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Budding transitions of fluid-bilayer vesicles: The efFect of area-difFerence elasticity

Ling Miao, * Udo Seifert, t Michael Wortis, and Hans-Giinther Dobereinert
Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada V5A IS6

(Received 16 August 1993)

Budding and vesiculation are prominent shape transformations of fluid lipid-bilayer vesicles. We dis-

cuss these transitions within the context of a curvature model which contains two types of bending ener-

gy. In addition to the usual local curvature elasticity ~, we include the effect of a relative areal stretching
of the two monolayers. This area-difFerence elasticity leads to an effective nonlocal curvature energy
characterized by another parameter K We argue that the two contributions to the curvature energy are
typically comparable in magnitude. The model interpolates smoothly between the spontaneous-
curvature model (&7=0) and the bilayer-couple model (F—+ 00), discussed previously in the literature.
Conceptually, this model is not new; however, neither its consequences nor its relation to experiment has

previously been explored in detail. In particular, budding is discontinuous (first order) for small k but
changes via a tricritical point to continuous (second order) for large z. The order of the budding transi-
tion depends on both the ratio «/z (which is a material parameter) and the initial area difference between

the inner and outer monolayers (which can be modified by appropriate treatment of the vesicle). Esti-
mates suggest that, under typical laboratory conditions, the budding process should be discontinuous, in

apparent disagreement with some recent experiments. Possible reasons for this discrepancy are dis-

cussed. We propose, in particular, that hysteretic effects are important and that the observed behavior

may reflect a spinodal instability.

PACS number(s): 82.70.—y, 87.22.Bt, 68.15.+e, 68.60.Bs

I. IN.r RODUCmaON

Fluid-phase phospholipid bilayers in an aqueous solu-
tion may form giant (10-20 pm) vesicles of single-sphere
topology. Experiments have shown that these vesicles
display a rich variety of shapes, as external conditions
(temperature, osmotic pressure, etc.) are varied [1-9]. As
these parameters change, vesicles undergo distinct trans-
formations from one class of shapes to another. In this
paper we focus particularly on the shape transformations
called "budding" and "vesiculation. "

The term "budding" is often used loosely to describe
the multistep process in which a single spherical (or pro-
late} parent vesicle undergoes a sequence of shape
changes resulting in the formation of a distinct daughter
vesicle still linked to the parent via a narrow neck. We
shall in what follows restrict "budding" to refer to the
distinct transition at which up-down symmetry is broken
and the vesicle passes from a symmetric prolate or
dumbbell shape to a pear shape, without reflection sym-
metry. "Vesiculation, " on the other hand, distinguishes
the (singular) limit at which the radius of the neck con-
necting the mother and the daughter vesicles becomes
microscopic.

'Present address: Department of Biochemistry, McMaster
University, Hamilton, Ontario, Canada L8N 3ZS.

~Present address: Institut fiir Festkorperforschung,
Forschungszentrum Julich, 52425 Jiilich, Germany.

&Also at: Department of Physics, University of British Colum-
bia, 6224 Agriculture Road, Vancouver, British Columbia, Can-
ada V6T 2A6.

In this expression, C, (r) and Ct(r) are the principal cur-
vatures at the point r of the membrane surface, and Co,
called the spontaneous curvature, is a parameter
reflecting possible asymmetry between the two leaves of
the bilayer. The integral is over the entire surface and is
dimensionless, so the bending elastic constant a sets the
energy scale.

A different model —the bilayer-couple or hA model,
based on the so-called bilayer-couple hypothesis [13]and
closely related work of Evans [14] and Helfrich [15]—
was first explored systematically by Svetina, Zekl, and
co-workers [16—18]. Here, it is assumed that the area per
lipid molecule is fixed and that there is no molecular ex-
change between the two leaves. Thus the areas of the in-
dividual leaves remain fixed. Under the condition that
the two leaves are everywhere separated by the same
spacing D with D «R (the overall vesicle size, approxi-
mately 10—20 pm), b, A is related to the local curvature
by

b, A =D tt) d A (C, +C2 }, (2)

which is correct to order D/R. In energy minimization,
the condition (2) becomes a constraint on the integrated
mean curvature of allowed shapes. The energy functional

Our present understanding of the diversity of vesicle
shapes and of the transformations occurring between dis-
tinct shapes has largely been based on two simple models.
In the spontaneous-curvature (SC) model, originally pro-
posed by Canham [10] and Helfrich [11], a Suid lipid-
bilayer vesicle is modeled by the energy functional [12]

E[C„Cz]—:—fdA[C, (r)+Cz(r) —Cc]
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in this model,

G [C„C2]—=—fdA(C, +C2)2, (3)

is the same as Eq. (1) except that the spontaneous curva-
ture Co has been set to zero [19].

For phospholipid bilayers, it turns out that the bending
rigidity ~ is large on the scale of thermal energies at room
temperature. Thus thermal fluctuations can be neglected,
and the equilibrium configuration predicted by each mod-
el is just the shape which minimizes the bending energy
subject to the appropriate constraints. Since the energy
scale associated with a macroscopic stretching of the bi-
layer is several orders of magnitude higher than that in-
volved in bilayer bending [4,20], the surface area of a
vesicle is efFectively constant under bending deformation.
The volume enclosed by a vesicle is kept fixed in experi-
ments by controlling the interior and exterior osmolarity.
Thus both models obey constraints of fixed surface area
and volume, while the hA model requires fixed area
difference as a third constraint. In fact, the two models
are related by a Legendre transformation [18].

In their pioneering work on the SC model, Deuling and
Helfrich [21] found a catalog of possible axisymmetric
vesicle shapes. Among those shapes were prolate and ob-
late ellipsoids, stomatocytes, and discocytes, some of
which resembled the shapes of human red blood cells.
The full systematics of these shapes and shape transfor-
mations has only been elucidated recently [22,23]. In
particular, budding and vesiculation have now been stud-
ied in detail in both of the above models. Predictions of
the two models for the character of the budding transi-
tion turn out to be strikingly different: The SC model
predicts that the budding transition is discontinuous,
whereas the hA model predicts that it is continuous, via
pear-shaped intermediates. In both models the asym-
metric shapes finally evolve smoothly towards vesicula-
tion.

In recent experiments [6—9], all the stationary shapes
found in the theoretical calculations have, indeed, been
seen [24]; however, the budding sequences seem to be
more complex than those predicted by either of the two
models [25]. In a typical experiment, the temperature of
the system is slowly increased. Normal thermal expan-
sion then leads to changes in the area and volume of the
vesicles, thus inducing shape transformations. One can
follow in this way a sequence of shape changes which
starts from a spherical or nearly spherical initial shape
and proceeds via a prolate elhpsoid to budding and full
vesiculation. Experiments find two distinct scenarios: (a)
The prolate ellipsoid undergoes a shape transition at
which the up-down symmetry is continuously broken, re-
sulting in a pear shape; subsequently, the pear undergoes
a second now-discontinuous transition which produces
two spheres connected by a narrow neck. (b) The (sym-
metric) prolate ellipsoid buds discontinuously, directly to
a shape consisting of two spheres connected by a narrow
neck.

The continuous budding of scenario (a) is consistent
with the predictions of the hA model; the discontinuous
budding of scenario (b) is consistent with the predictions

of the SC model. Neither model contains the discontinu-
ous vesiculation observed in scenario (a). Furthermore,
experimentally, different vesicles from the same prepara-
tion (i.e., the same lipid in the same aqueous solution)
may be seen to follow different scenarios. Unfortunately,
neither the SC nor the b 3 models allows such
differentiation. In fact, it has been shown that pretreat-
ment of a vesicle before observation can affect its transi-
tion sequence. For example, precooling a vesicle for
several hours always induces outside budding, whereas
vesicles without such treatment may show other se-
quences, such as a transition to a stomatocyte shape fol-
lowed by inverse (i.e., inside) vesiculation [7].

Thus it would appear that both the SC and 5A models
contain essential elements of the physics of these bilayer
systems; yet, neither is fully consistent with available ex-
periments. The SC model attributes the tendency of the
vesicle to bud outside or inside to some intrinsic asym-
metry (presumably chemical in origin) belonging to the
bilayer. If this were true, then all similarly prepared vesi-
cles (e.g. , all vesicles in a given batch or preparation)
would behave in the same way. This is manifestly con-
trary to observation. The hA model explains the diversi-

ty of shapes in a given preparation on the basis of what-
ever (unknown) mechanisms fix—e.g. , at closure the-
numbers of lipid molecules in the inner and outer leaves
of the bilayer. However, the AA model predicts that
budding is always continuous, which is inconsistent with
experiments. Thus we are motivated to search for a mod-
el which retains the flexibility of the 6 A model but allows
first-order budding.

In this paper, we investigate a model in which the areas
of the individual monolayers are not fixed (as they are in
the b, A model) but can expand elastically under tensile
stress. In this scenario, each monolayer has a preferred
or relaxed area ( A 0" or Ao"' ), based strictly on the num-

ber of lipid molecules it contains, but can have an actual
area ( A'" or A'"') which may be larger or smaller, pro-
vided that an appropriate cost in elastic energy is paid.
The effect of stretching was recognized early on by Hel-
frich [11]and Evans [14] and was studied later by Sveti-
na, Brumen, and Zeks [17]. The stretching modulus E of
phospholipid films is sufBciently large so that for flaccid
(i.e., nonpressurized) vesicles the stretching due to
curvature-induced pressure differences causes only a
negligible departure of the overall area A from its relaxed
value A o. On the other hand, the effect of stretching on
the already-small area difference, hA:—A'"' —3'", is
fractionally important. The overall result, worked out in
Appendix A (see also Ref. [17]), is an elastic stretching
energy associated with the difference ( 5A —6A 0 ). This
inclusion leads to a model defined by the energy function-
al,

W:——fdA [C,(r)+Ci(r) —Co]
2

+— (b, A —b, AO)
AD

and subject to constraints on the enclosed volume V, the
total surface area A, and the relaxed (initial) area



BUDDING TRANSITIONS OF FLUID-BILAYER VESICLES: . . . 5391

difference, EAO=AO"' —Ao". This model will be re-
ferred to henceforth as the area-difFerence elasticity
(ADE) model. The first term is just the bending energy of
the SC model (1), only with the spontaneous curvature
now designated by Co instead of Co (for future notational
convenience). The second term is the elastic area-
difference stretching energy, as derived in Appendix A.
Note that the ADE model reduces in two limits to the SC
model (a~0) and the 6A model (F~ ao ).

The new modulus, i, appearing in Eq. (4} has units of
energy, so the ratio, a:F—/~, is dimensionless. Note that,
by virtue of Eq. (2), the area-difference term efFectively
couples local curvatures, C, (r) and Cz(r), at points dis-
tant from one another on the vesicle surface (of course,
the physical origin of this term is the local elastic energy,
and it is the fluidity of the membrane, which makes the
monolayer densities separately uniform, which allows the
elastic energy to be rewritten in this eff'ective nonlocal
form). For this reason ~ is sometimes called a "nonlocal"
bending rigidity. The calculation given in Appendix A
demonstrates that F is generically of the same order of
magnitude, KD, as the usual bending modulus ~. This
equivalence is not an accident but reflects the fact that
bending any layer (monolayer or bilayer} of nonzero
thickness expands one side and compresses the other and,
so, requires expenditure of elastic stretching energy. On
this basis, we may anticipate that the ratio a is of order
unity. In fact, in Appendix A, we use experimental data
for ~, E, and D for two common phospholipids to esti-
mate a, obtaining results in a range between 1 and 2
[15,26]. The first direct measurement [27] of the nonlocal
bending rigidity for mixed stearoyl-oleoyl-
phosphatidylcholine (SOPC) and palmitoyl-oleoyl-
phosphatidylserine (POPS} bilayers used the tether-
formation technique and found a=1.1 with a large range
of uncertainty (0.5 —4). Thus the effects of local and non-
local bending rigidities are expected to be comparable,
and the two terms must be treated on the same footing.

A preliminary report of our results for the phase dia-
gram of the ADE model has been given in [28]. The
effect of the interplay of the two curvature energies on
the budding transition has also been investigated in [26]
for a particular choice of parameters.

The plan of the present paper follows. In Sec. II we de-
scribe how the stationary shapes of the ADE model can
be obtained from those of the hA model by a simple
mapping. This greatly facilitates our study, since it
shows that, despite the apparent nonlocality, the ADE
model has the same catalog of stationary shapes as the
SC and hA models. In Sec. III we study the phase dia-
gram of the ADE model at zero spontaneous curvature.
We find that for finite but nonzero a both first- and
second-order budding are possible. Indeed, it turns out
that, for any one fixed value of a, several qualitatively
distinct budding and vesiculation trajectories are in gen-
eral possible. In Sec IV we show that generalization to
include nonzero spontaneous curvature is straightfor-
ward. We also explore in detail how the phase diagrams
for the SC and 6A models emerge as limiting cases of the
ADE model. Section V is devoted to discussion of some
typical calculated temperature trajectories, thus illustrat-

4[S]=W[S]+XA [S]+PV[S] (5)

must be made stationary with respect to the degrees of
freedom [S] associated with the vesicle shape. X and P
are Lagrange multipliers, which may be adjusted to attain
the prescribed area and volume.

This nonlinear variational problem has, in general,
several solutions, corresponding typically to shapes of
distinct symmetry. Each individual shape evolves con-
tinuously as the parameters X and P are changed, thus
producing a branch of mechanically equilibrated vesicle
shapes. These stationary shapes may be minima or sad-
dle points of the energy. To be observable, such a shape
must be a (local) minimum. The lowest minimum pro-
vides the thermodynamic equilibrium configuration of
the system, unless the true global minimum occurs at a
boundary (as may be the case for fully vesiculated
configurations [22, 29]).

Analysis is greatly facilitated by the fact that the ADE
model and the 6A model have exactly the same branches
of stationary shapes. (A similar equivalence between the
stationary branches of the 5A and SC models has been
noted earlier [18,23]). This correspondence is best seen as
a mapping between the ADE model and the hA model,
which we derive below. First, however, it is convenient
to reduce the number of parameters by using the scale in-
variance of the bending energy. The ADE model has
four different length scales R~ and Rv, defined by
A =4~R„and V=(4m/3)R&, Co ',. and EAo/D. We
choose to scale all distances with R„,so we are left with
three independent dimensionless variables: the reduced
volume,

V

(4n /3)R
„

r '3
Rv
R„ (6)

the reduced spontaneous curvature,

co —=COR ~,
and the reduced equilibrium area difference,

(7)

ing the important dependence of the predicted shapes on
both the value of a and the initial area difference EAO.
Finally, in Sec. VI, we discuss the relation of these
theoretical results to the available experiments. There is
not yet complete agreement between the experiments and
the equilibrium theory. We propose that the inclusion of
hysteresis effects may resolve the outstanding discrepan-
cies and we suggest further experiments to clarify this is-
sue. Appendix A provides a microscopic derivation of
the nonlocal bending energy. Details of phase-boundary
calculations in the near-spherical limit are given in Ap-
pendix B.

II. STATIONARY SHAPES OF VESICLES:
GENERAL REMARKS

The equilibrium shape of a vesicle is determined by
minimizing the free energy (4) at fixed spontaneous cur-
vature Co and relaxed monolayer area difference EAo,
subject to constraints of fixed volume V and surface area
A. To incorporate the constraints, a variational free-
energy functional of the form
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mo=b Ao/(ZDR~ )—=4whao . (8)

+2nco+ —(m —mo) (9)

where we shall set ~=1 for the remainder of the paper.
G(u, m;[S]) is the bending energy of the hA model,
defined in Eq. (3), and

m—:fdA(C, +C2)/(2R„)=6A/(2DR&)=4nba (10)

is the reduced version of the area difFerence (2) between
the two monolayers. Note for reference that, for a
sphere, v =1 and m =4m.

The relation (9) holds for all shapes S, stationary or
not. The search for stationary shapes of the bending en-

ergy W proceeds in two steps: (i) For given a, co, and

mo, varying W in (9}with respect to the shape S at fixed

m and v leads to the stationary shapes of the AA model,
since the last three terms of (9) are constants under these
conditions. This proves that every stationary shape of
the ADE model is also a stationary shape of the b A

model. (ii) Varying the energy W with respect to m then
leads to the relation

mo"'(m)=m+(G'"' —2cc)/a,

where G'"'=BG/Bm denotes the derivative of the bend-

ing energy in the hA model at fixed A and V along a
branch of stationary shapes labeled by n. For each sta-
tionary shape S'"', Eq. (11) establishes a one-to-one map-
ping from (m, u) in the b, A model to (m 0"',u) in the ADE
model. Note that it follows from the Legendre-transform
relation between the 6 A and the SC models that
G'"'=2cQ, where cQ is the scaled spontaneous curvature,

co
—=CcR„,in the SC model (1) which makes this particu-

lar shape stationary.
We conclude this section with two caveats concerning

the rigor and generality of this treatment of the ADE
shape problem. First, this study, like previous work
[22,23], concentrates exclusively on axisymmetric vesicle
shapes. The instability of axisymmetric shapes with
respect to nonaxisymmetric perturbations can be ana-
lyzed, but only via a somewhat different approach [30].
Secondly, we have not compared the energies of a11 possi-
ble axisyrnmetric shapes corresponding to local minima
of the bending energy (4) [or (9}]. Instead, we have re-
stricted attention entirely to those shapes that are likely
candidates for the global energy minimum in the region
where budding and vesiculation occur.

III. BUDDING AND VESICULATION
AT SPONTANEOUS CURVATURE Co =0

The systematics of shapes and shape transforrnations
of the ADE model is best represented by a "phase dia-

There are two energy parameters in the model, the usual
bending elastic constant sc and the nonlocal bending con-
stant I7; however, only their dimensionless ratio, a=F/ir,
is relevant in the zero-temperature problem. Using these
parameters, we rewrite the bending energy (4),

W(Cx u cp mo'[S])=G(u m'[S]) 2com

gram" in the space spanned by the four parameters, a, U,

cQ
Pal Q Such a phase diagram exhibits several single-

phase regions separated by phase boundaries. Within a
single-phase region, the shape evolves smoothly as con-
trol parameters (like u or mo) are varied. By contrast,
shape changes across phase boundaries are abrupt, fre-
quently but not necessarily involving a symmetry change.
At phase boundaries, the total bending energy is always
continuous; however, its first derivatives with respect to
the parameters may change either discontinuously (at a
"first-order" transition) or continuously (at a "second-
order" transition).

Budding and vesiculation transitions involve the
behavior of two specific branches of vesicle shapes. The
symmetric branch consists of axisymmetric shapes with
mirror symmetry with respect to an equatorial plane. In
practice, such shapes resemble a prolate ellipse or a
dumbbell. Mirror symmetry is broken for the asym-
metric branch, and the corresponding shapes are termed
"pearlike" (with a wide neck) or "budded" (with a nar-
row neck}. This branch terminates at the "fully vesiculat-
ed" shapes, wherein the neck radius has formally shrunk
to zero. Of course, physically, there is always a short-
distance cutoff, so the neck attains microscopic dimen-
sions (comparable to the bilayer thickness} but its radius
remains nonzero.

We first discuss the case where the spontaneous curva-
ture cQ is zero. This case deserves special attention, be-
cause vesicles formed by a perfectly symmetric lipid bi-
layer fall into this category. All generic features of the
ADE-model behavior are already present. Generaliza-
tion to coWO is straightforward, as we shall show in Sec.
IV.

A. The phase diagram at a =4:
Discontinuous versus continuous budding

For cQ =0, the phase diagram is three dimensional. A
typical, two-dimensional fixed-a section is illustrated in
Fig. 1 for a=4.

Symmetric-branch shapes have the lowest energy
below the curve consisting of the two parts C~" and
D~'". The lower limit of this region is set by a transition
(not shown in Fig. 1) either to a nonaxisymmetric ellip-
soid or to an oblate shape, depending on the specific
values of u and mo (and a). Since these transitions are
unrelated to budding and vesiculation, they will not be
discussed further. The line C~" is a phase boundary at
which the symmetric shapes first become locally unstable
with respect to a deformation that breaks the mirror sym-
metry. "C" stands for "continuous" and denotes a
second-order transition. Just above the phase boundary
C~", symmetric shapes are locally unstable with respect
to a deformation that breaks the mirror symmetry. At
larger reduced volumes (to the right of the point P the
transition between the symmetric branch and the asym-
metric branch becomes discontinuous (D) along the
phase boundary D~". The dotted line Mp" marks the
continuation of the local-instability line C~" into the
asymmetric phase, so that, in the region between D~'
and M~", the symmetric shape remains locally stable,
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$A model (as a function of m [23]) and the energy W of
the ADE model (as a function of mo } for both symmetric
and asymmetric branches. At the bifurcation point C,
the energy curves of the two branches have equal first
derivatives. This property is preserved as m is mapped to
m o [according to Eq. (11}] and 6"'(v, m ) are
transformed to W"'(a, v, mo) by Eq. (12). Thus, in the
neighborhood of the bifurcation point, the energy
difference 5$' between the two branches in the ADE
model can be expressed in terms of second derivatives of
W,

Q W —= W"(a, v, m o ) —W'"(a, v, m o )

FIG. 1. Phase diagram in the (v, m0) plane involving budding
and vesiculation at fixed a=4. Symmetric and asymmetric
shapes are separated by lines of continuous transitions, C~", or
discontinuous transitions, D~". These lines of budding transi-
tions meet at the tricritical point T. The line Mp" denotes the
limit of metastability of the symmetric shapes. The line L~'
denotes the vesiculation line, where the neck size has shrunk to
zero. It ends at the point E, where the limiting shape consists of
two spheres of equal radii. In the shaded region above this line,
multiplets involving several buds become relevant (see Ref.
[22]).

W'"'(a, u, mo(m)) =G'"'(v, m)+ —[m —mo(m)], (12)

while its Srst and second derivatives are related to those
of the bending energy G'"'(v, m }according to

a W(")

Om0

gG(n)

Bm
(13)

and

8 W'"' aG'""(u, m)

8mo „a+G~""(v,m)
(14)

where

g'G(n)6'""(v,m) —=
Bm2

(15}

The structure of the mapping based on Eqs. (12)—(14)
is illustrated in Fig. 2, which shows the energy G of the

even though it is not the lowest-energy shape. Thus M "
is the limit of metastability (M) of the symmetric branch,
which in thermodynamic language would be called a spi-
nodal. The special point T, where C~" and D~" meet,
we will call a "tricritical point. " We denote its coordi-
nates {uz (a ), m o z (a ) ). Finally, the line L P'" denotes the
upper limit (L) of the asymmetric phase, where full vesi-
culation is attained. The neck radii of budded shapes go
to zero continuously as L~"is approached from below.

Such a phase diagram is constructed by using the map-
ping (11). In particular, the bending energy (9) of the
ADE model for each branch of stationary shapes can be
expressed as

=
—,
' [W"'(a, v, mo, c ) W"'(a, u, mo, c ) ]

X(mo —
mo, c)'. (16)

Finally, these second derivatives of W can be obtained
from corresponding second derivatives of 6 via Eq. (14),
so the entire energetics of the ADE model in the vicinity
of the bifurcation point, mo c=mc+6"'(v, mc)/a,
can be related to properties of the 6A model.

We have established numerically the following proper-
ties of the second derivatives of the bending energy
G'"'(v, m) of the hA model in the interval 0.72& v & 1:
(i) For the symmetric branch, 6"'(v, m) is positive for
all values of m; (ii) for the asymmetric branch 6""(v, m)
is negative at the bifurcation point, increases monotoni-
cally, and reaches a positive value at the vesiculation
point; and (iii) the magnitude of G"'(v, mc) increases
monotonically with v and eventually diverges in the 1imit
v~1. Finally, it is useful to know the behavior of the
mapping (11) near the bifurcation point: Differentiating
with respect to m leads to the relation

Bm'"'
= 1+ 6'""(v,m )—,

Bm a
(17)

which holds for both symmetric and asymmetric
branches. It follows from Eq. (17) that 8m o" /Bm is posi-
tive everywhere on the symmetric branch, while on the
asymmetric branch 8mo" /Bm is positive everywhere on
the symmetric branch, while on the asymmetric branch
Bmo" /dm changes sign at the point v =ur(a), where
6""(u,mc )=—a.

These properties allow us to distinguish two difFerent
scenarios for bifurcation in the ADE model, correspond-
ing to the continuous and discontinuous transitions, C~"
and D ~'*, respectively.

(a) For v &uT(a), the mapping (11) is monotonic for
both the symmetric and asymmetric branches, and 6W is
positive, as follows from Eqs. (13)—(15). Therefore the to-
pology of the energy diagram of the hA model is well
preserved, as illustrated in Fig. 2(a), so the symmetry-
breaking transition is continuous. The corresponding
phase boundary C~" is given as

moc(a, u)=mc(v)+ —G""(v,mc(u)) . (18)(...)

a
(b) When u )ur(a), the mapping (11) becomes non-

monotonic for the asymmetric branch, while it remains



5394 MIAO, SEIFERT, WORTIS, AND DOBEREINER

CO

E

5

I
I

i

i

mo,c

L

s

mls II' D IAO~
mp

maL

FIG. 2. Schematic representation of the
mapping between the AA and ADE models.
Figures show the energy 6 as a function of m

for the hA model and the energy 8'as a func-
tion of mo for the ADE model. I. denotes the
vesiculated shape, where the neck size is zero,
and C denotes the bifurcation point. For large
a, as displayed in (a), the topology of the bifur-
cation is preserved in the ADE model and the
budding transition is still continuous. For
small a, as in (b), the symmetric branch devel-

ops a wing structure in the ADE model, thus
rendering the budding transition discontinu-
Ous.

(a)

monotonic for the symmetric branch. In addition, for
mo & mo &, 5$' & 0. Thus the symmetric branch and the
asymmetric branches interchange their relative positions.
This change in topology leads to a "wing" structure in
the energy diagram, as shown in Fig. 2(b). The position
of the cusp on the left side of the wing is determined by
G"'(v, m) = —a. An analogous wing structure occurs in
the Landau theory of first-order transitions. The corre-
sponding discontinuous budding transition occurs at
D~", the precise location of which must be computed
numerically. We performed such computations for
u &0.90. For larger values of the reduced volume v, nu-
merical determination of the asymmetric branch becomes
quite cumbersome; nevertheless, by representing these
shapes using an expansion around the vesiculated limit
(as described in Appendix E of Ref. [23)), one can obtain
a good approximation to D~".

Related to the discontinuous transition is the issue of
metastability. Both symmetric prolate (or dumbbell} and
asymmetric pear (or narrow-necked) shapes are locally
stable at the transition D~". Above D~", the sym-
metric shapes remain locally (meta)stable until they even-
tually develop a local instability with respect to asym-
metric perturbation at the (spinodal} line M&", which is
just the continuation of Cp'" [Eq. (18)] beyond the tricrit-
ical point. Similarly, the asymmetric shape remains a lo-
cal minimum of the bending energy below D~", only
becoming locally unstable with respect to a perturbation
which drives it to the symmetric shape when it reaches
another spinodal line M~" (not shown in Fig. 1). The lo-
cation of the line M~"', corresponding to the cusp in the
wing structure of Fig. 2(b), is denoted m*, and may be
found by solving G""(v,m')= —a. The tricritical point
T at which C "' and D ~"' meet has coordinates
(vz. (a), mo z(a)), where ur satisfies the condition
G"'(vr, mc) = —a and mo z is given through the map-
ping (11). This completes our discussion of the
mathematical mechanism for budding transitions in the
ADE model.

At the vesiculation boundary L~", equilibrium shapes
consist of two spheres of different radii connected by an
infinitesimal neck. Shapes in the pear region approach
this limit smoothly. The form of this boundary may be

parametrized in terms of the area difFerence b,a (for
1 & ha & W2) by the two equations

vL =1——', (ha —1) —
—,'(b,a —1)

mo I =4nba+(4/a)ha/(ha —1) .
(19}

with mL (u) =4m. +O((1 —u)'~ ) and co L (u}
=&3/2(1 —u) ' +3/2+O((l —u}'~ ). For D~",

mo=mo D(a, v)=(2/a)&3/2(1 —u) '~~+0(1), (21}

which is the same as Eq. (20} to leading order. It is more
difBcult to make exact statements about the spinodal line
M ",however, we believe that the leading term is of the
form mo-(1 —v) ', only with a coeKcient larger than
that of Eqs. (20) and (21).

We have not yet explored the interesting region beyond
this limiting line. Presumably, there is some region
where the fully vesiculated, two-sphere shapes persist.
Beyond that, a prolate connected to a sphere and other
multiply vesiculated shapes may also occur.

In the phase diagram, Fig. 1, and throughout this pa-
per we have chosen somewhat arbitrarily to study re-
duced volumes v &0.72. This locates us to the right of
the special point E(u =~2/2, mo =4 t/2(m + 1/a) ),
where the vesiculation line L "' ends in a vesiculated
shape consisting of two spheres of equal radii. The point
E is the right-hand limit of several domains of distinct
minimum-energy shapes, so a detailed analysis of its
neighborhood can be expected to be hard. For recent ex-
periments, however, this point is unimportant, since ob-
served vesiculations have typically involved a bud of con-
siderably smaller size than the mother vesicle, corre-
sponding to a reduced volume much closer to unity.

For reduced volume v ~1, all three of the boundaries
L "', D~", and M~" reach large values of the effective
area difference mo, as shown in Fig. 1. The leading terms
as v~1 may be derived by developing in powers of
(1—u)' (see Appendix B). For l. "', the phase bound-
ary takes the form

mo=mo g(a u )=mL (v)+(2/a)cp I (v)
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B. Dependence of the phase diagr~n on the parameter a:
The SC and 6A models as limiting cases

mo I (a, v}=2coI (v)/a+O(ao) (22)

and

We describe in this subsection the complete phase dia-
gram for budding and vesiculation in the ADE model, in-
cluding dependence on the parameter a, which measures
the relative strengths of the local and nonlocal bending
rigidities. Figure 3 shows three sections, corresponding
to different values of a, for which the calculations de-
scribed in the preceding subsection were repeated. We
discuss separately the cases (i) a &4 and (ii) a&4.

(i) As a decreases, the tricritical point moves monoton-
ically towards smaller values of the reduced volume v. At
a=1.2, vz. reaches the value 0.72, so the point T has
moved into the complicated region near the special point
E, where several branches are in close competition for the
lowest-energy shape. This region has not yet been ex-
plored in detail; however, it is clear that for a &1.2 the
budding transition is exclusively discontinuous for
0.72 & v & 1. When a =0, the results reported in Ref. [23]
for the SC model with CO=0 are recovered. As a~0,
the boundaries L~"' and L~" move toward infinite
values of m0 as

where co z (v) and con(v) are the values of the reduced
spontaneous curvature of the SC model at the boundaries
L~' and D~", respectively. Note that, as a~0, L~
and D "' go to large values of m0, which is consistent
with the known fact [23] that, for the SC model with
C0=0 in the regime v )0.72, the equilibrium shapes are
only prolates (dumbbells), and pears do not occur.

(ii) As the value of a increases from a=4, the tricriti-
cal point moves towards v =1, and the budding transition
becomes continuous for an increasing fraction of the
range 0.72&v &1. As a~00, the budding and the vesi-
culation phase boundaries both approach those of the b, A

model, as expected and in accordance with Eqs. (18) and
(20). This limit can be explored in detail for v near one.
For the vesiculation boundary L~",

mo I (a, v}=[4@+4@'&2/3(1—v)' +O(1—v)]

[2v'3/2+O((1 —v)'~ )] . (24)
a(1 —v }'

Note that the double limit, a~ ao and v ~1, is singular:
For fixed v ~1, moL approaches a finite value close to
4m. , as a~ DO; while, for large fixed a, m0 L diverges as
( 1 —v ) ', when v —+ 1. Similarly, for the continuous-
budding boundary C1 ",
mo c(a, v)=[4n+O(l —v)]

mo, n(a v)=2co, n(v)/a+O(a ), (23) +, [const+0((1 —v}' )],
a(1—v)'" (25)
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FIG. 3. Phase diagram for various values of a. For a= 1, the budding transition is discontinuous (DI ') over the range of reduced
volume shown. For a=50, the budding is continuous (C~ '), except very close to U =1 (we can only provide an upper bound (in v

and mo) to the tricritical point denoted by the open circle).
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IV. BUDDING AND UESICULATION
AT NONZERO SPONTANEOUS CURVATURE

Nonzero values of the spontaneous curvature Co result
from the fact that a lipid bilayer may have a tendency to
curve one way or the other, due, for example, either to in-
trinsic chemical asymmetry between the two leaves
and/or to a chemical asymmetry between the adjacent
(interior and exterior) aqueous environments [14]. Exten-
sion of the results of Sec. III to cover Cp/0 turns out to
be technically straightforward. By defining the new vari-
able,

mo =mo+2co/

we can express the bending energy (9) as

W~"'(a&v, ep m&o)=6'"'(v m)+ —'a(m —m )

(26)

+ 2K+ —Co 2Com0
2 2

which ends at the tricritical point and is, again, singular
in the double limit. %'e were not able to calculate
rigorously the behavior of the tricritical point in the limit
a~oo. Our best guess is that 1 —vr(a)-1/a and
m p r(a) -4m+ I/~a.

mp z'(cp v ) =mc( v)+ [Gc(v ) 2co ]/a—r(v )

a, = —6'""(v,),
(33}

where (v, mon(co=0, v)) defines the discontinuous phase
boundary in Fig. 1.

These results show that the fixed-a section of the bud-
ding phase diagram for a nonzero value of co is identical
to the cp =0 phase diagram (Fig. 1}except for a shift of
mo by —(2/a)co.

The ADE model recovers the SC model and the hA
model as its two limiting cases, a~0 and a~ ~, just as
it did for CO=0. This feature is illustrated in Fig. 4,
which shows a three-dimensional phase diagram for bud-
ding and vesiculation in the parameter space (a,co, mp)
for a typical (fixed) value of the reduced volume (v =0.8).
In the limit a~ 00, which corresponds to the hA model,
the continuous symmetry-breaking transition C~" and
the final vesiculation L~" are represented asymptotically
by the two straight lines mp=mc(v) and mo=mL(v)
[23], respectively, independently of co. As a~O, the
budding and vesiculation boundaries are, again, two
straight lines, cp cpD(v} and co=co L(v) [22,23], in-

dependently of mo. The tricritical line

where mo and m are related by the mapping,

m =m+ —G'"'(v, m) .0 (28)
m 0= mc (v)

C

mo, c(co v)=mo, c(v)
2cp

=mc(v)+ —[6'(v, mc) —2cp] .1
(29)

Similarly, for U & Uz, the discontinuous budding boundary
D~" is determined from the condition

W"(a, v, co, mo) = W"(a& v, c &moo),

which becomes

(30)

6"(v,m "(mo))+—[mo —m "(mo }]

—6(a)(v m(sj(m ))+ [m m(a)(m ))2 (31)

This condition is identical to the one for determining the
C "when CO=0, only with mo now replaced by mo.
The solution is

mo o( )=vmoo(co, v )+2c,o/a=mo D(co 0&v (32)

For a fixed nonzero co, the functional dependence of the
bending energy W'"' on mo difFers from that for cp=0
only by a constant plus a term linear in mo, as shown by
Eq. (27). Neither term enters the second derivative of
W'"'. Thus our previous discussions both of the preser-
vation of the topology of the energy curves by the map-
ping and of the location of the tricritical point continue
to hold. In particular, for fixed co and U & Uz, the loca-
tion of the phase boundary C~" is given by

m 0—- m L(V)
L

FIG. 4. Three-dimensional (a,co, mo) phase diagram at a
typical (constant) reduced volume. Two transition surfaces are
shown. The rear (shaded) one corresponds to budding and the
front (unshaded) one corresponds to vesiculation. As a~~
(one of the limiting cases), the two sheets asymptotically ap-
proach their limits, represented by the two lines mo(v) =mc(v)
and mo(v) =ml (v), respectively. These limit lines are indepen-
dent of Co, as in the hA model; when a~0, the discontinuous
budding at co D and the final vesiculation at co L predicted by
the SC model are asymptotically recovered. T denotes the tri-
critical line, which separates the continuous budding transi-

tions, represented by the sheet C, from the discontinuous bud-

ding transitions, represented by the sheet D. The budding sheet

splits along co &=co D, and the two parts develop in opposite
directions. The splitting terminates at the point P with coordi-
nates (a=0,co=co D, mo=(m, a+m, z)/2), where m, z and

m, ~ are the actual area differences of the symmetric and asym-

metric shapes at the first-order transition point in the SC mode1.
The vesiculation sheet has a similar topology, with a splitting

along the line co =co L . Its splitting terminates at
(a=0,co =co,s, mo =mI )
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Most (but not all) experiments on vesicle shapes in-
volve systematic observation of temperature-driven shape
transformations. Thus, in preparation for discussion of
experimental observations in the final section, it is impor-
tant to establish [23] (a) how the model parameters,
A, V, 5A, a, and Cp, may be expected to vary with tem-
perature and (b) how the trajectories through parameter
space defined by v ( T), tnp( T}, etc., intersect the
boundaries of the phase diagrams developed in the last
two sections.

Temperature increase leads to thermal expansion of
both the membrane area A and the volume V of the en-
closed aqueous interior. We focus on the simple case
where the inner and outer monolayers of the bilayer are
identical in composition and environment, so their
thermal expansivities are the same [31],

dA ln

(34)
dAp

Ap dT

The volume expansivity of the enclosed fluid (principally
water) is appreciably smaller than the membrane area ex-
pansivity. Typical values are p~ =3 X 10 4/K, while
P„=4 X 10 /K for SOPC and dimyristoyl-
phosphatidylcholine (DMPC) [20]. Thus, neglecting the
volume expansion, one obtains the temperature variation
of the reduced volume u,

= —(3P„/2)v . (35)

The behavior mp(T) depends on the thermal response
of both the membrane area and the bilayer thickness D.
The temperature dependence of D has been measured for
several phospholipids, including palmitoyl-oleoyl-
phosphatidylcholine (POPC) and DMPC, by using NMR
[32,33]. In their fluid ("liquid-crystalline" ) state, these
phospholipid bilayers exhibit a decrease in thickness as
temperature is increased, presumably due to entropic
contributions of the molecular tails, so the thermal ex-
pansivity

1 dD
D dT (36)

is negative. In fact, for a number of lipids, the volume of
a bilayer membrane in the Quid state has been shown to
change by only about 0.07%%uo per degree [33,34] and can,
therefore, be considered effectively as constant over the
temperature range explored in experiments. Thus
P~= —P„should be a good approximation, if it is as-
sumed that Vp&]zyzr &D Under these assumptions,
then, we infer a simple temperature dependence for m0,

separates the continuous bifurcations (the sheet Q from
the discontinuous budding (the sheet D). The asymptotic
limits of each of these two sheets, as a~ 00 and a~0,
are two mutually perpendicular straight lines. The twist-
ing of the sheets C and D, and the splitting of the sheet D
along the line cp=cpo(v) may be regarded simply as
consequences of the geometry imposed by these &. ~o lim-

iting cases.

V. TEMPERATURE TRAJECTORIES

dtn p

dT
=(P„/2—

Pg) )mp =(3P„/2)rnp . (37)

Eliminating T, we find a simple relation between v and
m0,

U(Tp) mp
m p(T}= mp(Tp) (38)

Temperature trajectories in the (ntp, v } plane can thus
be parametrized by the reduced equilibrium area
difference m0 for the corresponding spherical shapes.
For the sake of simplicity, we shall assume that a is tem-
perature independent (there is, as far as we know, no in-
formation available on temperature dependence of this
parameter}. Finally, for a first analysis, we shall assume
Cp =0. Under these conditions, Eq. (38) completely
specifies the temperature trajectories.

It will be useful in what follows to refer to the two
specific trajectories which ass through the points T
(ur(a), mp r(a)) and E ( 2/2, ~2(4m+4/a)) (see Fig.
6}. The corresponding initial values of mp are

mp r =tnp r(a)Ur(a),

tnp E =4m+4/a'
(39)

Figure 5 shows how the values of m0 z and maz depend
on a. Note that these curves cross.

The special trajectories T and E divide the phase plane
(v, mp} into regions of distinct budding and vesiculation
behavior. The relative positions of these special trajec-
tories define three different regimes.

(A) For intermediate values of a, both trajectories T
and E exist and m0~(ma@, as illustrated in Fig. 5.
Within this framework, different initial area differences
m0 lead to different characteristic thermally induced bud-
ding sequences (see Fig. 6).

(i) Discontinuous budding with vesicultttion. For
m 0 & m 0 g increasing temperature causes the vesicle to
follow a trajectory that crosses the discontinuous budding
transition and leads to smooth vesiculation. Note, how-
ever, that the elliptical branch remains locally stable at
the discontinuous phase boundary D~' and does not de-
velop local instability until reaching the spinodal line
Mp". Between D~' and M~" lies a region of
metastability-hysteresis. Thus, upon slow heating, a pro-
late ellipse is expected to pass smoothly through the
first-order boundary D~" and to become unstable only
just before M ", when the metastability barrier has de-
creased in height to 0 (ks T), so thermal fluctuations can
drive the shape over the barrier to some new, lower
minimum of the free energy. For large values of m0, the
region of prolate metastability can extend well beyond
the vesiculation line L~", so the new minimum may we11
be a fully vesiculated shape. In this way, it is possible
that increasing-temperature trajectories in this regime
may miss entirely the region of stable pears (see Sec. VI).
Of course, M " eventually reaches the tricritical point,
so, for smaller values of m0, the spinodal is still in the
pear region. In general, the larger m0, the smaller is the
temperature interval between D~' and L~', the smaller
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may become symmetric again (continuous reentrant tra
jectory) or it may approach another limiting shape for

v & v 2/2. We have not determined the lowest value of
mp for which this trajectory occurs. For even lower
values of mp, the trajectories miss the pear region entirely
and may reach nonaxisymmetrie or oblate and stomato-
cyte shapes.

The picture just described holds for intermediate
values of a, a1&u&a2. The lower bound, o.', =1.2, of
this regime is set somewhat arbitrarily at vT(a, )=0.72
(see Sec. III A). Numerical determination of the upper
limit az, defined by mo T(az)=ms E(a2) (see Fig. 5), is

quite dif5cult. We were able numerically to follow the
tricritical point up to a=6.5, which is still in the inter-
mediate regime. For large a, the asymptotic analysis of
Appendix 8 shows that mph &mp T. Thus we can con-
clude 6.5&a2& ~, but we do not know how tight this
lower bound is. When a & a2 or o: & al, the characteristic
budding scenarios are different from those described
above.

(8) For large values of a(a & a2) both T and E trajec-
tories persist, but now reversed in order from regime (A).
Again, there are three scenarios for thermally driven
shape evolution.

(i) Discontinuous budding with vesiculation still occurs
for mp & mp T. The discussion of metastability-hysteresis
parallels that given for regime (A), scenario (i).

(ii) Continuous budding with vesiculation now becomes
possible for mp E & mp & mp z' as a result of the change of
ordering of the T and E trajectories. Note, however, that
the window in mp for this to happen is very narrow, since
the separation between mp E and mp z. is small. Thus, to
see this behavior, a delicate tuning of the initial area
difference would appear to be necessary.

(iii) Continuous budding without vesiculation remains a
possibility for mp &mp z. Upon heating, the vesicle fol-
lows a reentrant sequence, in which up-down symmetry is
first broken in passing the continuous boundary CI "and
then restored, as this boundary is crossed again. In fact,
there exists a smallest value of m p below which the bud-

ding associated with prolate ellipses and pears is no
longer present (as shown by the shaded region in Fig. 5).
We have not calculated this value as a function of a.

(C) For small values of a(a &ai), the situation is less

1.30-
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uous budding
siculation

1.20-
1.15-
1.10-
1.05 Inset0'@ reentrant
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us budding
culation

Ing wig ye»culatio

FIG. 5. Budding as a function of the equilibrium area
difference mo and a. For a) 6.5 the curve mo T can no longer
be obtained numerically. The schematic representation for
large a (inset) shows the small region where continuous budding
transitions with subsequent vesiculation exists. The gray area
shows schematically the region in which the transition from
prolates to pears is no longer present.

is the size of the vesiculated bud, and the more likely is
hysteresis large enough to miss the pear.

(ii) Discontinuous budding without vesiculation For.
mp T & mp & mp E the spherical vesicle, upon heating,
undergoes discontinuous symmetry breaking; however,
upon further increase of temperature, the vesicle will ei-
ther become symmetric again (discontinous reentrant
trajectory) and/or it will approach another limiting shape
for v & v 2/2 [35]. Since we have not analyzed shapes for
v &~2/2, we cannot yet decide between these alterna-
tives.

(iii) Continuous budding without vesiculation For.
mp &mp z, the vesicle undergoes continuous symmetry

breaking, as it passes into the pear region. Beyond this, it
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FIG. 6. Temperature trajectories in the
(v, mo) plane for a=4. A11 trajectories are
represented as thin lines, with arrows pointing
out the direction of a temperature increase,
starting from a spherical shape but with
different initial area differences mo. For large

mo, one obtains discontinuous budding with
vesiculation; for a small intermediate range of
mo, discontinuous budding without vesicula-
tioa; and, for even smaller mo, continuous
budding with reentrant behavior. The larger
mo, the smaller the vesiculated bud at the limit
line L Pear
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clear, since the evolution of the tricritical point with a
has not yet been systematically investigated. For
m0&m0z, there is discontinuous budding followed by
vesiculation, and, since the transition to the pear region is
Srst order, we expect hysteresis. For values of mp near to
but below m0z, we expect a reentrant trajectory, in
which the transitions into and subsequently out of the
pear region are discontinuous.

In summary, the ADE model exhibits a variety of
different temperature trajectories (even for a fixed value
of a), depending on the equilibrium area difFerence me.
In particular, continuous budding with subsequent vesi-
culation occurs only in a restricted range of a and, even
there, over a very narrow range of m0. These results
were obtained under the assumption of zero spontaneous
curvature. Analogous results for nonzero C0 would re-
quire knowledge of the temperature dependence of C0,
for which there are so far no measurements available.
Assuming C0 to be temperature independent, one obtains
the same scenarios for budding and vesiculation as dis-
cussed above, since nonzero C0 just shifts the scale on the
m0 axis. In particular, the presence of a nonzero spon-
taneous curvature does not alter the value of a& below
which all budding transitions are discontinuous.

VI. COMPARISON TO EXPERIMENTS

We close with a few comments on the relation between
the predictions of the ADE model and the available ex-
perimental observations. It is convenient to structure
these remarks in the form of questions and answers.

A. Can the budding and vesiculation scenarios
described in Sec. I be explained by the ADE models

Experiments [6—9] apparently see both continuous and
discontinuous budding transitions, followed by vesicula-
tion [see Sec. I, scenarios (a) and (b)]. Neither the SC nor
the hA model can explain this diversity, since each of
them contains one type of transition but not the other.
As we have seen, the ADE model does allow both con-
tinuous and discontinuous budding, depending on the
value of a (and, with some lesser significance, Co). It
even allows continuous and discontinuous transitions for
a single value of a, provided the initial area difFerence m0
is adjusted appropriately. In this sense, the ADE model
is at least qualitatively successful.

On the other hand, closer examination reveals
diSculties. To make a quantitative comparison with the
experiments we need to know what value of a=a/a to
use. In Appendix A, we estimate this ratio as of order
unity for common phospholipids (a = l. 1 for DMPC and
a=1.4 for SOPC). The only direct measurement of a
that we are aware of is for SOPC+POPS mixed-lipid bi-
layers and used a tether-pulling technique [27]. This
measurement gives a = 1.1+0 8 consistent with our expec-
tation but with a large uncertainty. These values of a are
substantially smaller than a2, so the theory predicts that
any temperature-induced budding should be discontinu-
ous. Note that this prediction is independent of both the
initial area difference mo (see Fig. 3) and the value of the

spontaneous curvature. Such discontinuous budding
[scenario (b)] has, indeed, been observed [8]. But, within
this context, continuous symmetry breaking followed by
a discontinuous shrinkage of the pear neck [scenario (a)]
[7] cannot be explained by the ADE model. Not only is
the continuous symmetry-breaking transition not possible
for this low value of a but, in addition, the discontinuous
transition from weak pears to strong pears or to a vesicu-
lated phase is not available in the ADE model for any
value of a.

B. Is there a possible explanation
for the inconsistency between the predictions

of the ADE model with a = 1 and scenario (a)T

It is not clear at this writing whether this disagreement
for budding scenario (a) is serious or whether it is an ex-
perimental artifact. One possibility provides a fairly
straightforward explanation of the continuous symmetry
breaking: It is not always easy to distinguish between
unilamellar and multilamellar vesicles in the laboratory.
The reason for this difBculty is that observations are done
by light microscopy and, even with sophisticated tech-
niques, it is impossible to resolve distances less than a few
tenths of micron. Thus many determinations of mem-
brane thickness are inferential and depend on looking for
regions of lamellar separation, difFerences between the
behavior of difFerent vesicles from the same preparation,
etc. If multilamellar vesicles are present, then these vesi-
cles would have a larger effective value of a [36]. For a
bilamellar vesicle, for example, treating both bilayers as
elastic fluid sheets (as in Appendix A) leads to an efFective
a,fr=a(Db;„„„/D),where a is the single-bilayer value
and Dp»oyez is the interbilayer distance. Suppose

2D +D
water layer separating the two bilayers. If Dz„;&=0, the
enhancement of a is a factor of 4. For D~ ~ &0, it could
be appreciably larger. For a & a2, there is e range of ini-
tial area difFerence for which continuous budding fol-
lowed by smooth vesiculation can occur. But, the discon-
tinuous transition observed in scenario (a) between a
weak pear and a narrow-necked or fully vesiculated shape
still remains unexplained, without some additional mech-
anism [37].

Another possible explanation is that the shapes
identified in scenario (a) as stable weak pears are, in fact,
slow fluctuations and/or unstable dynamical intermedi-
ates. Experimentally, the issue centers on how to distin-
guish between continuous and discontinuous shape tran-
sitions. In practice, the experiments are done [7,8] by
slowly ramping up [38] the temperature, while watching
the shape evolution via video microscopy. In the early
days temperature ramping rates of 0.3 C/min were com-
monly used. More recently, DMPC experiments have
been done with rates of 0. 1 C/15 min [7]. Ordinarily,
shape equilibration after a temperature change takes only
a few seconds and fluctuations are weak. Near the transi-
tion, however, strong shape fluctuations have been ob-
served, sometimes lasting for periods of several minutes
or more [39],so there are clearly some long time scales in
the system. Furthermore, the observed shape must, of
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course, evolve smoothly, as it passes through a transition,
whether the transition be first order or second. Thus,
even for discontinuous transitions, weak pears will be ob-
served as dynamical transients.

These issues have not yet been adequately explored;
however, the crucial questions are, what is responsible for
the long time scales and can a Quctuating equilibrium
shape be distinguished from a slow dynamical transient?
One interpretation of the observations is that the transi-
tions are continuous and that the long time scale is the
usual critical slowing down characteristic of a second-
order transition. Another interpretation, which we shall
now explore, is that the long time scale is associated with
approach to the spinodal line (M ") and that the ob-
served weak pears are iluctuations and/or dynamical
transients. From this perspective, the apparent extended
region of weak pears is, in fact, a region of metastable
prolate ellipses in which there are long-lived thermally in-
duced pear fluctuations. In this interpretation, the ob-
served discontinuous transition to a narrow-necked or
fully vesiculated state is just the termination of metasta-
bility marginally before the spinodal Mi'", as a thermal
fluctuation finally drives the system over the (small)
remaining free-energy barrier and it falls to a new low-

energy stable equilibrium.
There is some experimental evidence to support this in-

terpretation. In the experiments [40] on DMPC, unex-
plained fluctuations of the "stable" pears back to the pro-
late ellipse were occasionally observed. Furthermore, in
recent experiments on SOPC and DMPC [39] pear fluc-
tuations lasting longer than 1 min are regularly observed
[41].

To explore the plausibility of this interpretation, we
must understand the characteristic time scales of the sys-
tem. If the transition is first order (i.e., hysteretic), there
are at least two time scales involved: The (locally) stable
symmetric shape is, of course, subject to asymmetric
(pearlike) fluctuations. These fluctuations are normally
overdamped by the viscosity of the surrounding Quid, and
they have a characteristic relaxation time which we shall
call ~, . Another scale, which we shall call ~z, is the
characteristic time for giant fluctuations, which carry the
system over the kinetic barrier to a new minimum. When
the height of the barrier is large compared to the thermal
energy, these two scales are distinct, with ~, && v.z.

A crude estimate of ~& can be obtained as follows:
Consider a shape fluctuation which drives the symmetric
prolate towards a pear. If the amplitude of this mode is a
(measured in units of R), then the restoring force for such
a iluctuation is (5 W/5a )a, which involves the second
variation of the bending energy in the direction of this
mode. At the instability, u =u„this quantity changes
sign. Therefore 5 $V/5a =c,a(v —v, ), with a numerical
coefficient c& which may be determined by diagonalizing
the second variations. The coupling of the membrane to
the surrounding liquid leads to a frictional force which
has to balance the restoring force for such an over-
damped motion. The frictional force is given by
cz(B,a)riR, which follows from dimensional analysis,
where g=10 erg sec/cm is the viscosity of water and

cz is another numerical coefficient. Taking (B,a ) =a /~„

we find the time scale

r, =(c2/c, )re /[a(v, —v)] . (40)

&~-—(cq/2c3 )re /(sk+T)' =50(c2/2c3~ ) sec

at the transition. One would need to know all the numer-
ical factors for a more precise quantitative calculation;
however, it is clear that for pearlike Quctuations a relaxa-
tion time on the order of minutes is entirely plausible
near the transition. Of course, when the transition
occurs, the slow difFusive motion over the barrier pro-
duces pear shapes as dynamical transients.

In summary, pear shapes may show up both as slow,
overdamped dynamical fluctuations and as dynamical
transients of the metastable prolate shape, as it finally be-
comes unstable. The discrepancy between observed
scenario (a) and the theory would be resolved, if such
shapes have been mistaken for stable pears.

C. The ADK model relies on variation
of the model parameter mo (the reduced value

of the initial relaxed area dHFereuce)

to explain the diversity of shapes
and thermal trajectories seen in experiment.

Is the range of values of this parameter required
to fit the experiments physically reasonable'

This area difFerence is set at the time the vesicle is
formed. Subsequent to closure, it can only change by
lipid flip-flop, a process which we have assumed to be
slow. Vesicle closure takes place in the lab, as water is
added to the dry lipid [25], by a mechanism which is not
understood in detail. Nevertheless, some crude estimates
can be made: If the two monolayers (inner and outer} are

For typical expen'mental values, R = 10 pm for the size of
the vesicle and ~=10 ' erg for the bending ridigity, we
obtain r&-—(10 sec)[(c2/c& )/(vc —v )]. Thus, far from the
instability [i.e., for (v, —v)=0(1)], we expect a time
scale of several seconds for these long-wavelength shape
Quctuations, which is consistent with typical observed
times for achieving mechanical equilibrium far from any
shape transition. However, close to the spinodal point
(and also, of course, close to any real second-order transi-
tion), r, diverges due to the factor (v, —v ) in the denomi-
nator.

The second time scale, ~2, which corresponds to the
mean lifetime of the metastable prolate, is given by an ex-

', W/k~ T
ponential ~&=~&e . Here, ~, is the typical "micro-
scopic" time, which is the inverse of an "attempt frequen-
cy," and b, W is the energy barrier between the (metasta-
ble} prolate and the saddle point. Assuming a Landau-
type expansion,

W=a[c, (v, —v)a /2 —c3a /4+c~a /6],
we estimate the energy barrier b, 8'near the instability as
b, W=~cf(v, —v) /4c3. The two time scales, r, and r2,
become comparable when 58'= kz T, i.e., for
(v —v, )=(2c3 /c&)(k+T/a)' . Using this estimate in
(40) and taking ksT=4X10 ' erg gives a relaxation
time
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identical in composition and if the inner and outer fluids
are the same, then the area difference is just
EAo(T)=(N'"' —N'")ao(T), where ao(T) is the optimal
(relaxed) area per molecule at temperature T, and N'"'
and N'" represent the numbers of lipid molecules in the
outer and inner monolayers, respectively. For a relaxed
spherical vesicle with a radius of 10 pm, a bilayer thick-
ness of 3 nm, and a mean area per molecule of 0.6 nm,
the average number of lipid molecules in each monolayer
is N'=2 X 10, whereas the optimal difFerence in the num-
ber of molecules between the two monolayers (when both
monolayers are unstretched) is hN =N'"' N'"—=10 . Of
course, initial closure may take place in configurations
other than spherical. The relaxed area difference goes
generally as CRD, where C is a constant, R is a typical
vesicle dimension, and D is the bilayer thickness. For the
sphere, C=8m and ha0=1. Other closure geometries
lead to values of the constant C which can differ from
this by factors of order unity, so we expect dao of order
unity with typical fluctuations of the same order. This is
broadly consistent with the range of shapes observed ex-
perimentally [7,8]. Note that b,N of order 10 is much
larger than ~N, so random fluctuations of equal-area
monolayers cannot account for the required area
difference.

D. We have already observed [7,8] that precooling
a vesicle tends to induce outside budding

(when the vesicle is rewarmed).
Can this be understood in the context of the ADE models

These experimental observations [7,8] relate to vesicles
which are cooled so that their surface area shrinks and
they become turgid spheres. Characteristically in this
state, all observable shape fluctuations cease. This is con-
sistent with a state of lateral tension in which the higher
elastic-energy scale, KR2 (see Appendix A), comes into
play, and the interior pressure rises dramatically. The
question, then, is, can we in some way link this increase
of interior pressure to an increase in hao, which would,
in turn, explain the subsequent exterior budding? An in-
triguing suggestion of Boroske, Elwenspoek, and Helfrich
[42] provides just such a link. Helfrich proposed in
another context that the flow of water through a mem-
brane may produce a parallel transport of lipid along the
pressure gradient. Thus, in our context, the water flow
caused by the pressure gradient would carry lipids from
the inner to the outer monolayer, thereby increasing Dao
and favoring outside budding. How this "induced" flip-
flop might work at a microscopic level is not clearly es-
tablished. One possibility is a simple entrainment of the
lipid by the water flow. Alternatively, the stressing of the
membrane might cause the formation of microscopic
pores, connecting the inner and outer leaves of the bi-
layer. Whatever the mechanism, Helfrich estimates that
one lipid molecule is transported by flow for every 5 X 10
water molecules. Using this figure, we may estimate a
rough rate for the induced flip-flop of 10 lipid molecules
for each 10'C of cooling beyond the unstressed sphere.
As outlined in the preceding paragraph, this is just the
right order of magnitude to produce a significant shape

change favoring outside vesiculation of small buds (see
Fig. 6).

E. The ADE model has some attractive features
but also some drawbacks.

What experiments might be crucial to establishing its viability?

First, it should be pointed out that no simultaneous
measurements of material parameters and shapes (or
shape trajectories) has yet been done. Thus it would be
very useful to be able to measure s and a (e.g., by tether
pulling [27]) for some vesicle (thus determining a) and
then to observe shapes for the same vesicle as tempera-
ture is varied. This would allow a straightforward com-
parison of observed and predicted shapes, which has not
so far been possible. Such a measurement for a variety of
vesicles could also put to rest any doubts about whether
observed vesicles are unilamellar or multilamellar.

The main outstanding qualitative difficulty with the
ADE model is the fact that the equilibrium behavior of
the model is inconsistent with the observed budding
scenario (a) (Sec. I). To establish the correctness of the
hysteretic interpretation of the observations proposed in
Sec. VI B above, it will be necessary to study shape fluc-
tuations in this regime under careful temperature control
and over observation times long enough to distinguish
slow fluctuations from thermal drifts and dynamical tran-
sients. Experiments of this type are in progress [39].

If a can be measured and if continuous and discontinu-
ous transitions can reliably be distinguished, it will then
be interesting to see whether the tricritical point can be
located directly. In this case, the order of the budding
transition would crucially depend on the value of the pa-
rarneter mo, and sufficient variations of mo for the same
vesicle (i.e., at fixed a) would lead to budding transitions
of different order. Likewise a systematic investigation of
the dependence of the temperature trajectories on the
equilibrium area difference mo would lead to more in-

sight, even for the case where the budding transition is al-
ways discontinuous. This equilibrium area difFerence
could be controlled either by using the precooling mecha-
nism described above or by forced lipid transfer through
a transmembrane pH gradient as in Ref. [9]. In such a
study one could use the temperature change necessary to
induce budding and the size of the vesiculated bud as im-
portant indicators to locate trajectories on a phase dia-
gram like Fig. 3. One could then test the prediction that,
the more lipid molecules are transferred to the outer lay-
er, the smaller is the increase in temperature necessary to
create budding and the smaller is the radius of the vesicu-
lated bud. We hope that this kind of study may be possi-
ble in the not-too-distant future.

ACKNOWLEDGMENTS

We are grateful to Evan Evans for seminal discussions
concerning the effects of area-difFerence elasticity. We
acknowledge M. Bloom, R. Lipowsky, and E. Sackmann



MIAO, SEIFERT, WORTIS, AND DOBEREINER

for their support and encouragement. L. M. wishes to
thank M. Nikolic for her technical help with the metasta-
bility analysis. This work was funded by the National
Science and Engineering Research Council of Canada.

APPENDIX A: THE NONLOCAL BENDING ENERGY

In this appendix, we sketch a derivation [17] from first
principles of the Hamiltonian for the ADE model (4).
This exercise makes explicit the origin and magnitude of
the various terms, and it will allow us to estimate the ra-
tio a of the two bending rigidities.

Consider first one monolayer leaf of the full bilayer
(fluid) membrane. We may imagine this leaf to be
stratified into a "head" region (h) and a "tail" or "chain"
region (c). The head and chain regions have (as a conse-
quence of all the intermolecular interactions [43]} pre-
ferred (relaxed} areas per lipid molecule ah o and a, o, re-

spectively, which are not in general the same. In the
monolayer, the actual head and chain areas per molecule,
Qh and Q„will differ from these preferred values. We
shall assume as our starting point that the elastic energy
per molecule associated with this difference is

+h 5h

Qh, p

K,5, =0,
a,,p

(A3)

Q=f +a0 p '

Qp
L

—1 +—[(C,+C2)—Co)

Q—hCo —1 (C)+C2}+a'gC)Cq
Q,

where the parameters are given by

(Kh+ K, )ah pa, p
Qp=

EhQ p+E Qh p

E—:Eh+E, ,

(A4)

(A5)

(A6)

which selects as the reference surface the so-called neu-
tral surface [44]. With this choice, we arrive at the fol-
lowing expression for the energy per molecule correct to
quadratic order in the small quantities, (a/ao —1) and
(5C):

f(a, C),C2)
2

f(ah, a, ) =—,'Khah p(ah /ah p
—1) +—,'K,a, p(a, /a, p

—1)

(Al)

KhK, (Kh +K, )ah oa, o'~' 5
(K„a,o+K, ah p)

(A7)

where Kh and K, are area-stretching elasticities (or area-
compressibility moduli) for the corresponding regions of
the rnonolayer. In writing Eq. (Al}, we picture the action
of the forces in the two regions as being separately local-
ized in two ideal surfaces separated by a distance 5. If
the monolayer were planar, then Qh and Q, would be
equal. When the monolayer is bent, this equality no
longer holds and, as we shall see below, it is the nonzero
value of the separation which is responsible for both the
spontaneous curvature and the bending moduli of the
monolayer. The dimensionless quantities, (ah/ah p 1)
and (a, /a, o

—1), are the local elastic strains associated
with dilation or compression of the separate strata of the
monolayer, while Kh(ah/ah o

—1) and K, (a, /a, o
—1) are

the associated stresses. Note that both the stresses and
the strains are isotropic, as befits the fluid state of the
membrane.

Since the radius of curvature of the membrane is typi-
cally large on the scale of 5, it is useful to define a suitable
reference surface to describe the macroscopic shape of
the (monolayer) membrane. The area per molecule a re-
ferred to this surface must be the same for heads and
tails. It follows from geometry that

and

1 (ah p a p)(Kha p+K ah o)
Cp

—=—
5 (Kh+K, )ah pa, p

KhK (Kha, o K ah, o)(ah,o,o)

(Kha, p+K, ah p)

(A8)

(A9)

The monolayer energy (A4) involves both stretching
(a) and bending ( C, and C2 ) degrees of freedom. When
the membrane is in its unstretched ("flaccid" ) state, then
~(a —ap ) lap ~

&& 1. If, furthermore, all local radii of cur-
vature are large on the scale of 5, then ~5C, 2 ~

&&1. Un-

der these conditions the form of Eq. (A4} is that of a local
Landau functional containing terms through second or-
der in these small quantities in the most general possible
way consistent with isotropy and fluidity of the mem-

brane and a shape dependence which observes Euclidean
invariance. At mechanical equilibrium, the energy (A4)
is a minimum, subject to any given constraints on the
number of lipid molecules (N= f1'/ )aand the en-

closed volume (which only involves the shape degrees of
freedom). We shall assume in what follows that the lipid
is insoluble, so N may be fixed by a Lagrange multiplier

p. Thus the condition for equilibrium is

ah =a[1+5h(C, +C~)+5hC, C2+O((5hC) )],
(A2}

a, =a[1—5, (C, +C~)+5,C, C~+O((5, C) )],

where C, and C2 are the local radii of curvature and 5h
and 5, (5=5h+5, ) are the distances from the reference
surface to the ideal head and chain surfaces, respectively.

By introducing Eq. (A2) into the elastic energy (Al),
we eliminate Qh and Q, in favor of Q. In doing this, it is
convenient to choose 5h and 5, so that

f (a, C„Cz)—p
dA

5Q Q

which leads to the relation

Q

Qp

=0

Q —apx 1— + ~

Qp

—1 =aCo(C)+Cq)+
Qp

(A10)

(Al 1)
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There is a cancellation on the right-hand side of Eq.
(All) which assures that the term linear in (C, +C2)
disappears, so the lipid density is uniform over the neu-
tral surface up to terms of order (5/R ), where R sets the
scale of the vesicle size. Thus, under the conditions out-
lined above, the cross term in Eq. (A4) may be regarded
as a small density-dependent correction to Co (omitted
henceforth), and the elastic energy of the monolayer may
finally be written,

and

Collt +Collt —(C +C ) dollt(C2 +C2 )

C'"+C'"=(C,+C )+d'"(C +C )
(A15)

We now substitute Eqs. (A14) and (A15) into Eq. (A13) to
obtain the elastic energy functional for the full bilayer
vesicle. It is again [cf. Eq. (A3)] convenient to choose for
reference the bilayer neutral surface,

f ( A, C„C2}=fo+ao —(A/Ao —1)
E K outd ou't K ind ill

=0
A out A in

0 0
(A16)

+—[(Ci+Cq) —Co] ', (A12)
With this choice, the elastic energy functional for the bi-
layer reads

dA out dA'"
(A13)

where A is the actual area of the neutral surface and
Ap NQ0 is the preferred area of N lipid molecules.

Important conclusions already follow from Eqs.
(A5)-(A9) for the monolayer parameters. We may anti-
cipate, for example, that ai, o-a, o&5 and Ks-K„so
Co%1/5 and ~-K5 —~ag[)0. Thus, for the typical
phospholipids of Table I, we can estimate Kz -K,
-K /2-100 ergs/cm2 and 5-20 A, so a -2 X 10 '2 erg,
which is of the correct order of magnitude.

%'e turn now from the energetics of the monolayer to
that of the full bilayer vesicle. We take the point of view
that the bilayer is composed of two adjacent monolayers
(labeled by i =in, out) constrained to lie at a fixed separa-
tion D (perpendicular distance between the monolayer
neutral surfaces) [45]. The total elastic energy of the bi-
layer is

(Knot+Kin) A
W=const+

2
{A/Ao —1)

where

+— (hA b, Ao) +—O(D/R)
AD

+as It) d A [Ct Cq+O(Ci 2D/R)],

{Kout+Kin) A outA in

Ap-=
g out A in +~in A out

0 0

K =K'"t+ Kin

~out~in A 0 D2
(K out A in +K in A out

)0 0

+ A C]+C2 Cp +0 C& 2D R

(A17)

(A18)

(A19)

(A20)

where each monolayer has the energy density,f'= f'(A', C'„C2)given by Eq. (A12), and the variables
A ', C &, and C2 refer to the area and shape of the separate
neutral surfaces of the monolayers. We now refer these
quantities to a single intermediate reference surface for
the bilayer whose position is a distance d'"' inside A'"'
and d'" outside A '" (D =d'"'+d'"). Geometry then re-
lates the areas A' and curvatures C& 2 of the individual
monolayers to those of the (new) reference surface,

A'"'= A+d'"'fdA(Ci+C2)+(d'"') fd A(C Ciq ,}
(A14)A"= A d'"gdA{C, +—C2)+(d'") (t}dA(C C )

and

KoutCout +KlnC1n
p K pCp=

Kout+ Kln
(A21)

K =K +K
g g g

0 0 0 0K outK ln( K oUt A ill K ill A ollt
)( A oUt A ill

)

(K OAUln+KlnAOU')
0 0

(A22}

The first term in Eq. (A17} represents the overall stretch-
ing energy, which is small for a flaccid vesicle. The last
term is a Gaussian-curvature contribution, which de-

TABLE I. Estimate of the nonlocal bending energy. The D values, corresponding to roughly two-
thirds of the total bilayer thickness, are an estimate of the thickness of the hydrocarbon region, which
we use to approximate the separation of the monolayer neutral surfaces.

Lipid

SOPC (15 C)
DMPC (29'C)

K (10 ' erg)

0.90+0.06'
0.56+0.06'

K {erg/cmt)

200+13'
144+8'

D (A)

28.5+1.5
23+ lc

1.4
1.1

'Reference [20].
There has not been specific measurement of the thickness of SOPC lipid bilayers. This value is an esti-

mate obtained from the thickness data given for DOPC and DSPC lipid bilayers in Ref. [46].
'Reference [46].
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pends only on vesicle topology [12]. The remaining terms
give the free-energy functional of the ADE model, Eq.
(4). In particular, the third term is the so-called nonlocal
bending energy, which is special to the ADE model.

Let us estimate the nonlocal bending energy. We con-
sider only the simplest case, where the liquid bilayers are
completely symmetric. Then, the mon olayer area
stretching moduli E' are related to the bilayer stretching
modulus K (which can be measured experimentally) as

the limiting shape of two kissing spheres. Let r =R, /R2
be the ratio of the radius of the smaller sphere (R i ) to
that of the larger sphere (R2). The reduced volume v

defined in Eq. (6) can then be expressed as

1+r
23n- {Bl)

( 1+r2)3/2

In the limit v ~1, the approach of r to zero is described
by a series in powers of (1—v)'/,

K'"'=K'"=K/2 (A23) r =Q—', (1—v)' +—'(1—v )

The ratio of the nonlocal bending constant to the usual,
local bending rigidity is +Q—' —"(1—v) +O((1—v) ) . (82)

K EDa:——=
K 4&K

(A24)
The reduced geometric area difference mL (v) of this lim-
iting shape is

In Table I, we give the measured data for E, K, D, and the
resulting estimates of a for SOPC and DMPC vesicles.
For a related estimate of a see Ref. [15].

APPENDIX B: PHASE BOUNDARIES
FOR REDUCED VOLUMES NEAR UN' Y

In this appendix, we discuss the asymptotic behavior of
the various phase boundaries [Eqs. (20) and (21}] dis-
cussed in Sec. III in the limit v ~1.

Analytical calculation of the vesiculation boundary
proceeds from the geometrical constraints imposed by

I

1+r
mL (v)—:42rba =4m

( 1+r2)1/2

=4n+42rV 2/3(1 —v)'/ +O((1—v)) .

(83)

In Sec. II, we established that 6„'=2cc, where c0 is the
dimensionless Lagrange multiplier coupled to the in-
tegrated mean curvature M. The Lagrange multiplier
corresponding to the two-sphere limiting shape, C0, is
found to be 1/R, +1/R2 [47]. Making use of this fact,
we evaluate 6,' at the vesiculation point as

cpL(v}—:CpLRg=
1 1

(R +R )'/ =(1+r )'/ 1

R) R2 r

' 1/2
V3/2 2 1 7

(1—v)i/2 3 6 12

+O{(1—v)) . (84)

Equations (83}and (84}lead straightforwardly to Eq. (20).
The phase boundary Dv ' marks the loci of the intersection points of the energy curves of the symmetric (s) and

asymmetric (a) branches,

~, (a, v, rnp 22}—:G, (v, m, D)+ (mp D
—m,—D)

a

= W, (a, v, mp D)

G.{v,m. 22)+ —(mp22 —m. D)
a (85}

where mp D is related to m, D and m, v via the mapping (11),i.e.,

mp D =m, D+(1/a)G, '(v, m, 22)

=rn, D+(1/a)G,'(v, m, n) .

In principle, the loci mo L, of the discontinuous boundary, along with m, D and m, ~, should be exactly solved for from
Eqs. (85) and (86). Typically, m, &Am, n. In the following, we give only the leading asymptotic behavior of D ",as
found by an approximation. Observe that, as v —+1,m, D approaches 4n as [48]

rn, D =4m+(4n/3)(1 —v)+O((1 —v)3/ ) .

Accordingly, the bending energy G is given by

G, (v, m, ) =8@+0(1—v), .
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so

W, (a, v, mp n)=8tr+O(1 —u)+ —{mp n 4—sr[1+ —,'(1—u)+O((1 —v) ~ }]I . (89)

We approximate the bending energy for the asymmetric branch near the discontinuous transition point by that of the
two-sphere vesiculated shape,

W, (a, v, mph}=2X8n+ —{mpn —4m[1+v 2/3(1 —v)' +O(1—u}]J . (810)

Substituting these two bending energies into Eq. (85), we
arrive at the leading-order asymptotic behavior of the
discontinuous transition boundary, Eq. (21).

Concerning the line MI'", where the symmetric prolate
ellipse develops an instability with respect to a mode
breaking the mirror symmetry, it is more diScult to
make a rigorous asymptotic statement; nevertheless, our
belief is that, to leading order, mp st also diverges like
const/(1 —u)'~ . For convenience, we construct the ar-
gument within the context of the b, A model. In the limit
v ~1, the symmetric shape is a slightly deformed sphere,
which can be well represented by the spherical harmonics
'Ft p(8 P) with even I. On the other hand, the first pertur-
bative mode which breaks the mirror symmetry can be
described by Y&p(e, p) with odd Ps For s.uch nearly
spherical shapes, the variational free energy 4[S],
defined for the hA model as [23]

tP(X,P, Cp', [S])=G [S]+X A [S]+PV[S] 2ttCpM —[S],
(811)

can be expressed in terms of the amplitudes {at] of the
spherical harmonics [22,23,49,50]. Varying 4 with
respect to {at] leads to algebraic equations in {at],which
are equivalent to the Euler shape equations. Starting
from those values of X, P, Cp which correspond to the
1=2 instability of the sphere [22,23,49,50] and varying
these parameters continuously, we get solutions having
nonzero amplitudes for the even spherical harmonics and
zero amplitudes for the odd spherical harmonics. These
solutions are prolate ellipses with surface area A, volume
V, and integrated mean curvature M, given as

A =
A( X, ,PC )p, V=V(X,P, Cp), M=M(X, P, Cp) .

(812)

Equations (812) can be inverted to yield

X=X(A, V,M), P =P(A, V,M), Co=Co(A, V, M) .
(813)

(814)

At the onset of the instability, the smallest eigenvalue of
the matrix of coefficients, fi i (X,P, Cp), changes sign

from positive to negative. A solution for the {atj with
nonzero values for odd I's first develops at this point.
The matrix elements fi t (X,P, Cp) in Eq. (814) contain

only the scaling form [51] (CpR „)(1—u)'~2. It is reason-
able to anticipate that the condition on the smallest ei-
genvalue at the onset of the instability will lead to an
equation of the form

(CpR„)(1—v)'~ =const . (815)

The Legendre transformation, (2CpR „)=t}G,/t}m, com-
bined with the mapping (11}then implies

1 const
~o,m ™c+Gs 1/2a a(1 —u)

(816)

To check this conclusion, we performed a numerical
analysis of the instability for reduced volumes up to
u =0.994. The numerical data are consistent with Eq.
(816). Furthermore, the numerical data show that
const=2(2. 8) & 2()/3/2), so that, in conclusion, the spi-
nodal line Mv" has the same asymptotic divergence
[1/(1—u)'~ ] as the discontinuous boundary and the
vesiculation boundary (as v~1) but diverges faster than
those two boundaries. This implies that the spinodal line
extends beyond the vesiculation boundary for values of v

near unity.

Near the onset of the symmetry-breaking instability, the
part of 4 that depends on the amplitudes of the odd-l
spherical harmonics takes the form

4(X,P, Cp, {ai,i=odd) )= g fi i (X,P, Cp)at a,
ll, l~ =odd

+O(ai at at ) .
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