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The phase separation of binary mixtures in a semi-infinite geometry is investigated both by a phenom-
enological theory and by numerical calculations using a discrete equivalent of the descriptive equations.
In the framework of “model B” (which describes solid binary mixtures), attention is paid to a proper
treatment of the boundary conditions at the free surfaces. We confine ourselves to short-range surface
forces and consider parameter values that correspond to both nonwet and wet surfaces in thermal equi-
librium. During the initial stages of spinodal decomposition, after a quench from considering an initial
condition that corresponds to a completely random concentration distribution, one finds a rather rapid
growth of a thin surface enrichment layer of the component that is energetically preferred by the sur-
face. This layer stabilizes a growing concentration wave in the direction normal to the surface, whose
oscillations are damped to zero as one goes into the bulk. Studying concentration correlations in the
direction parallel to the surface at a distance z from it, one can define a length scale /(z,¢) describing the
coarsening of the growing domains. We find that /;(z,t)= 4 (z)+B(z)t* for large ¢, with an amplitude
B(z) that increases as z—0 and an exponent a which is close to that for Lifshitz-Slyozov growth, viz.,
a z% This increase is due to an orientation of the growing elongated domains parallel to the surface
near z =0. There is surprisingly little influence of the wetting transition on these phenomena—even for a
wet surface the growth of the wetting layer is only logarithmic in time for short-range surface forces, and
hence does not significantly affect phenomena on the faster time scales of spinodal decomposition. Ex-
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perimental findings on the interplay of spinodal decomposition and wetting are critically discussed.

PACS number(s): 68.45.Gd, 81.30.Mh, 64.75.+g

I. INTRODUCTION AND OVERVIEW

In recent years there has been an enormous interest—
both theoretical and experimental—in the equilibrium
aspects of surface effects on phase transitions [1-14]: in
a thin film geometry, surface effects may lead to a shift of
the transition away from parameters where it occurs in
the bulk (e.g., “capillary condensation” of fluids confined
between plates [1-3]); in a semi-infinite geometry, sur-
faces may lead to a change of the critical behavior locally
near the surface for second-order transitions [4,5], or to
surface-induced ordering or disordering for first-order
transitions [12,13] (e.g., “surface melting” [13,14]). These
phenomena can also be interpreted as wetting phenomena
[6-10], i.e., a phase transition of the surface (excess) free
energy where an interface (between coexisting phases) un-
binds from the surface.

Much less is known about the kinetics of such ordering
phenomena under the influence of surfaces, and this is the
problem addressed in this paper. Very recent experi-
ments studying the kinetics of unmixing of thin films of
small molecule fluid mixtures [15], polymer solutions
[16], and polymer blends [17-20] have yielded a wealth
of unexplained details with regard to the interplay of spi-
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nodal decomposition [21-24] and wetting, and clearly a
detailed theoretical analysis of such phenomena is very
interesting. Since the pioneering work of Cahn and Hil-
liard [24] spinodal decomposition in the bulk has been
studied extensively (see Refs. [21-23] for reviews) and
also the growth kinetics of wetting layers has been con-
sidered occasionally [25-31]. However, the latter work
almost always deals with systems having a nonconserved
order parameter, and hence is inapplicable to binary mix-
tures where the order parameter (concentration difference
between the average concentration and the critical con-
centration) is conserved. Recent studies considering sur-
face effects on spinodal decomposition [32,33] have used
an ad hoc boundary condition at the surface, which is
clearly not at all suitable for a consistent incorporation of
wetting phenomena. However, for studying surface
effects on the dynamics of concentration fluctuations in
mixtures a correct treatment of the boundary conditions
at the surface is crucial.

The problem has recently been addressed [34—36] con-
sidering an Ising-lattice model of a binary mixture and
deriving the dynamic boundary conditions at a hard wall
from the master equation for a Kawasaki [37] direct ex-
change model in mean-field approximation. Gratifyingly,
near the critical point of the mixture essentially
equivalent result have been obtained thereafter [38] from
a much more general approach using symmetry con-
siderations only. These dynamic boundary conditions (in
the form of Ref. [36]) are used in the present work and
this should allow, in our opinion, a reliable study of the
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interplay between spinodal decomposition and wetting.

Nevertheless we add a caveat with respect to the appli-
cability of our results to recent experiments [15-20].
Our model is qualitatively correct for solid mixtures, see
Sec. II (“model B” in the Hohenberg-Halperin [39]
classification), while fluid mixtures require the inclusion
of hydrodynamic interactions (‘“model A [39]) which
have a pronounced effect on the dynamics of spinodal
decomposition, both at intermediate [40] and late
[41-44] stages of the growth. Secondly, the present pa-
per considers semi-infinite systems only rather than sys-
tems confined between two walls, whose distance is com-
parable to the characteristic domain size at late stages.
This situation (occurring often in experiments [15-20])
will be considered in a separate publication [45]. While
there is ample experimental evidence that hydrodynamic
mechanisms control bulk phase separation kinetics of
near-critical mixtures of both small molecules [21-23,46]
and polymers [22,47,48], it also appears that they are
quite relevant in the thin film geometry [15-20].

This paper is organized as follows. In Sec. II we define
our model and introduce the notation. Section III recalls
the basic equilibrium properties of semi-infinite mixtures,
including the wetting phase diagram of our model and
the dynamics of surface enrichment and initial stages of
spinodal decomposition in the linearized approximation.
Section IV presents numerical results for the intermediate
and late stages of spinodal decomposition near a surface.
Section V summarizes our conclusions.

II. DISCUSSION OF THE BASIC MODEL

Let us restrict attention for the moment to a model of a
binary ( AB) mixture in contact with a surface and with
pairwise interactions ¢ 4,9 4p,@pp between atoms at
sites r;,r;. In terms of local concentration variables ¢; =1
if site i is occupied by an A4 atom and ¢; =0 if it is occu-
pied by a B atom. The Hamiltonian is (cf. Fig. 1; sums
over pairs run over all pairs once, and lattice sites exist in
the positive half space z >0 only)

H=3 [cici@ qaltir;)+e;(1—c;)p 4p(r;,1;)

i)
+(1—c;)c; 4p(1;,1;)
+(1=c;)(1—c;)ppp(r;,r;)]

+ 3 [v4(r)e; Foglr(1—c;)] . 1)

Here v ,(r;) [vg(r;)] are forces exerted on A (B) atoms at
site r; due to the hard wall at z =0. In the case of a free
surface (against vacuum or air) at z =0 it would seem
natural to set v 4(r;)=vg(r;)=0, of course: but in this
case any intrinsic roughness of the interface between the
mixture and the ‘“vapor phase” at z <O is disregarded,
and the following treatment would hold for solids above
their roughening transition temperature Ty [49,50] (and
for fluid mixtures where the fluid-gas interface always is
rough, of course) only on length scales distinctly larger
than the scale of this atomic roughness. A second effect
due to the breaking of the translational symmetry of the
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surface is that, in general, one must expect that the pair-
wise interactions ¢ 4 ,,® 4p,@pp Not only depend on the
relative distance r; —r;, but also on r;,r; separately (e.g.,
different interactions @5 4,95, ¢3p occur if both sites i,
are in the layer right adjacent to the surface [4,51]).

Of course, we are not interested here in the “correct™
description of atomistic detail, but rather Eq. (1) (and
Fig. 1) only serve as a generic model to derive a reason-
able continuum description which holds for a much
larger class of systems [4-6,34]. Thus we simplify the
problem by restricting the range of all interactions to
nearest neighbors, and take all interactions
@ 44,9 4-Ppp to be independent of their sites i,/ except
if both sites are in the surface layer » =1. Finally, we
also assume v 4(r;),v5(r;) to be nonzero only if / is in the
layer n =1. This latter assumption, however, means that
we restrict attention to wetting with short-range forces,
and it is well known that this situation differs in impor-
tant qualitative respects from wetting with long-range
forces [6], e.g., van der Waals forces which decay propor-
tional to z ~° with the distance z from the surface. This
restriction of our model is one more reason why one
should not make too hasty conclusions about experimen-
tal implications of our results, but we feel that one must
understand the simpler short-range case first before one
can discuss the case of long-range surface forces.

It is convenient to translate the model into the Ising
spin  representation [4] via the transformation

ol ——»

— I 1 " 1 —» N

| >
A

FIG. 1. Schematic picture of the surface of a binary ( 4B) al-
loy at z =0 (the shading indicates that this may represent an in-
ert hard wall). Different atoms (circles) and nearest-neighbor
interactions between them (and the wall) are indicated by
different types of lines. For a discrete description, lattice planes
parallel to the surface are labeled by a positive integer n, while
in the continuum description coordinates parallel (p) and per-
pendicular (z) to the surface are used as indicated.
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¢;=(1—S;)/2 (S;==1) which yields
H=ZFcps— XU —cupg=— 3 J;S:S;—H3 S,
i i Ci,j) i

_Hl 2 S,-+.7{0,

i € lst layer
(2)

where u ,,uup are the chemical potentials of both species,

and #, is a constant which only affects the energy scale.

The pairwise “exchange” interaction J;; is
J1j=J=%¢’A3_:1{(‘PAA +@pg) » @)

when at least one of the sites i, j is not in the surface layer
n =1. If both sites are in the layer n =1, we have

Jy=Js=30%s — 1@ 4T o5s) - @
The bulk “magnetic field” H is (for sites i not in the n =1
layer)

H=3(pg—ps)+t5 3 (@44~ ®s58) > (5)
i)

while for sites i from the first layer we have an additional
“surface field” H,

H+H1=%(I‘LB—I“A+UB_UA)

+1| 2 (@ha—ems)
J(FED)
J € 1st layer
+ X (@aa—@m) |- (6)
j€2nd layer

At this point we emphasize that a nonzero surface field
H, arises even for the case where vy =v , =0 and interac-
tions are unchanged near the surface, i.e., @5, =@ 4
and @55 =@pp, as long as ¢ 4 , — @pp70. This is a result
of the “missing neighbors” of sites in the first layer. Con-
sidering the most symmetric case where also ¢ 4, =@pp
clearly has little physical relevance for actual mixtures.
While the “bulk field” in Eq. (2) is easily eliminated from
the problem by fixing the average concentration

__ 1
N ; (¢;), @)
which is also the concentration ¢, in the bulk of our
semifinite system, the additional surface field H, must
remain as a parameter in the problem. As is well known
[4-11], this term is responsible for both surface enrich-
ment and wetting phenomena in mixtures.

The simplest way of introducing dynamics into the
model of Eq. (1) that respects the facts that (a) the con-
centration in the mixture is conserved and (b) the atomic
mobility is due to local hopping events, is achieved by the
Kawasaki [37] spin-exchange model. Again we em-
phasize that the aim is not an atomistically realistic
description of solid alloys (which would require us to con-

sider the vacancy mechanism for the interdiffusion of the
atomistic species [52-55] rather than a direct exchange
mechanism), but the motivation of a reasonable coarse-
grained continuum model. At this point, the treatment
gets restricted to solids due to the complete neglect of
transport via flow. Of course, even for very viscous sys-
tems such as polymer mixtures, it is now well established
that hydrodynamic mechanisms control interdiffusion
[56,57], and thus we do not claim that our treatment ap-
plies to such systems.

Treating the master equation for the Kawasaki model
in a layerwise mean-field approximation [34-36] and
transforming the resulting set of difference equations into
a continuum description by expanding differences in the
lattice coordinates in terms of differentials, one drives a
partial differential equation for the bulk supplemented
with two boundary conditions at the surface. The partial
differential equation in the bulk is just the standard
Cahn-Hilliard [24] equation

2, HEEL =97 | |1 fotpa)

—%w(p,z,t)P

’

+ —‘;—,Vzt/z(p,z,t)

z>0, (8

where ¥(p,z,t) is the continuum analog of the average of
the spin {S;(#)) a time and 7, is the underlying time scale
parameter of the spin-exchange model. In Eq. (8), the lat-
tice spacing of Fig. 1 has been taken as unity, and we
have kept only the terms of leading order near the critical
point [concentration in the bulk ¢z must be near cg™=1,
and the temperature T near the critical temperature T,
which would be T, =¢J /kp in the mean-field theory for a
(hyper) cubic lattice with coordination number g]. Of
course, the reason for considering the critical region is
that the characteristic lengths of the problem (such as
correlation lengths that appear in the concentration
profile describing a surface enrichment layer or a wetting
layer, or the critical wavelength that characterizes the
linearized theory of spinodal decomposition [21-24]) are
much larger than the lattice spacing. However, it is be-
lieved (as is usual in the critical phenomena [4-6,21,39])
that Eq. (8) is of much wider validity than its derivation
suggests—especially if one treats the coefficients of the
terms 1, ¥°, and V?¢ in the large square brackets of Eq.
(8) as adjustable phenomenological parameters, and adds
a random force term on the right-hand side to account
for statistical fluctuations beyond the mean-field approxi-
mation [39].

Equation (8) is a differential equation of fourth order in
Y¥(p,z,t) and hence needs to be complemented with two
boundary conditions at the surface z =0 (two other
boundary conditions occur for z— « which are not of
much interest here). These boundary conditions are
[34-36]
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(p,z=0,t) _Hi J I T, J ag(gzz)}
2 _ﬂg’___’_. _— = — - — = —_ ] — 11— = 27
Ts £ T + T (q 2) 7 (q 1) lP(p,Z Oyt) T 1 T dz EZ:O
1| T J | Pz 1| T sJ | Pz |
—= =1+ —= =1+ = , 9)
2 T T 9z ,=0 © T T 3z3 2=0
f
and
BRZ.T) - _v2 |4(R,Z,7)— [$(R,Z,7)]
9 = —1 | zt)—i[z/;( z,0)]? o
|| T pBl T IS 1
e +3v2¢(R,Z,¢) , (13)
+7—2[¢'(p,2,1‘)] =0. (10)
0z z=0 with the rescaled boundary conditions
Equation (10) simply describes the fact that the concen- 36(R.Z =0
tration current in the direction normal to the surface ~—¢——’————_—’T—)=hl+ gé(R,Z =0,7)
must vanish for z =0, which acts as an impenetrable wall. or
While this equation can be trivially postulated, the first
equation [Eq. (9)] is of greater interest since it character- +y 9¢(R,Z,7)
izes the effects of the surface as a result of (a) the change 9Z zZ=0
of interactions near the surface (J,7J); (b) the “surface 273
field” H,; and (c) the one-sided gradients due to the ab- -~ |£ 9 (R’zz’T)
sence of material in the —z direction. Since these terms 4 oz z=0
are not diffusive but of a simple relaxational type, it is 173 3
clear that this boundary condition has the effect of rapid- —% }i* 9 (R’3Z’T) (14)
ly driving the local order parameter at the surface to a oz z=0
value dictated by the static equilibrium at the surface. and
We now restrict attention to 7 <7, where the homo-
geneous mixture is thermodynamically unstable) and in- F) 3
troduce a rescaling of parameters in terms of the bulk 37 |R.Z,T )—[¢(R,Z,7)]
correlation length &,, which is
1o _
§b:[2q(1-T/TC)]_1/2 . 11 +‘£V [¢(R,Z,T)} Z=0—0. (15)

Our rescaling takes the form

Z=z/(12&,), R=p/(2,), (12a)
(T./T—1)
-__ ¢ -1
P t—s C(16q7's§2) t, (12b)
H
h1=\/§1T(T/TC)3/2(2q)3/2§Z, (12¢)
JS
g=8|(g—2)7 —(g—1) & , (12d)
#(R,Z,7)= (Rl}}z’”, where $o=1/'3T, /T —1) .
0
(12e)

As an abbreviation we also use ¥ =4£; and then the res-
caled partial differential equation reads (V is now a gra-
dient operator referring to derivatives with respect to Z
and R), for Z >0,

The rescaling of time in Eq. (12b) simply expresses the
“critical slowing down” of “model B” (with a dynamic
critical exponent equal to 4 in mean-field theory [39]). It
is seen that the rescaling has the effect that the bulk equa-
tion is not only formulated entirely in terms of dimen-
sionless quantities but also is free of any system-
dependent parameters, while such parameters (h,g,7)
still appear in the first boundary condition, Eq. (14). This
reflects the fact that even in the region near bulk criticali-
ty where the behavior after rescaling reflects the universal
bulk behavior of “model B” [39] we have the possibility
of nontrivial surface phase behavior (such as wetting
transitions). This will be briefly summarized in the next
section.

In principle, Eq. (13) should be supplemented by a ran-
dom noise term expressing the statistical fluctuations: At
any nonzero temperature, these fluctuations will have
some effect on spinodal decomposition, particularly dur-
ing the early and intermediate stages of the growth. In
fact, these fluctuations are very important if we consider
rescaled times of order unity, but are rather unimportant
for the scaling behavior in the late stages of growth
[22,23,42-44,60-62]. Such fluctuations would be includ-
ed if one performs Monte Carlo simulations directly on
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the Kawasaki spin-exchange model corresponding to Fig.
1 [63]. However, the advantage of the cell-dynamics ap-
proach clearly is that effectively much larger length scale
of the discretization of Eq. (13) is of the same order as the
correlation length, and hence much larger than the lattice
spacing. In turn, the advantage of the Monte Carlo
methods [21,22,54,55,62,63] would be that temperatures
also below the roughening transition temperature [49,50]
would be accessible—where wetting (Fig. 2) is replaced
by a sequence of layering transitions [4,6,64]—while Eq.
(13) cannot describe layering.

III. THEORETICAL BACKGROUND

A. Static surface properties of semi-infinite mixtures
and the wetting phase diagram

As discussed in [4-10], the static properties of the
model described by Eqgs. (1)-(6) in the continuum approx-
imation can be described in terms of a free energy func-
tional

AF ® 111 1
= [dR dZ — | (V¢ —¢*+—¢*
kpT, f fo 2 2( $r—¢ 2¢
h 1
——¢—541, (16)
14 2y
hyc/¥ (Second-Order Wetting)
L /
- \\\\\\ w :‘
ZrIDIW Tt~ v £
\ ~G IR T A
L Wi
= | 1@>// _Exs(_”
,L IWID S
,,——"/ tricritical
I e wetting transitions D
-L-/‘
4 3 2 a0

g/y

FIG. 2. Phase diagram for the phenomenological model of
Eq. (16) for wetting and drying. The states are labeled as wet
(W), incompletely wet (IW), dry (D), and incompletely dry (ID).
Note that the phase diagram is symmetric around the abscissa
h,/y =0 if one interchanges the role of wet and dry states, re-
spectively. For g/y < —2 the transition is a second-order wet-
ting transition (broken straight lines) at 4. /y which ends at the
wetting tricritical point (g,/y=—2, h,,/y =%2). Dash-dotted
curves denote first-order wetting transitions, dotted curves
denote “surface spinodals” [stability limits of metastable wet
(dry) or incompletely wet (dry) phases, respectively]. These sta-
bility limits are given by the equations h{)/y=—g/y (for
g/y>—2, lower spinodal) and A2 /y=1+(g/2y)* (for
g/y > —2, upper spinodal), in the upper half plane. The two
crosses (+,X) denote the equilibrium states of the surface
reached in our simulations of quenching experiments for times
7— . (From Ref. [31].)

where ¢,(R)=¢(R,Z =0) is the local order parameter at
the surface, and we have invoked the same rescaling of
parameters as in the preceding section, and consider the
critical region where T=T,.

The surface phase diagram that results from Eq. (16)
has been discussed in previous work [27,31]. Figure 2
shows the phase boundaries in the plane of the variables
h,/y and g/y. These phase boundaries result from
minimizing the free energy functional Eq. (16), which
yields an Euler-Lagrange equation [¢(R,Z) can be taken
as being independent of R]

1. ¥
2 972

with the boundary condition

HNZ)— X Z)+ #Z)=0, 17)

hy ¢ I¢(Z)
—+=2¢(Z =0)+ =0. (18)
Y 7 ¢ 9Z |z=0

Equations (17) and (18) are compatible with the static
limit of Egs. (14) and (15), of course [note that y—
near T, and thus the higher-order gradient terms in Eq.
(15) can safely be neglected in the static limit]. Note that
for unchanged interactions at the surface (J;=J), near
criticality (§,—>o) one has g/y=-—2§,—— »,
h,/y <H £} — 0, ie., typically one is in the region
where the surface is wet far above the second-order wet-
ting transition on the left-hand side of the phase diagram
(for H, >0). However, since in a typical experimental sit-
uation one is interested in spinodal decomposition and
wetting far from the bulk critical point, we shall use the
present model for parameter choices of g, h,, ¥ of order
unity as well.

B. General formalism

Both surface critical phenomena [4-6] and wetting
[6-10] can be discussed in terms of the singular behavior
of the surface excess free energy density f,(T,H,H,),
which is conveniently defined from the free energy densi-
ty f(T,H,H,) of a thin film of thickness D with two
equivalent surfaces

f(T,H,H,)=f,(T,H)+ %fs( T,H,H,), D—>ow (19

f»(T,H) being the bulk free energy density of the con-
sidered system. Particularly interesting quantities are the
response functions, e.g., the surface susceptibility x;
defined as

_ 3f(T,H,H,)
Xs= oH?2 T.H,
=3 (x,,—x,,)=f0°°dz[x<z>—x,,] , (20)

where the bulk susceptibility is x,=—[3f,(T,H)/
9H?]r; and the surface layer susceptibilities (m, =(S;) r
with i being chosen from the nth layer)
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— azfs(t’H,Hl)
v 3HOH, |,
om,
=38 |, = S WSSO r=(S)1(8;) 1) /ky T
i
21)
and
_ | ®¥(T,H,H,)
X11 oH? Y
_ | 9m,
O0H| |y
= 3 (88)r—{8)1(85;)7)/kpT, (22)

j € st layer

where in Eqgs. (21) and (22) the site i is chosen in the first
layer. The layer magnetization m, and the layer suscep-
tibility x,,x,. are obvious generalizations to the case
when a field H, acts on spins in the nth layer only,

om,,
Xn™ oH T,H:2(<SiSJ)T—(Si>T<Sj)T)/kBT,
" J
i€n (23)
om,,
Xum= |3H TH=E“S"Sf)T_(Sf)T<Sj>r)/kBT,
n N jEn

i€En. (24

Of course, Egs. (23) and (24) are related to the long wave-
length limits of the corresponding structure factors (k, is
a wave vector lying in a plane parallel to the surface)

S, (k)= exp[ik-(r;—1,)]({5;S;) 1 —{S;) (S, 1) ,
j
i€n (25
S (k)= 3 explik,(r;—r;)]

jEn

X(<Sisj)T—‘(Si)T(Sj>T) > i€n . (26)

In analogy to Eq. (19) it makes sense to consider the sur-
face excess S;(k) of the total scattering intensity of a film,

S(k)=Sb(k)+%Ss(k), Do @7)
where
S,()= 3 [S,(k) =S, ()]= [ "dz[S (k,2) =S, (k)] .

(28)

In static equilibrium, the small k behavior of the struc-
ture factors defined via Eqgs. (25)—-(28) characterizes the
typical length scales of the problem: for surface critical
phenomena, it is simply the correlation length &, which
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controls these length scales for both the ordinary and
special surface transition [4,5]. However, for critical wet-
ting, correlation lengths &, in directions parallel and
perpendicular to the surface need to be distinguished [6].

This phenomenology in equilibrium readily provides
the appropriate theoretical framework to define the quan-
tities which are needed to characterize surface effects on
spinodal decomposition. In the nonequilibrium case, one
again considers equal-time structure factors of the type
defined in Egs. (25)-(28), which now are time dependent
since one considers quenching experiments far from
thermal equilibrium. Thus the quantities that we wish to
consider are [in a continuum description with ¥(p,z,t) as
the time-dependent order parameter]

G (p1—p221)=(Pp1,2,)%(py,2,1))
—Wpy,z,t) ) {P(pyz,1))
or its Fourier transform

S,(kp,z,0)= [ dp explikp)G,(p,z,1) .

(29a)

(29b)

In Egs. (292) and (29b) the angular brackets denote aver-
ages over both initial conditions and thermal noise. We
can also consider the more general correlation function

G(p1—p2z1,22:) = PP, 21,1 )PPy, 23,1))
—(Wp1,z,0) ) {P(py,2,1))

and its counterpart in Fourier space (accounting for the
breaking of translational symmetry by the wall)

(30a)

S(k,z,t)= [dp [ “dz’exp[ik p+k, (z'—2)]
0 I
XG(p,z',2,t) . (30b)

In both Egs. (29b) and (30b), we have made use of the
translational invariance in the direction parallel to the
surface. Note that, in our definition G (p;—p,2,1)
=G(p;—py221t). In analogy with Eq. (28), the surface
excess of the time-dependent scattering intensity of the
system then is

Ss(k,t)=fowdz[S(k,z,t)—S,,(k,t)] , 31)

where S, (k,?) is the scattering intensity observed in a spi-
nodal decomposition experiment in the bulk.

In studies of spinodal decomposition one usually
defines length scales from the decay of the real-space
correlation function or by taking reduced moments of the
momentum-space structure factor [21]. In this paper, we
define the characteristic length /(z,¢) describing the
growth of correlations in the parallel direction at a dis-
tance z from the surface as the distance over which the
appropriate real-space correlation function decays to half
its maximum value. Thus, in two-dimensional space,

G,(l,(z1),2,t)=G(0,2,1)/2 , (32a)
while alternative definitions based on the structure factor
would be (in general dimensions)



49 SURFACE EFFECTS ON SPINODAL DECOMPOSITION IN . . .

lh”(z;t):fdk”S"(k”,Z:t)/fdkllkllsll(k"’z’t) (32b)

or

172
J kS, kppz,0

J dky(k)s, (ky,z,0)

12 (z,0)= (320)

Note that the integrals over momentum need to be cut off
at large k in order to eliminate background structure due
to uninteresting local correlations, which describe struc-
ture inside the growing domains rather than their size
distribution. This problem does not occur for the
definition in Eq. (32a) which is also easier to implement in
the context of our numerical calculations and thus used
throughout here. Of course, a perpendicular length scale
1,(z,¢) can be defined similarly. In two-dimensional
space, we use

G(0,z,z +1,(2,1),t)=G(0,z,2,t)/2 . (33)

For z— o, these scales /(z,¢) and [,(z,¢) should tend
smoothly towards the length scales that one uses to
characterize spinodal decomposition in the bulk, which
we denote simply as /,(¢).

A particularly interesting feature of the late stages of
spinodal decomposition in the bulk is the dynamic scaling
property [21-23,42,58] of the correlation function, viz.,

Gb(r,t)EG'b{r/lb(t)} N (343)

where G,(£) is a universal function. The corresponding
statement for the structure factor in momentum space is

Sy(k,t)=[1,()1%S, {kl,(1)} , (34b)

where d is the dimensionality and S,({) is a universal
function. It is now well accepted that the characteristic
length scale /,(¢) in the scaling regime increases accord-
ing to a power law as

L=t , t—o (35)

with @, =1 for solid mixtures [22,23]. This is referred to
as the Lifshitz-Slyozov law [59], though this may be
somewhat misleading because the original derivation of
Lifshitz and Slyozov was in the context of binary mix-
tures where one of the phases is present in a vanishingly
small fraction.

We hence make a similar scaling hypothesis with
respect to parallel correlations near a surface, namely,

G,(p:z,)=G {p/1(z,1)} , (36a)

S, (ky,z,0)=[1,(z,01* 7', (kI ,(z,D)} . (36b)
Again we expect a power law

Iz <t o . 37

In Egs. (36a), (36b), and (37), we have assumed the simple
special case that there is a certain ‘““universality,” i.e., we
anticipate that neither the exponent a; nor the scaling
functions G,S, depend explicitly on the distance z from
the wall. This assumption is plausible since the scaling
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property of Egs. (36a) and (36b) is expected only for such
late times where

1,(z,8)>>z (38)

and then the scattering behaves qualitatively in the same
way as if it came right from the surface region (z =0).
Thus the only fashion in which /,(z,¢) in Eq. (37) may de-
pend on z is via a possible z dependence of the amplitude
factor. Conversely, if we consider such a large value of z
that the inverse of Eq. (38) holds [namely, /,(z,t) <<z],
then we simply expect that Egs. (36a) and (36b) hold but
with [(z,£)=1,(t), because then the limiting boundary at
z =0 is not yet physically felt at a distance z.

As emphasized in part A of this section, the boundary
conditions at z =0 may be such that the equilibrium for
one of the coexisting phases that form in the spinodal
decomposition process may require the surface to be
coated with a wetting layer (or drying layer, respectively).
Since the initial condition of the surface usually will not
contain such a layer, we have also to consider the dynam-
ics of the formation of wetting layers [25,31] as a com-
petitive process to spinodal decomposition. In general,
one also writes for the thickness of the growing wetting
layer [,,(t) at late times a power law

L(<t™, t—o . 39)

However, we readily note that for short-range surface
forces

a,=0, (40)

i.e., a logarithmic growth law is expected [25-28].

C. Surface effects in the framework
of a linearized theory of spinodal decomposition

As is well known, a linearized theory of spinodal
decomposition in the bulk [21,22,24] is obtained from Eq.
(13) by expanding the nonlinear term around the average
value ¢, of the order parameter as ¢~ 3+ 34364, which
yields

%8¢(R,Z,7)=—V2(1~3¢(2,+%V2)8¢(R,Z,'r) ,

(41)

where we continue to work in the dimensionless vari-
ables, for convenience. Fourier transformation then
yields for the Fourier components 8¢,(7) of 8¢(R,Z,7)

%B(ﬁk('r):kz(1—3¢(2,—%k2)5¢k(7') , 42)
leading to the well-known exponential growth of long
wavelength fluctuations,

8¢, (1)=8¢,(0)exp[k*(1—393—Lk?)r] . (43)

Equation (42) shows that all fluctuations in the following
range get exponentially amplified:

O<k<k,, k,=1V2—6¢%; (44)
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and the maximum growth rate occurs at a wavelength A,
given by

Ap="—="2=21/v 1343 . 45)

It is interesting to ask how the bulk behavior described
by Eq. (43) is modified by the presence of a surface.

For an initial condition at an arbitrary temperature
T >T,, we have to confine ourselves to the experimental-
ly important situation of a critical quench (¢,=0) at
7=0 and assume that the surface field 4, is also switched
on at a time 7=0. For off-critical quenches, we would
have to consider the growth of fluctuations around an in-
homogeneous initial condition. This is because, for
h,=0, the counterpart of Eq. (13) for T > T, with the
boundary conditions as in Egs. (14) and (15) does not ad-
mit a homogeneous off-critical solution. Similarly, if one
considers the surface field to be present for all times,
there is again no homogeneous solution for a system at
critical composition with T >T, and we would once
again have to consider the growth of fluctuations (after
the quench) around an inhomogeneous initial condition.
In principle, this can be done but we do not wish to un-

|

9 _ - 9
3 5¢k“(Z,T)~h . +g8¢k”(Z 0,7)+y 37 8¢k"(Z,»r)

2/3 az 5
| _5
4 6228¢k“(z,’r) 2o 6
and
9|6, (Z,1)— 3256, (Z,7)
azZ | Tk 05k
IR P A PP =0. (48
270 ez TR L,

Equations (46)—-(48) thus extend the Cahn-Hilliard [24]
linearized theory of spinodal decomposition to incorpo-
rate the effects of a free surface. For k=0 this set of
equations is essentially equivalent to the description of
Binder and Frisch [34] for the dynamics of surface en-
richment in mixtures (apart from the fact that these au-
thors considered only T > T, and hence there deviations
from equilibrium decay and one then does not have an
exponential growth of fluctuations). It was found that in
this case [34] the order parameter at the surface
8¢k" —olZ =0,7) reaches its equilibrium value much fas-
ter than the order parameter profile 8¢k" —o(Z,7) at large
distances Z from the surface.

The aim is to find a solution of Egs. (46)—(48) that
leads to Eq. (43), with k =k, for Z= o, while for Z—0
the boundary conditions enforce a relaxation governed by
the surface terms and the parameters h;, g, and y. Par-
ticularly interesting is the case k” =0, for which there is

Y
4
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duly complicate our analysis here. Note that one can
also interpret our choice as a quench from infinite tem-
perature (T — o) as initial condition, and then an arbi-
trary order parameter ¢, can be chosen.

Equation (41) still holds for early times but is now
complemented by the boundary conditions at the surface.
Since the translational invariance of the system in the Z
direction is broken, individual Fourier components such
as those in Eq. (43) obviously do not satisfy the boundary
conditions, Egs. (14) and (15).

In order to make progress it is necessary to treat the
coordinates R,Z differently, writing V2=V%+3%/3Z2,
and from the start carrying out a Fourier transform with
respect to R only. Equation (41) then becomes

9 2 @ | |2 1,2, 1 @
5 0% (Z,7)= k= } 1= 33— S ki =
X8y, (Z,7) (46)

This partial differential equation now has to be solved
subject to the boundary conditions resulting from Egs.
(14) and (15), where we introduce analogous Fourier
transforms and neglect nonlinear terms,

zZ=0

1/3 63 ‘
—8¢k“(2,7')

Vo , @7

|z=0

no growth of waves in the bulk, while there is still relaxa-
tion near the surface. Since already for T > T, the order
parameter profile 8¢k"=o(Z,r) decays with increasing Z

in a nonmonotonic way, due to the formation of a de-
pletion zone at intermediate distances from which the
surface excess enriched at the surface has been transport-
ed [36], we expect an oscillatory decay of 8¢k“ —olZ,7) to

zero as Z— o for T <T, as well. This expectation is
compatible with the numerical results (see below), where
such a profile with oscillations that get damped out as Z
increases is actually observed even for very early stages of
surface-directed spinodal decomposition.

Since the analytic construction of 8¢k" —o(Z,7) turns

out to be rather difficult even for T > T, [34], we do not
attempt to compute 8¢k"(Z,'r) for T < T, here. We only

note, merely from dimensional analysis of Eq. (46), that
the period of the damped oscillations in the Z direction
should be given by the same length A,, [Eq. (45)] that also
controls the scale of the inhomogeneities formed in the
bulk. Qualitatively, for a critical quench (¢,=0) we ex-
pect to see a period of the damped oscillations of about
2. As we shall see below, this estimate is compatible
with our numerical results.

Of course, it is well known that the linear theory of spi-
nodal decomposition is quantitatively invalid, except if
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one considers systems with large but finite range of in-
teractions [65]. However, even for short-range systems
where the nonlinear effects are important already in the
initial stages of phase separation, numerical work [66]
has shown that the linear theory underestimates the ini-
tial length scale (defined by the inverse of the structure
factor peak position) by no more than 30%. Therefore
the linear theory is useful at least as a rough guide to esti-
mate the initial characteristic length scale of spinodal
decomposition.

IV. NUMERICAL RESULTS

We now proceed to describe detailed numerical results
obtained from discrete implementations of our model on
two-dimensional (2D) lattices of size L, XL,. We have
implemented an Euler-discretized version of Egs.
(13)-(15) with an isotropically discretized Laplacian on
2D lattices with the boundary conditions of Egs. (14) and
(15) being implemented at Z =0 (corresponding to the
wall) and free boundary conditions at Z =L,. Periodic
boundary conditions are applied in the direction parallel
to the surface, viz., the X direction. The mesh sizes of

B NN R W T N T T T T Y W T T W U G Y B O
0 50 100 150 200 250 300
X (a)
150
100

50

YT T T T VA N U U W U TN N T P N T U Y O W S B B

0 50 100 150 200 250 300

X (c)
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our discretization are A7=0.05 and AX =1.5. Before we
proceed, some remarks about these mesh sizes are in or-
der. First, the mesh sizes are too coarse to accurately
mimic the solution of our original partial differential
equation. Thus the discrete models we use should be un-
derstood in the spirit of cell-dynamical system (CDS)
models, which provide a discrete space-time description
that is dynamically equivalent to the continuum descrip-
tion [60]. Secondly, the mesh sizes are also too coarse to
reproduce the precise behavior of the surface layer, as we
will demonstrate shortly. However, the time scales of
growth of the surface layer are much slower than the
time scales of phase separation, if the parameters 4,8,y
are chosen to be of order unity, as is physically reason-
able. Effectively, the enriched layer at the surface only
provides a preferential direction for the bulk to orient
along. Thus our discrete space-time models, though not
numerically accurate representations of the underlying
partial differential short-range forces and spinodal
decomposition in the bulk.

The numerical results presented below are for lattices
with L =300 and L,=150. We have systematically
checked for finite-size effects by both doubling and halv-

Cl o p e e b pv v b bl
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FIG. 3. Evolution pictures from our discrete implementation of the partial differential equation model with dynamical boundary
conditions [Egs. (13)-(15)] on a square lattice using Euler discretization with an isotropically discretized Laplacian. The discretiza-
tion mesh sizes are A7=0.05 and AX =1.5 and our discrete model should be understood in terms of a cell-dynamical system (CDS)
model which mimics the physics rather than the precise numerical solution of the partial differential equation. The lattice size is
L, XL, (L,=300,L,=150) and the surface boundary conditions [Egs. (14) and (15)] are applied at Z =0. Free boundary conditions
are applied at Z =L, and periodic boundary conditions are applied in the X direction. The parameter values are h, =4, g = —4, and
¥ =4, which correspond to a nonwet static equilibrium. The initial condition consists of uniformly distributed random fluctuations of
amplitude +0.025 about a zero background, viz., a critical quench. Evolution pictures are shown for (a) 7=50, (b) 7=100, (c)
7=500, and (d) 7=4000.
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ing the above sizes. On the time scales for which results
are presented here (viz., dimensionless times of up to
7=4000), our results are unchanged if we increase the
above sizes further. All averages for the calculation of
correlation functions presented below are over 200 in-
dependent initial configurations, each of which consists of
uniformly distributed random fluctuations of amplitude
+0.025 about a zero background, viz., the so-called criti-
cal quench with an initial state at “infinite temperature.”

First, we present results for the parameter values
h,=4, g =—4, and y =4. On the phase diagram of Fig.
2, these parameter values are seen to correspond to a
nonwet static equilibrium. Figures 3(a)-3(d) show the
temporal evolution of a typical disordered initial condi-
tion for these parameter values. Sites with positive order
parameter (corresponding to species A) are marked by
points whereas sites with negative order parameter (cor-
responding to species B) are left unmarked. The surface
rapidly forms an enriched layer (in the preferred com-
ponent A) followed by a depleted layer (due to the con-
servation law). This is followed by another enriched lay-
er, which has about the same average thickness as the en-
riched layer adjacent to the wall, but is much more irreg-
ular locally. Further from the wall, the domain pattern
has just the characteristic structure of bulk spinodal
decomposition. The dynamics of phase separation in the
vicinity of the surface is enhanced because of the orienta-
tional effect of the surface layer which preferentially
aligns domains parallel to the surface. This results in an
anisotropy of domain growth parallel and perpendicular
to the surface, in the vicinity of the surface. The degree
of anisotropy decreases with increasing Z and the bulk is
(naturally) isotropic. An interesting feature is that the
thickness of the two surface-enriched layers parallel to
the wall increases much slower than the typical domain
size in the bulk. Figure 4(a) shows the averaged profiles
in the Z direction for the evolution pictures of Fig. 3.
The averaged profiles are obtained by laterally averaging
the order parameter profile ¢(X,Z,7) in the X direction
(parallel to the surface) for a single run and then ensem-
ble averaging over 50 different runs. In the surface re-
gion, one sees directed spinodal decomposition waves
[19], which slowly propagate out into the bulk. Due to
the averaging procedure we follow, the average profile de-
cays to zero in the bulk.

As we have already remarked, the mesh sizes of our
simulation are too coarse to precisely describe the dy-
namics of Eqgs. (13)-(15) in regards to the growth of the
surface-enriched layer. Figure 4(b) shows the laterally
averaged profile from five runs for a 2D simulation of
(13)—(15) on a lattice of the same size L, =300 and
L, =150 but with a much finer mesh, viz., A7=0.001 and
AX=0.4. It is clear from Fig. 4(b) that the surface-
enriched layer has a somewhat larger growth than the
profile of Fig. 4(a) would suggest. However, if we look at
the location of the first zero of this profile R (1) as a
function of time [Fig. 4(c)], it is clear that the growth of
this surface layer is extremely slow for 7> 1000 and may
be treated as being stationary on the time scales of in-
terest for spinodal decomposition. In fact, since our state
in equilibrium (see Fig. 2) corresponds to a nonwet phase
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FIG. 4. (a) Averaged profiles for order parameter ¢,,(Z,7) as
a function of Z (scaled distance from the surface) and 7 (scaled
time) for our discrete model. The averaging is done laterally (in
the direction parallel to the wall) and over an ensemble of 50 in-
dependent initial conditions. (b) Averaged profiles for order pa-
rameter ¢,,(Z,7) as a function of Z (scaled distance from the
surface) and 7 (scaled time) for a fine mesh (A7
=0.001,AX =0.4) numerical implementation of the continuum
model represented by Egs. (13)-(15). (c) First zero crossing
R, (7) of the averaged profile of (b) as a function of time 7. This
measure of their thickness of the surface layer rapidly saturates
out to its equilibrium value ~4.25 dimensionless units and
barely changes for 7> 1000.



49 SURFACE EFFECTS ON SPINODAL DECOMPOSITION IN . . . 5369

of the surface but is rather close to the wetting transition,
we expect a surface-enriched layer of phase A4 at the sur-
face which saturates at a thickness of several £,; thus the
profile for 7=10000 in Fig. 4(b) may already be close to
this final equilibrium enrichment layer. Clearly, the pri-
mary effect on the surface layer on the phase separation
of the binary mixture, at least for the nonwet case con-
sidered here, is to provide a preferred direction. Our
coarser discretization captures this feature and serves as
a reasonable description of surface-affected spinodal
decomposition. Naturally, one may expect that the case
in which the surface is wet may not be appropriately de-
scribed in terms of orientational effects. However, even
in that case, as we demonstrate later, the growth of the
enriched layer is so slow for short-ranged surface forces
(logarithmic in time) that it does not interfere with phase
separation (which is characterized by a power-law
domain growth).
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Figures 5(a)-5(d) show the correlation function paral-
lel to the surface defined in Eq. (29a) as a function of the
distance Z from the surface from very early times (=10,
where the linearized theory is valid) to times (7=4000)
deep into the asymptotic regime for spinodal decomposi-
tion in the bulk [60]. For purposes of comparison, we
have also depicted the corresponding bulk correlation
function as a solid line. At the surface (Z =0), there is
no correlation because the profile is already pinned to its
equilibrium value and fluctuations are negligible. Also
for Z =6, a distance comparable to the thickness of the
surface-enriched layer [Fig. 4(b)], there is only a very
weak shallow minimum; the correlation function for
slightly smaller Z does not even show a minimum at all,
but rather a monotonic decay. The general trend is that
the correlation function for larger values of Z tends to
the bulk correlation function, with the discrepancy be-
tween the bulk correlation function and the larger value
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FIG. 5. Correlation functions in the direction parallel to the surface G| (X, —X,Z,7) as a function of (X, —X) for different values
of Z (=0,6,9,12) and 7 (=10,160,800,4000). The correlation functions are obtained as averages over 200 independent initial condi-
tions and also an averaging over the variable X (using translational symmetry in the direction parallel to the surface). Each figure
plots data for Z =0,6,9,12 (denoted by indicated symbols) and the bulk (denoted by a solid line). Data are for times (a) 7=10, (b)

7=160, (c) t =800, (d) t =4000.
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of Z shown here (Z =12) increasing with time, as the
effect of the surface is felt deeper and deeper into the
bulk. Figure 6 shows the characteristic size in the X
direction as a function of distance from the surface Z and
time 7. As mentioned earlier, we define the characteristic
domain size [denoted by /(Z,7)] as the distance in the X
direction over which the correlation function in the X
direction falls to half its maximum value [see Eq. (32a)].
Some cautionary remarks are in order at this stage re-
garding the precise interpretation of this length scale. In
the surface region, as we demonstrate shortly, the corre-
lation function does not exhibit good dynamical scaling,
suggesting that there is more than one characteristic
length scale in the vicinity of the surface. By virtue of its
definition, / (Z,) is clearly a measure of the characteris-
tic domain size in the X direction at any given time. But
one should keep in mind that a plot of /,(Z,) vs 7 in the
vicinity of the surface would, in general, also contain the
time dependence (albeit slow) of the nonuniversal scaling
function. In spite of these qualifications, the data for the
length scale /(Z,7) appear to exhibit power-law domain
growth in the intermediate to late stages of domain
growth (7>1600). We have attempted to fit the data
points for 7>1600 to a power law of the form
[,(Z,r)=A +B7" To get rid of the parameters 4 and
B, we consider the function f(Z,T):[lﬂ(Z,TZ)
=1(Z,m1/[1,(Z,7))—1(Z,7,)] where 7,=1600 and
7,=4000, in this case. This new function depends on
only one parameter a and we fit the data (consisting of
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FIG. 6. Time dependence of length scales in the direction
parallel to the surface [/|(Z,7)] for Z =6,9,12 (denoted by indi-
cated symbols) and the bulk (denoted by *). The length scales
are defined as the distance at which the correlation function
G\ (X, —X,Z,7) falls to half its maximum value, viz., G|(0,Z,?).
The data for 7>1600 are fit to the power-law form
1y(Z,7)= A + B7° as described in the text and the resulting ex-
ponents are indicated in the figure. Error bars on the exponent
values are +0.02. The nonlinear fits are represented as solid
lines superposed on the data points. As mentioned in the text,
the length scale data obtained from one-dimensional correlation
functions appear to somewhat underestimate the growth ex-
ponent for the bulk.
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100 points) using a nonlinear fitting routine to determine
a. The corresponding values (with error bars +0.02) are
shown in Fig. 6 and the corresponding fits are depicted as
solid lines on the sets of data points. We should point out
that the structure factor data from one-dimensional (1D)
data appear to underestimate the growth exponents
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FIG. 7. Correlation functions from Fig. 5 normalized by
maximum values [ie., Gy(X,—X,Z,7)/N(7), where N(7)
=G(0,Z,1)] plotted as a function of the scaled variable
(X, —X)/1)(Z,7) for times 7= 800, 1600,2400,3200,4000 (denot-
ed by the symbols indicated). Different sets of data correspond
to (a) Z =6; (b) Z=12; (c) Z =42.



49 SURFACE EFFECTS ON SPINODAL DECOMPOSITION IN . .. 5371

somewhat. The data for bulk results have been obtained
from 1D correlation functions for simulations with
periodic boundary conditions in both directions, using
the same kind of averaging procedure already described
(with an additional averaging along the Z direction). The
best fit to the data indicates an exponent @ =0.29+0.02,
even though we know the bulk system to be already well
into the scaling regime (characterized by a =1) for the
times indicated [60-61]. Given this fact, it appears that
our data are consistent with a Lifshitz-Slyozov growth
law, regardless of the value of Z. This is surprising, be-
cause, as we have pointed out before, the scaling function
in the surface region is actually being slowly modulated
in time. Thus the growth exponent is possibly more
universal than the morphology of the growing patterns.
This is not a novel idea, of course, and is implicit in the
extension of Lifshitz-Slyozov ideas (proposed in the con-
text of a far off-critical quench where isolated droplets
grow) to the case of spinodal decomposition for critical
quenches (where the morphology of interconnected
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domains is very different from that in the far off-critical
quenches) [62]. Of course, the slight enhancement of a
for small Z should not be taken seriously, we rather ex-
pect that this reflects an enhancement of the amplitude
B(Z) as Z—0.

Figures 7(a)-7(c) demonstrate the scaling function for
times ranging from 7=800 to 4000 and three different
values of Z. In these figures, we have plotted,
G(X,—X,Z,7)=G(X,—X,Z,Z,7) normalized by its
maximum value G,(0,Z,7) [=N(7)] vs
(X, —X)/1,(Z,7). Figure 7(a) depicts data for Z =6 and
shows there is no dynamical scaling in the surface region
with a slow upward trend of the scaling function. Figure
7(b) shows data for Z =12, where the domain growth is
almost identical to that for the bulk. Here, the scaling is
much better but appears to break down at larger dis-
tances. Finally, Fig. 5(c) shows data for Z =42, where
the surface effects are not seen for the available times and
the data exhibit good dynamical scaling as in the bulk.
The slight deviation of the data for 7=800 represents
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FIG. 8. Laterally averaged correlation functions G,,(Z,Z,,7) as a function of (Z, —Z) from early to late times. Each figure plots
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1.5

corrections to dynamic scaling, as are well known from
corresponding simulations of spinodal decomposition in
the bulk.

Figures 8(a)-8(c) show data for the laterally averaged
(i.e., in the X direction) correlation function [which we
denote as G,,(Z,Z,,71)=G(0,Z,Z,,7)] as a function of
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Z,—Z from early to late times. Because of the breaking
of translational symmetry by the surface, the correlation
function depends on both Z, and Z, until one is deep into
the bulk. We have plotted dashed lines through the
correlation function data for different values of Z to serve
as guides to the eye. Furthermore, we have also plotted
the corresponding bulk data as a solid line, for purposes
of comparison. The data for Z =0 are directly correlated
with the averaged profiles we presented in Fig. 4(a). For
the correlation functions in the Z direction, we observe
that the data for Z =12 are already very close to the bulk
form, unlike in the X direction. We can also define length
scales in the Z direction as the distance over which the
correlation function G,,(Z,Z,,r) falls to half its max-
imum value [see Eq. (33)]. However, these length scales
should be carefully interpreted as being averaged lengths
along the Z direction, because the length scale actually
varies continuously as a function of Z. Figure 9 shows
the length scale /,(Z,7) as a function of time 7. We have
used the same fitting procedure as described previously to
fit the data for 7> 1600 to a power-law form. In this
case, the data for Z =6 (near the surface) exhibit an ex-
ponent of @ =0.16%+0.02. This is considerably slower
than the growth for other values of Z, which again ap-
pears to be consistent with Lifshitz-Slyozov growth. The
low value for small Z is simply a kind of crossover, since
the correlation function G,,(Z,Z,,7) then also reflects
the finite length scale of the surface enrichment layer, as
discussed above.

We next present results for the parameter values

150
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FIG. 10. Evolution pictures of our discrete implementation, analogous to Fig. 3, but for parameter values 4, =8, g =—4, and

¥ =4, which correspond to a wet static equilibrium for the underlying continuum model (marked by a X in Fig. 2).



49 SURFACE EFFECTS ON SPINODAL DECOMPOSITION IN . . .

h,=8, g =—4, and y =4. These parameter values corre-
spond to a wet static equilibrium (see Fig. 2). However,
at the outset, we should caution the reader that the wet-
ting transition does not appear to interfere seriously with
the behaviors already seen for h; =4 (the nonwet case).
This is because, in our model with short-ranged surface
fields, the wetting layer grows out logarithmically in time
and, to a good approximation, is again stationary on the
time scales of phase separation. Thus, as previously, we
are justified in using a coarse discretization mesh as the
primary influence of the surface layer is orientational
rather than dynamical.

Figure 10 shows evolution pictures from our discrete
implementation of Eqgs. (13)-(15). Again, the surface gets
rapidly enriched in the preferred component 4 (marked
by points) and this is followed by a depletion layer which
is rich in B (not marked) and a second (more irregular)
enrichment layer in 4. These snapshot pictures do not
look very different from their counterparts in the nonwet
case, described in Fig. 3. Figure 11(a) shows the laterally
and ensemble averaged profiles ¢,,(Z,7) as a function of
Z for times =50, 100, 500, and 4000. As before, our
coarse discretization does not capture the precise dynam-
ical behavior of the interface. We demonstrate this in
Fig. 11(b), which shows results for the laterally and en-
semble averaged order parameter ¢,,(Z,7) for five runs
with a 300X150 lattice and much finer mesh sizes
A7=0.001 and AX =0.4. However, for the dynamics of
spinodal decomposition adjacent to the layer, this is not a
relevant quantity. Figure 11(c) shows the corresponding
growth for the first zero crossing R;(7) of the laterally
averaged profile of Fig. 11(b) and is again seen to change
rather slowly in time. While Fig. 11(a) looks like its
nonwet counterpart [Fig. 4(a)], the finer scale [Fig. 11(b)]
reveals characteristic distinctions from the nonwet case
[Fig. 4(b)]: right at the surface the order parameter is
strongly enhanced over its bulk value (¢=1 in our nor-
malization), and the profile decays in two steps—on a
scale Z~1 to =1 and on a larger scale /() an inter-
face between the wetting layer and a depletion layer with
¢=—1 occurs. For 7— o, we expect a logarithmic
divergence of /() [25-28].

Figures 12(a)-12(d) show the correlation function in
the X direction (parallel to the wall) for different values of
Z. As one might expect, these are qualitatively similar to
those of the previous case, with the only difference being
that the effects of the surface are more marked—a conse-
quence of a more enriched layer at the surface than in the
previous case. Figure 13 shows the length scales in the X
direction, / 1(Z,7) as a function of 7, for various values of
Z. In general, the domain growth is a bit faster than in
the nonwet case but the growth exponents are still con-
sistent with Lifshitz-Slyozov growth, again reflecting a
robust universality.

Plots of the normalized structure factors
G(X,—X,Z,7)/N(7) [where N(7)=G,(0,Z,7)] versus
the scaled distances (X, —X)/I,(Z,7) again are very simi-
lar to the nonwet case and hence not shown here. As pre-
viously, there is no clear dynamical scaling in the surface
region and the dynamical scaling is not particularly good
for Z =12 either. Of course, dynamic scaling is
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recovered deep into the bulk as Z =42. Under these cir-
cumstances (where Z is larger than the characteristic
length scales) the scaling functions are practically indis-
tinguishable from those in Fig. 7(c), which means that the
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FIG. 11. Analogous to Figs. 4(a)-4(c) but for parameter
values h, =8, g =—4, and y =4, which correspond to a wet
static equilibrium for the underlying continuum model.
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FIG 12. Analogous to Fig. 5, but for the parameter values 4, =8, g = —4, and y =4.

different boundary conditions have no effect deep into the
bulk.

Finally, Fig. 14 shows the average length scale in the
perpendicular direction /,(Z,7) as a function of time 7
for different values of Z. Apart from Z =6, the other
growth exponents appear to be consistent with the
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FIG. 13. Analogous to Fig. 6, but for the parameter values

h,—8,g=—4,and y=4.

Lifshitz-Slyozov growth law. The small value of the
effective growth exponent a for Z =6 may be interpreted
as a kind of weighted average between the growth ex-
ponent a,, of the wetting layer (logarithmic growth) and
the Lifshitz-Slyozov exponent @ =1 that applies in the

bulk.
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V. SUMMARY AND DISCUSSION

In this paper, we have discussed decomposition in
semi-infinite geometry, for the simplest possible case, i.e.,
where the kinetics is due to an interdiffusion of atoms via
nearest-neighbor hopping events (in an Ising spin repre-
sentation of a lattice model, this is the Kawasaki spin-
exchange model, while in field-theoretic treatments of
critical dynamics this is known as ‘“model B”’), and only
short-range forces due to the surface are considered. We
pay much attention to a proper use of the appropriate
boundary conditions at the surface, and are thus able to
distinguish cases where the surface in thermal equilibri-
um is nonwet from cases where it is wet.

Our study consists of two parts: in the first part, we
formulate the general theoretical framework in which
these phenomena should be described. By a suitable
combination of ingredients from the theory of surface
critical phenomena, wetting, and phase separation kinet-
ics, we identify the general formalism that describes how
structure factors and correlation functions near the sur-
face differ from their counterparts in the bulk, and define
length scales that can measure the anisotropy of the
growth of phase-separated domains near the surface
[/,(Z,7) and I,(Z, ), respectively]. Finally the exponen-
tial growth of fluctuations in the initial stages and the ex-
pected scaling behavior in the late stages are discussed
qualitatively.

In the second part of our study, we present numerical
results obtained from “computer experiments” using
cell-dynamical system models to simulate ‘critical
quenches” [i.e., only a bulk composition equal to the crit-
ical composition is considered, ¢,=0 in Eq. (46)]. We
consider two different cases. In the first case the equilib-
rium state of the surface is nonwet, in the other case the
surface is wet in equilibrium. The motivation for these
choices is to see a possible effect of wetting phenomena
on the dynamics of spinodal decomposition. We find,
however, that the effect of these different boundary con-
ditions at the surface is surprisingly minor: in both the
wet and the nonwet case, an enrichment layer at the sur-
face forms and very slowly grows in thickness. The only
difference is that in the nonwet case the growth of the
thickness of this layer basically stops at late times, while
in the wet case the thickness continues to increase loga-
rithmically in the time and the fine structure of the
profile right at the surface is different [cf. the single-step
profile Fig. 4(b) in contrast to the two-step profile, Fig.
11(b)]. Since the scale of inhomogeneities in phase sepa-
ration grows according to the Lifshitz-Slyozov law [i.e.,
(1)< 7173], the linear dimensions of the A-rich (B-rich)
domains in the bulk at late times are much larger than
any such surface-induced wetting layer, at least for the
situation in which the surface forces are short ranged.

In both cases of wet or nonwet boundary conditions at
the surface, the order parameter exhibits an oscillatory
structure that rapidly decays to zero as one moves into
the bulk. The reason for this observation is that both the
formation of a surface enrichment layer and the forma-
tion of a true wetting layer require (from the condition
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that the masses of both constituents 4,B are conserved)
the formation of an adjacent depletion zone of about the
same thickness, where this excess concentration at the
surface is being taken from. Therefore, at the surface,
one full period of a concentration wave (with wave vector
in Z direction) must form. Since in the bulk the local
concentration (averaged along the X direction parallel to
the surface) must be homogeneous in the Z direction, this
wavelike oscillation at the surface must decay to zero as
one progresses into the bulk. Alternatively, one can view
the effect of the surface as an orientational bias on the
forming domains: near the surface it is more likely to
orient the (typically somewhat irregular and elongated)
domains (rich in species of one kind) parallel to the sur-
face rather than perpendicular to it. For this reason, the
length scale /| (Z,7) for small Z is also numerically larger
than the length scale /,(7) in the bulk. Conversely, the
length scale in perpendicular direction is a kind of
weighted average which also includes a contribution from
the much thinner wetting layer (or surface enrichment
layer, respectively) and /,(Z, ) is numerically smaller (for
not too large Z) than [, (7). In the fit to power laws this
effect shows up in a slight increase of the exponent a for
small Z [and a distinct reduction of the exponent a,
describing the growth of /,(Z,7)]. However, we believe
that this apparent change of exponents is simply a cross-
over phenomenon, and it is rather the amplitude in the
power law for the characteristic lengths l”(Z,T), 1,(Z,7)
that shows some Z dependence. It is rather natural to
assume—though hard to prove numerically—that in our
model all these lengths /,(Z,7), l“(Z,T), and [,(Z,7) are
described by the same growth exponent, i.e., a = 1.

While our study reveals again a rather good
confirmation of dynamic scaling behavior in the bulk, for
the time scales available in our study, in the region near
the surface rather pronounced deviations have been
found. We feel that this is a residual influence of the
short length scale of the surface enrichment or wetting
layer, that interferes with the growing length scale of
bulk spinodal decomposition, just as this is responsible
for the apparently changed effective growth exponents q
and a,. If we were able to carry our simulations to much
later times, one would presumably see a much better
defined scaling, but this would require a huge numerical
effort that does not seem to be possible.

Apart from this restriction, our study is only a first
step towards a complete understanding in several
respects. First, the effects of choosing off-critical concen-
trations (¢,70) should be investigated. Secondly, there
is a need to investigate the effect of long-ranged surface
effects, which are more realistic under most physical cir-
cumstances. Thirdly, and if one has an application to the
experimentally crucial system of binary fluids in contact
with a wall, the inclusion of hydrodynamic forces will be
necessary. Finally, we note that most experimental stud-
ies of surface effects on spinodal decomposition do not
study surfaces of bulk systems but rather a thin film
geometry. Since the latter geometry is rather easily in-
cluded in the framework of our theoretical modeling, we
intend to report on such study in the near future [45].
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tion mesh sizes are Ar=0.05 and AX =1.5 and our discrete model should be understood in terms of a cell-dynamical system (CDS)
model which mimics the physics rather than the precise numerical solution of the partial differential equation. The lattice size is
L, XL, (L,=300,L,=150) and the surface boundary conditions [Egs. (14) and (15)] are applied at Z =0. Free boundary conditions
are applied at Z =L, and periodic boundary conditions are applied in the X direction. The parameter values are h, =4, g = —4, and
¥ =4, which correspond to a nonwet static equilibrium. The initial condition consists of uniformly distributed random fluctuations of
amplitude +0.025 about a zero background, viz., a critical quench. Evolution pictures are shown for (a) 7=50, (b) 7=100, (c)
7=500, and (d) 7=4000.



