tions are large for small forces there is agreement between
Eq. (10) and the simulated points.

The width of the crossover regime between the linear
and the Pincus behavior differs between two and three
dimensions (Figs. 2 and 3). In the case of two dimen-
sions it is rather broad, whereas in three dimensions it
becomes narrower. From the theoretical point of view the

use of the scaling function in connection with the more
exact critical exponents enforces a more abrupt crossover,
compared to the first-order calculation of Oono et aL [4]
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