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Random walk and directed movement: comparison between inert particles
and self-organized molecular machines
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The difFerences and similarities between the behavior of inert particles exposed to force fields
and of biological cells exposed to guiding fields are shown. Cell migration can be characterized by
two independent variables: the speed v which is controlled by a steering device and the migration
angle p which is controlled by an automatic pilot. Each variable is described by a stochastic
difFerential equation. The cellular behavior can be obtained by solving the corresponding Fokker-
Planck equations. The predicted dose-response curve (the dose is the guiding field as electric 6eld or
concentration gradient, the response is the polar order parameter) fits quite well the experimental
data obtained for difFerent cell types. The predicted field dependence of the first eigenvalue is in
accordance with the measured ones. The limitation of the model is discussed.

PACS number(s): 82.70.—y, 87.10.+e, 87.22.Nf

INTRODUCTION

Many natural scientists are fascinated by the ability of
single cells of the immune system to detect, respond to,
and destroy microorganisms. Embryogenesis and wound
healing are other examples, to name two, where directed
and nondirected cell movement is involved [1—3]. The
purpose of the present work is to study the basic dif-
ferences between directed cell movement induced by an
extracellular guiding field, and directed movement of an
inert particle induced by an external force.

Our investigations are basically performed with human
granulocytes which form the first defense line against
invading microorganisms. These cells migrate like an
amoeba by changing their shape. The basic biochemi-
cal reactions of the cellular signal transduction chain are
known [4]. But the physical events are less understood.

First we want to summarize what is known about the
cellular signal transduction chain of granulocytes. One
main function of the membrane is to separate the intra-
cellular space from the extracellular space. In addition
to this main function, the membrane also is the first el-

ement in the signal transduction chain. Step 1: Intra-
cellular calcium forces vesicles (loaded with fresh recep-
tors) to fuse with the plasma membrane. Step 2: Spe-
cific molecules stimulating chemokinesis and chemotaxis
bind to the new exposed receptors. Step 8: The acti-
vated receptors are the first elements in the biochemical
amplification chain. One loaded receptor activates many
membrane-attached G proteins. One G protein activates
many phospholipase-C molecules. One phospholipase-C
molecule hydrolyzes many ATP-activated phospholipid
(phosphatidylinositol) molecules at the inner side of the
membrane. Step g: The head group inositol triphosphate
opens calcium channels and internal calcium stores and
the remaining lipid diacylglycerol destabilizes the plasma
membrane locally. Step 5: The increased intracellular
calciuni c.oncentration triggers several cellular functions.
First., the amoeboid migration of the cell is induced by

the calcium triggered adhesion of the plasma membrane
to a substrate and by the calcium dependent activation
of micofilaments (muscles) [5,6]. Second, vesicles loaded
with &esh receptors are forced to fuse with the plasma
membrane. This fusion process is induced by the in-
creased local calcium concentration and by the locally
destabilized plasma membrane. With the vesicle fusion
a new cycle starts (self-ignition model [7]).

One would like to investigate the isolated motile ap-
paratus of a cell as a model of self-organized molecular
machines. Keller and Bessis [8] had come upon just such
a self-purification of the motile machinery some time ago
in granulocytes subjected to the carefully controlled and
timed application of heat. This treatment causes the
leading edge (motor) of the cell to move forward rapidly,
forming a long thin stalk of cytoplasm that often breaks
to form two separate units, the cytokineplast (fragments)
and the cell body. The machinery which creates the cell
locomotion contains only a few elements: a part of the
plasma membrane, unstructured cytoplasm as seen by
light microscopy, and the necessary biochemistry. Most
important, the newly formed &agments were capable of
membrane movement, including adherence, spreading,
random locomotion, directed movement, and phagocy-
tosis [9,10].

The directed movement like chemotaxis, galvanotaxis,
etc. , are functions of cells having a goal-seeking system.
Due to the noise in the system, these functions are de-
scribed by stochastic differential equations [11—13]. Thus
directed cell movement is described in the framework of
the Smoluchowski equation [14], which is known to de-
scribe the Brownian motion of a particle in a potential.

Macroscopic physical systems are subject to fIuctua-
tions or noise. To name a few examples:

(1) Irregular movement of small colloidal particles,
caused by the impacts of the molecules of the liquid, was
described by Brown [15], Pearson [16), Lord Rayleigh
[17], Einstein [18], v. Smoluchowski [19], Fiirth [20],
Langevin [21] and others [22].

(2) Schottky [23,24] described the fluctuations in
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emission-limited current flow in thermionic diodes carried
by single and independent exnitted electrons. Nyquist
[25] investigated the thermal equilibrium noise arising in
an electrical transxnission line terminated by a resistor.

(3) The effect of noise in nonlinear circuits was re-
viewed by Lax [26]. Many systems of engineering interest
are nonlinear.

(4) The development of the laser acted as a further spur
to the study of noise. There, fluctuations are considered
in systems which are not in thermal equilibriuxn. Haken
[27] reviewed stochastic phenomena in systems far &om
equilibrium.

(5) The effect of noise in self-organized entities which
are far &om thermal equilibrium is discussed in the
present paper. Only the phenomenon of the directed cell
movement will be discussed here. The physical aspects
of the molecular events will be discussed somewhere else.

The modern analysis of noise was introduced by
Kramers [28]. The population dynamics of a locally sta-
ble state is determined by the transition kinetics between
competing states. For example, he treated the escape
&om a potential well as a problem of Brownian motion
in a nonuniform force field (see [29]).

An important concept in understanding biological phe-
nomena is the theory of automatic control [30]. It is
shown [11—13] that chemotaxis, galvanotaxis, etc. are
functions of cells having a goal-seeking system. Even
when the involved physicochemical signals are unknown,
the cellular system can be considered phenomenologically
as an automatic controller having a closed-loop feedback
system.

The cellular signal transduction-response system can
be approximated by two types of signals [11,12,14], a de-
terxninistic and a stochastic one. If the automatic con-
troller acted deterministically then in galvanotaxis, for
example, the cells would exactly follow the (straight)
electric-field lines. However, the observed trajectories are
snakelike curves toward the desired direction. Next, the
cell migration is compared with the motion of an inert
particle.

the fast motion of the inert particle. The Langevin equa-
tion for Brownian motion is then [31]

where v denotes the velocity of the particle. For the fluc-
tuating part, F(t), the following principal assumptions
are made.

(i) F(t) is independent of v.
(ii) F(t) varies extremely rapid compared to the vari-

ations of v.
In the presence of an external field or force, the Langevin
equation (Eq. 1) is enlarged by F,„t(r,t), the external
force divided by the mass m.

In contrast to inert particles, living cells are self-
organized molecular entities which have the ability to
migrate actively. Cells like granulocytes (Fig. 1), fibro-
blasts, neural crest cells, etc. , migrate in an amoeboid
way on a substrate and have the ability to respond to
extracellular chemical and physical signals resulting in
directed and nondirected movement. In chemokineai8,
the chemical environment of the cells stimulates the mi-
gration, which is quantified by the mean speed. If the
chexnical environment of the cell is spatially dependent,
then the cellular migration is guided in such a way that
the cells drift on average parallel to the concentration
gradient. This type of movement is quantified by the
xnean drift velocity and referred to as chemotaxis. If an
electric field is used as guiding field, the cellular migra-
tion is referred to as gatvanotaxi8. Typical trajectories
of a migrating granulocyte exposed to an electric field
are shown in Fig. 2. A detailed description of the self-
organized molecular machine will be given somewhere
else [7]. Here we will concentrate our attention on the
phenomenological properties of the cellular automatic pi-
lot.

The translational movement in a polar guiding field

BROWNIAN MOTION) RANDOM WALK, AND
LANGEVIN EQUATION

In the studies on Brownian xnotion of inert particles,
one is principally concerned with the perpetual irregular
motion exhibited by small grains or particles of colloidal
size immersed in a fluid. The perpetual motion of the
Brownian particles is maintained by the collisions with
the molecules of the surrounding fluid. Under normal
conditions, in a liquid, a Brownian particle will suer
about 10 collisions per second apd this is so frequent
that one cannot speak of separate collisions. The result is
a time-dependent force F(t), which describes the inter-
action of the inert particle with the surrounding liquid
molecules. It is obvious that the average of F(t) is zero.
This time-dependent force per mass, F(t) = —pv+ F(&),
can be separated into two parts. (i) —pv describes the
damping of the slow motion by friction (p is the friction
coeKcient) and (ii) the stochastic term, F(t) describes

FIG. 1. Micrograph (phase contrast) of difFerent blood cells
in a sandwich cell [glass slide, aqueous solution (blood plasma,
d = 20 pm) coverslip]. (i) Human granulocyte (A) [leading
front (m) and direction of migration (arrow)], (ii) platelet
(a), and (iii) erythrocyte (b).
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FIG. 2. Typical trajectories of granulocytes exposed to an
electric field (E = 0.8 V/mm, time increment At = 10 s).

is nonzero. Then the remaining deterministic diKeren-
tial equation describes an exponential decay of the speed
as a function of time. The characteristic time of the
exponential decay function is given by p„.Now, let,
us assume the first and the second terms on the right
side are nonzero. Then the exponential decay of the
velocity approaches a finite speed v, . The cellular sig-
nal transduction-response system has a constant chemi-
cal amplification since the mean speed is proportional to
the total number of membrane-bound receptors loaded
with chemokinesis stimulating molecules [11,13,38—40].
The third terin I'„(t)on the right side of the equation
characterizes the stochastic process involved in the signal
transduction-response system of the cell. The stochastic
nature of I'(t)„is not caused by the collisions with the
molecules of the surrounding fluid but is a property of the
physicochemical processes involved in the cellular signal
transduction-response system.

I angevin equation for the speed

A single cell alters its speed in a nonpredictable fash-
ion. Thus, stochastic processes are involved in the cel-
lular signal transduction-response system. The simplest
nontrivial stochastic difkrential equation is assumed for
the speed [12,14],

8v—= —p„v+ p„v,+ I'„(t). (2)

Let us assume that only the first term on the right side

like an electric 6eld requires two components of the cel-
lular response (movement in two dimensional space), the
speed v and the migration direction p. One might well
expect that these two parameters depend on each other,
but actually they are independent. Experimental facts
are that (i) the temporal fluctuations of v(t) and p(t)
are independent of each other, (ii) the mean speed is
independent of the migration angle, and (iii) in galvano-
taxis, for example, the mean speed is independent of the
electric guiding 6eld strength. This holds true at least
for human granulocytes and monocytes [32—34], somitic
flbroblasts [35,36], and neural crest cells [37]. Thus, the
speed and the migration angle can be regarded as two
independent variables. Each variable can be described
by a stochastic differential equation, a Langevin equa-
tion [12,14]. In fact, the migrating cells can be compared
with a driven car where the amount of speed, adjusted
by the gas pedal, and the direction of motion, adjusted
by the steering wheel, can be independently altered.

Thus, the basic difference between the motion of an in-
ert particle and that of a migrating cell is as follows. The
speed of an inert particle is given by the thermal energy.
The velocity component in the direction of an applied
force increases if an external force acts on the inert par-
ticle. The mean speed of a migrating cell is simply given
by the cellular motor which is activated by molecules
(chemokinetic stimuli) of the extracellular space. The
mean cellular speed is proportional to the number of re-
ceptors loaded with chemokinesis stimulating molecules.

Langevin equation for the migration angle

One important biological function of cells is their ca-
pacity for directed movement. The simplest nontrivial
stochastic difFerential equation for the migration angle is

(3)

The first term on the right side of this equation describes
the deterministic torque where sin p is the first nontrival
term of a Fourier series which is in accordance with the
symmetry of the system. The physical state is unchanged
if the coordinate system is rotated by 2' and in the ab-
sence of chirality the torque changes sign if the coordinate
system is inverted at the line de6ned by the polar guiding
field. In the small angle approximation (sing p) this
term can be interpreted as the torque induced by a pro-
portional controller (dp/dt = —ci p). The basic elements
of an automatic controller are 6rst, an element which
measures the output of the system; second, a means for
comparing that output with the desired one; and third,
a means for feeding back this information into the input
in such a way as to minimize the deviation of the out-
put from the desired level. This means, in the case of
directed movement, that the cell must have the ability to
measure its orientation with respect to the applied polar
guiding field. The created intracellular signal is such that
the cell rotates to approach the desired orientation. The
action of the automatic controller involved in directed
movement can be investigated by changing the guiding
field. The mean migration direction approaches the new
direction by a single exponential function [34,41,42]. The
characteristic time of this relaxation process is ci (in the
absence of noise).

The second term I'~(t) on the right side of Eq. (3)
characterizes stochastic processes in the cellular signal
transduction-response system. The existence of these
stochastic processes is evident if the migration behavior
is regarded in the absence of a guiding field: a random
walk is observed. The limitations of this crude approxi-



49 RANDOM WALK AND DIRECTED MOVEMENT: COMPARISON. . . 5465

mation of the cellular machinery are discussed at the end
of this article.

FOKKER-PLANCK EQUATION

was actually found for migrating granulocytes [14,33].
The stationary velocity distribution function for the
Brownian motion process of inert particles described by
the Langevin equation [Eq. (1)] leads immediately to the
Maxwell distribution

In the case of deterministic differential equations
[I'(t) = 0], the behavior of a single cell or of an inert
particle can be predicted. But in. the case of a stochastic
differential equation, only the probability for the behav-
ior of a cell or of an inert particle can be given.

Our problem is to solve a stochastic differential equa-
tion like Eq. (1), (2), or (3). But solving a stochas-
tic differential equation is not the same thing as solving
any ordinary differential equation since the function I'(t)
has only statistically defined properties. Consequently,
solving a Langevin equation has rather to be under-
stood in the sense of specifying a probability density e.g. ,
W(v, t; vo) or W(y, t; &po), which governs the probability
of occurrence of the speed v or of the angle y at time t.

To proceed further, one has to know some properties
of the stochastic term, I'(t). First, one assumes that its
average should be zero,

fbi V

W(v) = Woe»&.

In Brownian motion the noise strength q is adjusted so
that the average energy is given by the equipartition law
of classical statistical mechanics (movement in two di-
mensions) [31],

2pkT9=

where kT is the thermal energy and m the mass of the
inert particle.

The Fokker-Planck equation for the angle distribution
function can be obtained from Eq. (3) as

BW 8 . q8 W(p, t)= ci [W((p, t) siii p] +-
Bt Oy 2 8(p

The stationary solution then reads

because the average speed, for example, should be given
by the Langevin equation without the stochastic term.
If the stochastic processes are approximated by a white
noise source, the autocorrelation function of I'(t) is then

(5)

BW ( 8, 82=
i

——D~ l(v) + D~ l(v)
~

W(v, t)
Bt g Bv Bv2 (6)

The drift coefficient D~il(v) is obtained from the deter-
ministic part of the Langevin equation, e.g. , from Eq. (2)
one obtains D~ l(v) = p„(v,—v). The coefficient D~ l (v)
is obtained from the stochastic part of a Langevin equa-
tion. In the case of white noise one obtains D~ l = q/2.

where q describes the strength of the white noise source.
The white noise assumption in the case of directed move-
ment will be discussed at the end of this article.

The equation of motion for the distribution function
W(v, t) is the Fokker-Planck equation which can be de-
rived from a Langevin equation [like Eq. (1), (2), or (3)].
The general Fokker-Planck equation for one variable, e.g. ,
v, has the form [31]

W((p) = Woe ~

where Wo is determined by normalization. This polar dis-
tribution induced by an electric guiding field was verified
for migrating granulocytes [43,44], for migrating fibro-
blasts [35], for migrating neural crest cells [37], and for
growing hyphae [45].

The polar order parameter as the average of cos y can
be used to quantify the directed movement. One ob-
tains an analytic expression for the dose-response curve
((cos rp) as a function of the guiding field ci) (two dimen-
sions

(12)

where I1 and Io are hyperbolic Bessel functions. This
theoretical expression for the dose-response curve is very
general since the polar guiding field is written in dimen-
sionless units, 2ei/q. It is the ratio of the deterministic
and the stochastic torque. Data are shown in Fig. 3
for migrating granulocytes [32,34], migrating somitic fi-

broblasts [36], and migrating spermatozoids [44]. In case
of galvanotaxis the coeKcient c1 is proportional to the
electric-field strength E [32,34],

(13)

Stationary solution

For stationary solutions, the probability current
(= 0) in Eq. (6) must be constant. Thus one ob-

tains a Gaussian distribution for the velocity

Wp is determined by normalization. Such a distribution

The coeKcient k~ quantifies the automatic controller
with respect to electric guiding fields. The actual fit-
ting parameter is the galvanotactic coeKcient, KG. , with
2ci/q = K~E. The coefficient K~ can be determined
either by the angle distribution function at different Geld
strengths or by the galvanotactic dose-response curve.

The chemotaxis can be treated in the same way as
galvanotaxis. The electric guiding field has to be re-
placed by the concentration gradient of the stimulating
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K~[c] 1 d[c]

(c+ Kit)2 [c] dz
(14)

p 2kThe experimentally determined value for KCT(= cT)
is 9 mm [43] in the case of granulocytes. The theoretical
predictions demonstrated for galvanotaxis hold true also
for chemotaxis.

The dose-response curve thus holds true for difFerent
types of directed movement such as chemotaxis, galvan-
otaxis, etc. , for difFerent types of directed growth like
chemotropism, galvanotropism, etc. , as well as for difI'er-

ent cell types (see Fig. 3). It holds true for granulocytes
exposed to two different types of guiding fields (concen-
tration gradient and electric field), but also for cells which
have completely difI'erent migration mechanisms. Granu-
locytes, fibroblasts, and neural crest cells have an amoe-
boid movement where the cell shape is continously chang-
ing in time. These cells continously change their adher-

molecules [c]. The torque should be proportional to grad
In [c], as actually found [43]. There is a problem, how-
ever, since the constant of proportionality is a function of
the mean concentration [c], of the chemotactic molecule.
The chemotactic sensitivity is maximal if the mean con-
centration of the chemotactic molecules is equal to the
equilibrium binding constant E~ of the corresponding
cellular membrane-bound receptor [38]. In the case of
chemotaxis, the coefficient ci in Eq. (3) has to be ex-
changed by [34,43,47]

ence to the substrate. Bracken spermatozoids of fern
have a fixed shape and can swim in water. These cells
are pushed by a moving fIagellum. The dose-response
curve holds true for this cell if it is forced to swim in a
narrow gap and guided by an electric field or concentra-
tion gradient. The galvanotaxis coefFicient KG quanti-
fying the cellular sensitivity to the electric guiding field
is considerably difFerent for the investigated cells: —4.5
mm/V for granulocytes, +3.3 mm/V for somitic fibrob-
lasts, +6.7 mm/V for neural crest cells, and 42 mm/V
for bracken spermatozoids. (The sign indicates in which
direction the cell moves, —to the anode and + to the
cathode. ) Besides the directed movement a few experi-
mental data points are shown for directed growth: Fueus
eggs in a pH gradient and an electric field and the hyphae
(roots) of ¹urospora crassa in an electric field.

Nonstationary solution

The machine coefIicient q responsible for the random
movement can be determined in difFerent ways [14]. (1)
The analysis of the time-dependent angle distribution as
obtained from guiding-field jump experiments, or (2) the
analysis of the angle autocorrelation function, or (3) the
analysis of the mean-squared displacement.

Let us discuss the situation where the applied guid-
ing field is constant in given time intervals and thus the
coefficients of the Fokker-Planck equation [Eq. (10)] are
constant. One can then make the separation ansatz

W(p, t) = O((p)e (15)
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FIG. 3. Dose-response curve. The directed movement char-
acterized by the polar order parameter is the cellular response
induced by a polar guiding field which can be an electric
field or a concentration gradient of chemotactically active
molecules. The polar fields are given in dimensionless units,
gslvsnotsxis KoE snd chemotsxis KoT "d' [see Eq. (15)].
Chemotaxis of granulocytes KzT ——S mm and K~ ——6.6pM
f-Met-Met-Met (dsts from Ref. [38]). Gslvsnotsxis of grsnu-
locytes Ko = —4.5 mm/V (dsts from Ref. [34]) snd K& = —5

mm/V (dsts from Ref. [32]). Gslvsnotsxis of somitic fibro-
blasts Ko = 3.3 mm/V (dsts from Ref. [36]). Gslvsnotsxis of
bracken spermstszoids Ko = 42 mm/V (dsts from Ref. [46]).
Chemotropism of Fucus eggs KoT = 3.2 mm (dsts from Ref.
[49]). Gslvsnotropism of Pelvetia eggs Ko = —3.8 mm/V
(dsts from Ref. [50]). Gslvsnotropism of Neurospora crussa
Ko = 0.5 mm/V (dsts from Ref. [51]).

Inserting Eq. (15) into the Fokker-Planck equation leads
to the following eigenvalue equation:

IFpO(ip) = —AO(ip), (16)

where LFp is the Fokker-Planck operator

0 ( . qadi
Lpp =

]
cislnp+-

i9p ( 2 clip)
(17)

For nonvanishing guiding field (ci g 0) the operator Lpp
is a non-Hermitian operator and therefore calculations
become difficult [14]. The unknown function e(tp) in the
separation ansatz Eq. (15) can be expressed by a Fourier
series as the problem is periodic with 2m.

O(y) = ) c„e*"~ (18)

with e = e* and e„=a —ib„.
The following equations (n between +oo and —oo) are

obtained by inserting Eq. (18) in Eq. (16):

2q A—Ekpc i + A —n — c„—kpEc +i ——Q. (1—9)
2 2

"
2

From this equation, the eigenvalues A and the Fourier co-
efficients e are calculated. It is worth mentioning that
the coefIicients can be chosen purely imaginary or purely
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real. In the first case, one obtains an antisymmetric so-
lution, in the last case a symmetric solution of Eq. (19).

For vanishing guiding field E, the system reduces to

A —n — c„=0. (20)

The eigenvalues A„are

2g
Ap = p 2

The pth eigenfunction reads

(21)

O„(y)= 2a"„cosyp+ 2b"„sinpp. (22)

A„(E)= nci ——nkJ E. (23)

The stochastic differential equation [Eq. (10)] can be
solved analytically [48] if the stochastic term is regarded
as a perturbation,

A„(E)= nci — n= n kp E—— n. —Q

4 4
(24)

For nonvanishing guiding field (ci g 0), the eigenval-
ues A(ci) were obtained from the tridiagonal system [Eq.
(19)] by using the method of continued fractions as de-
scribed by Risken [31]. The calculations of the continued
&actions and the determination of the roots were made
numerically. The first four nonvanishing eigenvalues A

as a function of the normalized guiding-field strength
(~2' = 2s = K~E) are shown in Fig. 4. For low

normalized guiding-field strength (K~E && 1), the eigen-
values are approximately constant, as expected. At large
guiding-field strengths, the eigenvalues increase with in-
creasing field strength. The latter result is expected if
the stochastic term in Eq. (10) is neglected,

a perturbation,

A„(E) 2 1 n2 (2c, )
Ai(0) 24n2 —1 ( q )

1 n 2
2= n + — (KgE) +

2 4n2 —1

+4L=e+2 LFPe (26)

with 4 = ~ cos p = KG E cos y. L is a Hermitian op-
erator which has the same eigenvalues A as the operator
Lpp. The eigenfunctions of L are given by

~*„(v)= ' 8;(v).

The parabola near the origin holds true for small polar
guiding fields. The exact solution is approximated quite
well by the straight line and the parabola as shown in
Fig. 4.

The normalized eigenvalues &"Io)) with Ai(0) = z2 and

the normalized guiding field strength ~ = K~ E are
dimensionless quantities. A plot of the normalized eigen-
values versus normalized field strength gives a universal
curve which should hold true for different cell types (Fig.
5) if the cellular machinery is a proportional controller.

Knowing the eigenvalues, it is possible to calculate the
corresponding eigenfunctions O(y) from Eq. (16), which
are degenerate: for each eigenvalue we find two eigen-
functions. The symmetric one is obtained if c„is real and
the antisymmetric if c„is imaginary. Because the eigen-
functions are not orthonormalized, one has to transform
the operator LFp into a Hermitian one. One proceeds as
shown in Ref. [31]. A new operator I is introduced

The straight line is shifted out of the origin and holds
true for large polar guiding-field strengths. The stochas-
tic difFerential equation [Eq. (10)] can also be solved
analytically [48] if the deterministic term is regarded as
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FIG. 4. The calculated first four eigenvalues A as a func-
tion of normalized polar guiding field K~E are shown for
human granulocytes [Ko = 4.5 mm/V and Ai(0) = 58 s].
The dashed straight line is the high field approximation. The
dash-dotted parabolic line is the small field approximation.

FIG. 5. The normalized first eigenvalue as a function of
normalized guiding-field strength K~E. The values K~ ——4.5
mm/V and Ai(0) = vo = 58 s for migrating granulo-
cytes were taken from the data froxn Refs. [34,41]. The
angle autocorrelation function (data from Ref. [34]) and
the mean-squared displacement (original trajectory data of
Ref. [34]) were used to determine the first eigenvalue Ai(E).
E-jump experiments (data from Ref. [42]) were used to de-
termine the first eigenvalues of neural crest cells [Ko = 6.7
mm/V and Ai(0) = rs ——62 min].
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Now Eq. (10) can be solved, resulting in time-
dependent distribution functions. The distribution func-
tion is then given by the expression

g = (sin y(t) sin y(t'))
27r 27r

dy sin y dy' sin y' P(y, tarp', t') W,t(y')
0 0

P (2~iV)2 —A„~t—t
~

W(y t) = Wt(y)+ ).e ""'[d:O:(y)+d.o-.(y)]
p=1

(28)

P (2irc", )' (31)

The constants d„follow from the initial distribution.
W,t(y) is the stationary angle distribution function.

Eigenvalues

One way to determine the eigenvalues is to perform
guiding-Geld jump studies. For example, the electric field
is switched on at t = 0. Thus for t ( 0, no directed
movement is expected and the angular distribution func-
tion is a horizontal line as expected for isotropic random
movement. For t & 0, the applied electric field induces a
directed movement. Instead of investigating the entiere
distribution function, only the polar order parameter is
taken into consideration,

Note that (sin y), t ——2irbi ——0. The calculated station-
ary angle autocorrelation functions (cosy(t) cosy(t'))
and (sin y(t) sin y(t') ) are shown in Fig. 6. The
measured stationary angle auto correlation function
(cos y(t) cos y(t')) is a single exponential decay function
for migrating granulocytes as predicted [34]. The nor-

malized first eigenvalues &'~~0& as a function of the nor-
Ag (0)

malized electric field Kt E are shown in Fig. 5. (The
eigenvalues for large fields are not very accurate due to
experimental lixnitations. )

The eigenvalues can also be determined &om the mean-
squared displacement as a function. of time. Here one
is interested in the mean-squared displacement (y(t)2)
perpendicular to the electric field. The mean-squared
displacement is directly related to the stationary angle
autocorrelation function [Eq. (31)].

The displacement is given by

(cos y(t)) = (cos y), t + 2ir ) e ""'d'„ci.
@=0

(29)

Electric-field jump experiments were performed for mi-

grating granulocytes and migrating neural crest cells.
The polar order parameter as a function of time can be
approximated by a single exponential function [34]. Thus
the first eigenvalue is obtained as a function of the applied
field strength. Unfortunately, only experiments using two
different Geld strengths were performed for granulocytes.
More experiments were performed for neural crest cells
[42]. The results are shown in Fig. 5.

The eigenvalues can also be determined from the an-
gle autocorrelation function. One has to calculate the
expression
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p, =1
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where N is a calibration coefEcient obtained from the
stationary angle distribution function [f W(y)dy = 1]
and P(y, t]y', t') is the transition probability. The satu-
ration value of the angle autocorrelation function is given
by the steady state polar order parameter (cos y), since

(cosy), t = 2ircoi. A similar angle autocorrelation func-
tion can be calculated with respect to sin p,

'0 100
time t tsl

FIG. 6. Angle autocorrelation functions as a function of
the guiding field are shown. (a) (cosy(t) cosy(0)), calculated
from the symmetric function and (b) (sin y(t) sin y(0)), cal-

culated from the antisymmetric function.
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t

y = v(t') sing(t')dt'.
0

(32)

The mean-squared displacement (y(t) ) then reads

t - 2

(y(t) ) = v(t') sin(p(t')dt'
0

Taking advantage of the fact that v(t) and p(t) are sta-
tistically independent &om each other one derives [14]

80

I

0
' 60,

4P

—40E

e 20'
C
cj
O

80

60

40

20

t tg

(y(t) ) = 2 (v(tq)v(t2))(sing(tq) sing(t2))dt2dtq
0 0

= 2(v ) (sin &p(tz) sin p(t2))dtzdtz.
0 0

(34)

After performing the integration, one obtains

(y(t)') = 8~'N(v')) —
i

t- —(1-e ""')
~
(C)'.

(35)

For large times, one obtains the difFusion coefFicient D„
as

0
0.2

I I

0.4 0.6
electric Aeld E (V/mm)

0.8
0

FIG. 7. Diffusion coefficient D~ divided by the
mean-squared speed (v ) and the characteristic time r as a
function of guiding-field strength E are shown for migrating
granulocytes. The characteristic time r(E) and the difFusion
coefficient D„(E)as a function of the applied polar guiding
field E are calculated [Ko = —4.5 mm/V and Aq(0)

' = 58
s] and shown as solid lines. The dots originate from trajecto-
ries of migrating cells [original data of Ref. [34]]. The random
walk perpendicular to the applied guiding field was evaluated.
The characteristic time v and the diffusion coefficient D„were
obtained by fitting Eq. (35) to the data.

(b~) 2

D„=47r N(v ) ) (36)

1 (vo)
2 q~

(37)

In the case of no guiding field, one obtains a random
walk with b~z P 0 for y, & 1. In the case of a po-
lar guiding field, only the 6rst eigenvalue was used to
fit the experimental data ((y~) vs time). Equation (35)
is fitted to the previously published experimental data
[34] where the first eigenvalue Aq and the difFusion coefB-
cient D~ are the fitting parameters. The eigenvalues are
shown in Fig. 5. The characteristic time r (= 1/Aq) and
the ratio of the difFusion coefficient Ds and the mean-
squared speed (vz) are shown in Fig. 7. The experimen-
tally determined values are in accordance with the pre-
dicted normalized curve which is based on the galvano-
taxis coefficient K~ = ~ obtained from the measured

q
dose-response curve, and on the measured first eigenvalue
Aq(0) = &z, when no field was applied.

The normalized dose-dependent eigenvalue curve
should hold true for different types of directed movement
such as chemotaxis and galvanotaxis, etc. The predicted
curve is coxnpared with experimental data obtained from
granulocytes and neural crest cells exposed to electric
guiding fields. The characteristic time r(0) characteriz-
ing the random walk is considerably different for these
two cell types: 58 s for granulocytes and 60 min for neu-
ral crest cells.

Finally we will ask which texnperature corresponds to
the random xnovement of cells. This comparison can be
made by means of the diffusion coefBcient. The diffu-
sion coe%cient D is the ratio of the xnean-squared speed
(vo2) and the coefficient q~ which quantifies the stochastic
processes in the automatic controller,

The Einstein relation applied to an inert particle connects
the diffusion coefficient D the xnobility R and the thermal
energy kT,

DR = kT. (38)

The mobility of a spherical particle with radius r in a
viscous xnedium with a viscosity g is given by Stokes,

R = 6mgr. (39)

Thus the random movement of a migrating cell (D =
200 ym2/min) corresponds to a very high temperature,
4.5 x 104 K (r = 10 pm, rl = 0.01 P).

LIMITATIONS OF THE MODEL

The migration or growth of cells is quite well approxi-
mated by the simple stochastic differential equation [Eq.
(3)] which is derived for an automatic proportional con-
troller (with noise). The sing dependence of the deter-
ministic terxn is verified by the steady state angle distri-
bution function [44]. The linear response of the cell with
respect to a polar guiding 6eld is veri6ed by the dose-
response curve (Fig. 3). The white noise assumption is
in accordance with random walk behavior and with the
field-dependent first eigenvalue (Fig. 5). The machine
coefficients kI and q for the galvanotactic response can
be deterxnined, e.g. , &om the dose-response curve and
the mean-squared displacement in the absence of a guid-
ing 6eld. Thus the cellular behavior can be predicted in
different situation.

First a guiding-6eld jump experiment is performed as
described above. The polar order parameter is measured
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and compared with the prediction. The following ab-
solute values of the characteristic times were obtained.
T, ~t ——32 s and vth, ——15 s for granulocytes exposed
to +1 V/mm and —1 V/mm [34]; r,„~,= 42 s and

20 s for granulocytes exposed to +0.8 V/mm
and —0.8 V/mm [41]; T,„~t——200 s and rthe~z = 90 s
for granulocytes exposed to no guiding Geld and then to
pulsed electric field (Ei ——0.8 V/mm, ti ——1 s, E2 ——0
Vjmm, t2 ——7 s) [41]. These systematic deviations show
us that the model of the automatic controller has to be
improved.

These systematic deviations are very likely pro-
duced by the crude approximation of the cellular signal
transduction-response system by the Langevin equation
with a white noise source. The transfer function of the
cellular signal transduction-response system is certainly
not frequency independent as assumed in the case of the
white noise source. The self-ignition model as described
in the Introduction is a possible mechanism involved in
directed and nondirected movement. Thus one expects
correlations in the stochastic term I'(t), since the molec-
ular events of the cellular signal chain are expected to
be correlated. The &equency-dependent cellular signal
transfer function is determined in part by using pulsed
Gelds. From preliminary experiments we know that a
characteristic time of 8 s plays an important role in the
cellular signal chain of granulocytes. (i) The cellular re-
sponse is enhanced by pulsed electric Gelds having a char-
acteristic time of 8 and 16 s [41]. (ii) There exists a delay
time of 8 s between the time of application of the guid-
ing field and the time of the first cellular response [34,41].
These two experimental facts are demonstrated in Fig. 8.
For t ~ 0 no guiding Geld was applied, the cell showed
a random walk, and the polar order parameter was zero.
At t=0 a pulsed guiding field is switched on (Ei ——+0.8
Vjmm, ti ——16 s, E2 ———0.8 V/mm, t2 ——16 s). The
delay time as well as the enhanced cellular response ex-
pected from the self-ignition model are demonstrated.

There is a further remarkable deviation between the
simple I.angevin equation and the cellular response which
can be seen by averaging over one period. The results
are shown in Fig. 8. The predicted, like the actual mea-
sured averaged response, showed a peak after switching
on the guiding Geld. For larger times the averaged re-
sponse should approach zero. But actually one found a
broad peak opposite to the Grst one.

The cellular signal transduction-response system of a
migrating cell was approximated in part by a white noise.
This assumption was introduced due to its simple math-

0.6
theory (automatic controlle )
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FIG. 8. Polar order parameter as a function of pulsed elec-
tric guiding field (Ei ——+0.8 V/mm, ti ——16 s, E2 ———0.8
V/mm, t2 ——16 s). For t ( 0 no guiding field wss applied.
At t = 0 the pulsed guiding field was switched on. The dots
with the error bars (standard deviation of the mean) are the
experimental results. The zigzag line is a theoretical predic-
tion [

—Ko = —4.5 mm/V, 2/q = 58 s white noise assump-
tion]. The predicted curve is altered in the following ways: (i)
The calculated polar order parameter is multiplied by 1.6 (en-
hanced cellular sensitivity) snd (ii) the tixne axis is shifted by
8 s (cellular lsg time). The xnodified predicted curve fits the
experimental dots quite well. The dotted line is obtained by
averaging over 32 s of the experimental results. The dashed
line is the corresponding modified theoretical prediction.
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ematical treatment but we were aware that a white noise
is not a good description for a machine having typical
rhythms. Thus we were surprised that this crude as-
sumption yields such good results, like the prediction of
the steady state behavior. The white noise assumption
failed as soon as we tried to predict the temporal behav-
ior. To proceed further, simpliGed rate equations which
are closely related to the cellular biochemical events will
be discussed.
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