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Scaling structure of tracer dispersion fronts in porous media
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Experiments on the miscible displacement of a clear Quid by a dyed Quid of the same viscosity
and density in a rectangular quasi-two-dimensional porous medium are presented. Equiconcentration
dispersion fronts were identi6ed using computer image processing. The fronts taken at three different
concentrations are fractal curves with approximately the same box fractal dimension D 1.45. In
an alternative analysis the fronts were reduced to single valued functions and the dynamic scaling
behavior investigated using a self-affine scaling formalism. The Hurst exponent H = 0.55 and
the dynamic exponent P = 0.5, found by collapsing height difFerence correlation function data,
are consistent with the results obtained through other analysis methods. The average concentration
pro6le across the dispersion front was found to follow the classical solution of the diffusion-convection
equation. The dependence of the width of the equiconcentration dispersion front o on time yields
dispersion coefficients D over one order of magnitude less than the longitudinal dispersion coefficient

Dii ~

PACS number(s): 47.55.Mh, 47.55.Kf, 05.40.+j

I. INTRODUCTION

The process of tracer dispersion in porous media is a
complex interplay between molecular diffusion and con-
vective mixing. Applications range ft..om petroleum and
chemical engineering to hydrology and chemical or nu-
clear waste storage.

The classical description of Gaussian (normal) disper-
sion in a disordered, multiply-connected and homoge-
neous medium is by the macroscopic convection-diffusion
equation [1—4]:

OC BC 02C
+U = D~~, +D&V'&'C.

Here C(x, t) is the tracer concentration as a function of
position x and time t. The longitudinal D~~ and transver-
sal dispersion coefficient D~, as discussed extensively by
Bear [4], depend in general on the imposed hydrodynamic
(average) How velocity U. These two coefBcients are of
major interest in most dispersion studies and in particu-
lar their dependence on the velocity U. The dimensionless
Peclet number Pe = Ua/D measures the ratio between
typical diffusion time and convection time over a length
scale a. Here a is the typical pore size and D is the
diffusion constant of tracers in the Quid.

At the microscopic level the How through a porous
medium depends on the detailed structure and geometry
of the pore space. The presence of the solid part of the
medium forces the streamlines to meander through the
pore volume giving rise to a distribution of path lengths.
The strearnlines through one pore may separate into dif-
ferent pores and also meet again in a later pore. The
velocity along a single streamline also Huctuates being
slow through narrow pores and in stagnant regions, and
faster than the average How in wide pores oriented par-
allel to the average How. The tracer particles that are

carried by the streamlines from one pore to another ap-
pear to be effectively performing random walks through
the medium.

In the limit of very low Pe the molecular diffusion is
the dominant mechanism of tracer transport and D~~

——

D~ = D /ot where a (n ) 1) is the tortuosity constant
that accounts for geometrical restrictions of the porous
medhum.

For large Peclet numbers mechanical mixing dominates
and dispersion in this regime is often called geometri-
cal or mechanical dispersion. Taking mean position of
the dispersion front to be the reference point (origin)
moving with constant, average velocity of the How, the
movement of the tracer particles may be understood as a
one-dimensional random walk process. The effective dif-
fusion constant is calculated &om the Einstein relation:
D~~

——2a2/7', where the average time between "steps" of
length a is r a/U. Therefore [1] D~~ Ua, i.e., the
longitudinal dispersion is proportional to the Bow veloc-
ity U for Pe && 1. For media with significant presence
of stagnation zones (regions of very low Bow velocity)
the expression for the dispersion coefficient is modified
by logarithmic terms D~~ Ualn(UE/D ), where E is
a length scale related to the transport out of stagnant
regions [1,3,5].

In the regime of intermediate Peclet numbers, the
interplay between the transverse diffusive mixing and
convection leads to Taylor dispersion [6] with the lon-
gitudinal dispersion coefficient given by D~~ ——D +
a2U2/48D . Taylor derived and measured this depen-
dence for the capillaries of radius a. Taylor dispersion
dominates if the transverse mixing is large enough, i.e., if
the time needed for diffusion across the capillary a2/D
is short enough compared with the convective time a/U.

The pioneering works by Taylor [6] and Saffman [1]
do not treat the inHuence of the disorder of the porous
medium, such as the pore size distribution, on the dis-
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persion. It is not until recently that the new simulations
and theoretical methods [5,7) have been used to investi-
gate how randomness affects the hydrodynamic disper-
sion. The inHuence of the disorder effects has been ex-
plored experimentally by Bacri et al. [8) by performing in
situ measurements using an acoustic technique. For How

rates in the intermediate regime between the pure diffu-
sion regime and the geometrical dispersion regime they
found a dispersion coeKcient that was strongly depen-
dent on the randomness of the porous medium consistent
with the results of Arcangelis et al. [7].

Few experiments on dispersion focused on the micro-
scopic structure of the dispersion fronts [5,9]. Recent
work by Malgy et al. [9] at high Peclet numbers shows
that the concentration contours at a single concentration
level C/Co = 0.5 are fractal with a fractal dimension
D 1.42. These experiments were done in a radial ge-
ometry where the mean velocity of the flow decreases
with time. So far there is no theoretical explanation of
the fractal nature of these dispersion fronts.

In this paper we visualize and analyze dispersion front
in a quasi-two-dimensional porous strip, different from
the radial geometry used earlier in that the mean veloc-
ity of the How is constant at every cross section of the
strip. We find that the dispersion front on the average is
accurately described by Eq. (1) at high Peclet numbers
where convection dominates. Analysis of the equicon-
centrution dispersion fronts (EDF), consisting of points
(pixels) of a certain local concentration of tracer con-
firms the same fractal dimension as found in the radial
geometry [9]. This analysis, done at three different con-
centration levels, gives the same fractal dimension for all
the concentrations indicating no multifractal behavior.
Self-alone scaling analysis of the reduced EDE's yields
the same values for the Hurst exponent and the dynamic
exponent P for all concentrations considered. We also
study the time dependence of the equiconcentration front
width and find an effective equiconcentration dispersion
constant of one order of magnitude less than the longi-
tudinal dispersion constant. Comparisons to other types
of rough surfaces are mentioned and discussed.

a supporting plate and one of the sheets. The displace-
ment process was visualized by illuminating the model
from below and the photographs were taken from above.

The dispersion experiments were done by injecting a
glycerol with 13%% water mixture dyed with black Nigro-
sine dye into a medium saturated with the same Quid
without the dye. The Quid properties were viscosity:
p = 118+0.4 cP, density: p = 1.21+0.03 g/cm, temper-
ature: T = 25'C. The diffusion constant of the Nigrosine
particles in the fluid was D 1 x 10 cm2/s. The in-
jection was conducted at rate Q = 0.028 cms/s from a
"line" (high permeability channel at the shorter edge of
the rectangular model). The Peclet number in a typical
experiment was 4 x 104.

The porous model was divided into two sections sepa-
rated by a thin barrier (straight metal wire) which was
placed perpendicularly to the direction of the How. The
smaller section of the medium was saturated with dyed
fluid and the larger one with clear fluid. Experiment was
started by activating an injection pump which was con-
nected to the smaller section of the medium and simul-
taneously removing the barrier between dyed and clear
sections. This technique generated a sharp, linear initial
interface. About 20 photographs were taken during one
experiment.

The resulting dispersion of the Nigrosine dye was pho-
tographed and the negatives digitized with a resolution
of up to 2000 x 2000 pixels using a Nikon LS-3500 film
scanner connected to an Apollo computer workstation.
In the digitizing procedure we selected a logarithmic re-
sponse curve so that the resulting grey levels (0—255) were
roughly proportional to the concentration of Nigrosine in
the volume imaged onto a pixel. In Fig. 1 a calibra-
tion curve relating the grey levels to the concentration
is given. As can be seen from this plot, the linearity in
the intermediate concentration range is good, but some
deviations at extreme concentrations are present.

A high resolution digitized photograph of a fully de-
veloped dispersion front is shown in Fig. 2 (a). The fig-
ure illustrates strong fluctuations of the dispersion front
caused by geometrical (convective) dispersion, which gen. —

II. EXPERIMENTS AND ANALYSIS
TECHNIQUE

The experiments were performed using transparent
quasi-two-dimensional porous model consisting of a
monolayer of 1 mm glass beads. The homogeneous
porous medium was produced by throwing beads at ran-
dom on the sticky surface of the contact paper sheet until
no place for additional beads was left [10,11]. The mono-
layer of beads is covered with another sheet of contact pa-
per. The boundaries of the medium were provided using
1 mm silicone rubber stripes. The model had dimensions
400 x 200 mm, porosity P 0.7, and was supported be-
tween two 25 mm polymethylmethacrylate plates. The
contact paper sheets were forced into contact with the
beads by a transparent PVC air pillow inflated between
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FIG. 1. Calibration of the digitizing equipment: grey levels
as a function of Nigrosine concentration.
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FIG. 2. (a) Digitized photograph of the dispersion front. The experiment was conducted at Peclet number Pe 4 x 10 .
The size of the image is 1000 x 700 pixels. (b) Close-up photograph of the dispersion front showing concentration variation
from the sub pore size scale up to the tens of pore sizes. White dots in the photo sre glass beads. (c)—(e) Development of
an equiconcentration dispersion front st relative concentration C/Co = 0.4. The fronts were taken at times: 135 s (c), 254 s

(d), and 400 s (e). The front at time t=400 s was reduced to a single value function by replacing parts of the curve within
overhangs by straight line segments in x direction (d).

crates large scale concentration "spikes" in the longitudi-
nal x direction due to the flow velocity fluctuations and
the streamline path length fluctuations. EH'ectively, the
structure results because the transverse mixing (disper-
sinn) controlled by coupling between diffusion and con-
vective transport is not sufhcient to average out large
longitudinal fluctuations caused in the velocity 6eld.

A close-up photograph of the dispersion front depicted
in Fig. 2 (b) shows concentration fluctuations from be-
low the pore size scale up to the several tens of pore
sizes. The dark "6ngers" of the dyed liquid penetrat-
ing clear liquid trace the fastest streamlines and are the
consequence of the separation of streamlines as they How
around the beads. This gives rise to large concentration
gradients. Larger separations between the fingers (low

concentration regions) appear behind regions of slightly
lower permeability or stagnation zones. On the pore level
stagnation points are the points mostly shielded from the
flow (exactly behind each bead). The fingers and the sep-
arations among them appear to have widths ranging &om
below pore size up to several pore sizes. These initially
large concentration gradients are smeared out at a later
time due to difFusion and the coupling between diffusive
and convective motion of the tracer particles.

The digitized images of the dispersion &ont contain-
ing 256 diferent grey levels were converted into black-
white images by the following procedure. All the pixels
in the image with grey levels below a chosen level (con-
centration) were assigned value zero and the others value
one. Equiconcentration dispersion fonts were identified
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in such black-white images as coast lines of connected
pixels. The search for this coast line was done starting
from the low concentration region. Details of a similar
analysis are found in Ref. [11].Three stages in the devel-
opxnent of an EDF at relative concentration C/Co ——0.3
during one experiment is shown in Figs. 2(c)—2(e) .

The spatial resolution used in the digitizing procedure
corresponds to 0.2 mm per pixel, meaning that we detect
concentration change at a subpore-size scale. Such res-
olution, combined with the spherical geometry and the
light scattering by the beads, introduce some imprecision
when identifying EDF s. This may be seen in Figs. 2(a)—
2(c) in the form of small circles due to the presence of the
beads. The circles are, however, evenly distributed along
the front. Although the circles may affect absolute value
of the EDF width 0 they are unlikely to cause problems
for the scaling of o with time or the study of the front
roughness at a scale larger than the pore size.

III. RESULTS

Concentration profiles of the dispersion front plotted
in Fig. 3 were obtained by summing up grey levels of the
digitized dispersion images in the direction y perpendic-
ular to the Bow . A good approximate solution of Eq.
(1) with the initial and boundary conditions used in the
experiment is given by

Here erf(x) is the error function, Xo ——Vt is the position
of the front, and A = 2/DIIt is the average concentra-
tion profile toidth. In Fig. 3 curves of the form given by
Eq. (2) are fitted to the experimental concentration pro-
files of a typical dispersion experiment. The figure shows
that Eq. (2) (full curves) approximates the observed con-
centration profile well. At high concentration region we
observe stronger noise compared to the low concentration
region. This is partly due to a decreased sensitivity at

1.5

low concentrations since the calibration curve in Fig.
enters a saturation regime.

Another effect resulting in larger spread of data at high
concentrations is due to the presence of the glass beads.
Each point in Fig. 3 is a grey level average across the
porous model, meaning that we also sum over grey lev-
els that belong to the beads which transmit light and
therefore have a very low grey level. This means that the
sum of grey levels will depend on the number of beads
in a particular cross section. This dependence will be
particularly strong in the high Nigrosine concentration
range due to the strong contrast in grey level values of
the pixels belonging to the beads and those belonging to
the liquid.

The concentration profile width A is obtained as a fit-
ted parameter of error curves in Fig. 3. The longitudinal
dispersion coeScient is then estimated as a slope of A

vs t plot as shown in Fig. 4. The least square fit in this
plot yields DII

- 0.094 6 0.006 cm /s. Here, the error
reflects the statistical uncertainty for the given data set.

The equiconcentration front width o is defined as the
standard deviation of the distribution obtained by count-
ing the number of front sites as a function of position x.
The distribution is centered at the mean position of the
front. Note that o is a single concentration &ont-width
as compared to A which describes the typical width of
the average concentration profile consisting of the whole
spectrum of concentrations.

The structure of EDF was studied in terms of the box
dimension of the perimeters. The EDF's were identi-
Bed from 6 digitized images taken during one experiment
using three different values of the grey levels (local con-
centrations). The number N of square boxes of side b

needed to cover the front scales as

N (b) = No a f (8/o ),

where D is the fractal dimension of the front, f(z) is a
function depending only on the combination 8/0, and

Xo is the number of boxes of size b = a. Fitting
logio (N(b)o/Ne) to the s'traight line D logip(b/0') + A

where D and A are the only two free parameters gave us
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FIG. 3. The concentration pro6le as a function of ~ at dif-

ferent times. The full curves are the least square Gt to the
experimental data. The e8'ective width of such a front A is
obtained directly as a 6tting parameter. Peclet number is Pe
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FIG. 4. The effective width, A squared versus t gives a
straight line. The slope of this line is dispersion coefBcient

D~~ 0.094 + 0.006 cm /s. Peclet number is Pe 4 x 10 .
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slope = D = 1.45

r )) (~~ an proportiona to y or r && f~~.
Rough surfaces exhibit often dynamic scaling:

z
4 00z

OQ
O

(8)

with a dynaniic exponent P. In a finite system the scaling
in Eqs. (7) and (8) is valid as long as (~~ is less than the
size of the system. Inserting Eqs. (7) and (8) into Eq. (6)
the following combined scaling form is obtained:

-4
-2 0

log„(5/a)

FIG. 5. Data collapse of the box-counting data for 16
equiconcentration dispersion fronts. The box dimension was
found to be D = 1.45 + 0.04.

the best scaling data collapse in Fig. 5. The figure shows
collapsed data of 16 EDF's taken at three di6'erent con-
centrations, C/Co ——0.3, 0.4, and 0.8. The fitting proce-
dure yields the same fractal dimension D = 1.45+0.04 for
all &onts. Crossover to Euclidean, one-dimensional ob-
jects is expected at the rescaled box size b/o 3. 'Note
that, although the EDF's are kactal, the concentration
profiles which are the average of all concentrations are
well described by Eq. (2).

Treating EDF as a self-affine &actal object an alterna-
tive analysis has been conducted. EDF's were analyzed
using the second order height difference correlation func-
tion:

(9)

3.00

C/C,

2.00—
0.3

In Fig. 6 a data collapse for reduced EDF's is at-
tempted by plotting the crossover function f after Eq.
(9). The data for C/Co ——0.4 and C/Co ——0.3 are shifted
by 0.8 and 1.6, respectively, in the +y direction for better
view of the data points. The parameters P and II were
varied until the best collapse with P = 0.5 and II = 0.55
for all three concentrations was obtained in Fig. 6. Note
that the value for H is in excellent agreement with Eq.
(5) using value for D found by box-counting procedure.
The value for P characterizing temporal behavior of the
reduced EDF widths agrees with the corresponding expo-

C2(r) = (IIi(y) —&(y + r) I')' ', (4)

(5)

where y is the direction perpendicular to the flow and
h(y) is the height of the &ont above position y on a ref-
erence line. For this analysis to work EDF's, as those
depicted in Figs. 2(c)—2(e), had to be reduced to a single
valued function. This has been done by replacing parts
of the &ont cut by overhangs in the original &onts by
straight line segments. An example of the resulting re-
duced EDF is shown in Fig. 2 (f). A short review of the
self-affine scaling formalism for rough surfaces [12—14I,
adequate for our problem, is presented below.

For statistically self-afFine &actals this function scales
with r as C2 r, where H is the Hurst exponent, a
measure of surface roughness and related to the fractal
dimension through
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Here f(y) is the crossover function which is constant for

in d dimensional space. The self-alone scaling range is
bounded in space by two correlation lengths f~ (&ont
width) in z direction and (~~ in y direction. The height
difFerence correlation function in general scales as

FIG. 6. Height difference correlation functions C2(y) for
three difFerent relative concentrations are attempted col-
lapsed. Exponents P and II were varied as &ee parameters
until the shown best collapse of the data with P = 0.5 and
H = 0.55 was found. See discussion in the text. The data
for C/Co ——0.4 and C/Cs ——0.3 are shifted by 0.8 and 1.6,
respectively, in the +y direction for better view of the data
points.
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nent used for scaling of the average concentration profile
width A (see Fig. 4).

We further investigated the dependence of the equicon-
centration front width o on time for the three concentra-
tions. Such a plot is given in Fig. 7 . There appears to
be no significant difFerence in width 0. for difFerent con-
centrations. A straight line has been fitted to the data
for each concentration. Note that the straight line is not
required to pass through the point (0,0) due to uncer-
tainty of the initial f]Lont widths. The average slope is
D 0.0036. This value is over one order of magnitude
smaller than D~~ 0.09.

IV. DISCUSSION

1.00—

0.00—
I

Dy + C/C, = 0.8
~ C/C, = 0.4

C/C, = 0.3

The concentration profiles of the dispersion front in a
quasi-two-dimensional, rectangular porous medium have
been measured. The average concentration along the
channel is described quite well by the solution of the
convection-diffusion Eq. (1) in a channel which is given
in Eq. (2). The value of longitudinal dispersion coeffi-
cient for one velocity has been measured to be D~~

0.094 6 0.006 cm /s.
Measuring the time development of the width 0 of the

EDF's for three different concentrations (C/Cp = 0.3,
0.4, and 0.8) enabled determination of the equiconcentra-
tion dispersion coefficient D of each of the three concen-
trations. It appears that D 0.0036 has similar value
within the error of the measurement for the three con-
centrations considered, and is roughly an order of magni-
tude less than the average dispersion coefficient D~~. This
perhaps surprising result appears to be a consequence of
different EDF's moving with different average speeds, ef-

fectively drifting apart. Both width of the average con-
centration profile A and the EDF width o though depend
on time as a square root.

The detailed structure of EDF's in a quasi-two-
dimensional porous medium is found to be fractal, con-
firming the finding of Malpy et al. [9] for radial geometry
and for only one concentration C/Cp ——0.5. All fronts
were found to have the box dimension D = 1.45 6 0.04.

Compared to percolation-perimeters related structures
[15] EDF represent a different class of problems. Diffu-
sion &ont of Sapoval et al. [16] or the gravity stabilized
invasion percolation &out [17] are examples of a crossover
from self-similar behavior at length scale less than &ont
width to linear behavior at larger length scale. With
EDF's the dynamic scaling of the correlation length (~~

is different from that of (~ on all length scales [Eqs. (7)

0.00
t(s)

400.00

FIG. 7. Dependence of equiconcentration front widths o on
time. Three difFerent concentrations were used: C/Co ——0.3
(E), 0.4 (o), and 0.8 ( ). The average slope for the three
concentrations obtained by the least squares Gt to the data
yields D 0.0036.

ACKNOWLEDC MENTS

We thank Paul Meakin for useful suggestions. We
gratefully acknowledge support by VISTA, a research co-
operation between the Norwegian Academy of Science
and Letters and Den norske stats oljeselskap a.s. (STA-
TOIL) and by NAVF the Norwegian Research Council
for Science and the Humanities.

and (8)]. The scaling structure of EDF is therefore al-

ways self-affine.
In the limit Pe ~ 0 a smooth, linear diffusion &ont is

expected. As noted in Ref. [15] the &actal dimensions of
the external perimeter of the percolation cluster is 4/3
while the percolation hull has D = 7/4. The measured
box dimension for EDF, D 1.45, although closer to 4/3
is somewhere in between.

Reduced EDF's were analyzed as self-affine fractals.
The Hurst exponent H = 0.55 and the dynamic exponent
P = 0.5 found by collapsing height difFerence correlation
function data are consistent with the results obtained
through other analysis methods. The found value of H
appears to be not too far from 0.5 which is characteristic
of independent Gaussian processes [18].
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