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An approximate formula is derived for the x-ray and neutron reflectance of a one-dimensional

scattering-length-density (SLD) profile based on the principle of superposition of the wave field. The

SLD profile is regarded as being composed of an infinite number of histogramlike differential SLD steps

which are distributed along the depth direction. A simple Fresnel reflection is assumed to occur at each

differential step. The elemental Fresnel reflections from all the differential steps, weighted by their

respective propagation effects, add up to the overall reflectance of the one-dimensional SLD profile in

the form of an integral. The reflectance obtained this way is shown to reduce to the Born approximation

for large-wave-vector transfer Q and to the modified Born approximation for very thin surface struc-

tures. The accuracy of the formula is evaluated through comparisons with Parratt's recurrence formula,

the Born approximation, and the distorted-wave Born approximation (DWBA) for a few selected SLD
profiles imitating actual experimental SLD profiles. It is concluded that the formula is, in general, more

accurate than the Born and DWBA approximations and is valid in the entire range of wave-vector

transfer Q except slight deviations in the narrow region around the total reflection edge. The formula-

tion also applies to absorptive materials when the SLD profile is taken to be complex. Owing to the high

accuracy and simplicity of the formula, a scheme is proposed to use the formula for the reconstruction of
the SLD profile from measured reflectance and reflectivity data.

PACS number(s): 61.12.—q, 02.50.—r, 68.10.—m, 02.70.—c

I. INTRODUCTION

The reflection of x rays and neutrons by a stratified film

obeys a one-dimensional wave equation [1] with a propa-
gation wave number which depends on the vertical
scattering-length-density (SLD) profile of the sample.
From such an equation, an open-form solution for the
reflectance can be obtained using the standard Green's-
function approach [2—4]. The open-form expression for
the reflectance contains an unknown wave function in the
region of the film, and one has to approximate the un-
known wave function. The simplest choice of the wave
function is the Born approximation [5], which assumes
that the reflection is low so the incident wave is essential-
ly unchanged inside the film. A more consistent approxi-
mation is the distorted-wave Born approximation
(DWBA) [6], which uses the wave function of a reference
film (say a uniform average film} for the unknown wave
function in the actual film. The Born approximation is
valid for very thin films or for arbitrary films only at
large Q values. The DWBA works well for thin films of
which the SLD profiles can be closely approximated by
simple profiles such as a uniform layer. For a more gen-
eral sample, say a thick diffused interfacial region, both
the Born and DWBA break down and better approxima-
tions are needed. One such approximation is the so-
called small curvature approximation (SCA} given in [2],
which was proven to reduce to and be more accurate
than both Born and DWBA. An even better approxima-
tion called the modified WKB (MWKB) approximation
was given in [4], where a uniform-layer Green's function
was employed, and the wave function inside the sample

was treated by modifying the WKB approximation [7].
The above approximations are all based on Green's func-
tions and they differ in forms and physical contents. In
the following, we present another approach to calculate
the reflectance, namely the weighted superposition ap-
proximation (WSA}. The essence of the method is the
principle of superposition of the wave field as commonly
used in the electromagnetic-field theory. This approxi-
mation is unique because it is simple in principle yet more
accurate than all other approximations, and most impor-
tantly can be used to reconstruct the SLD profile from
measured reflectance or reflectivity data.

II. THE WEIGHTED SUPERPOSITION
APPROXIMATION (WSA)

A plane wave (x ray or neutron} is assumed to impinge
on a stratified sample with a SLD profile p(z) as illustrat-
ed in Fig. 1. The sample occupies the region (

—d, 0), the
substrate (or bulk), the region (O, ao ), and the incident
space of air ( —ao, —d}. For the derivation of the WSA,
the sample SLD profile p(z) is treated as composed of an
infinite number of histogramlike small differential SLD
steps distributed along the depth direction z. A simple
elemental Fresnel reflection is assumed to occur at each
of the steps. The weighted superposition of all the ele-
mental Fresnel-reflected wavelets constitutes the
reflectance from the entire sample. The weight for each
elemental Fresnel reflection is a factor that accounts for
the accumulated phase and attenuation of the amplitude
of the wave both before and after the reflection at a
differential step. As will be seen below, this treatment
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pie

substrate

elemental Fresnel reflection at the differential step at z„ is
given by

k (z„—b,z/2) —k (z„+b,z/2)R„=
k (z„—Az/2)+ k (z„+b,z/2)

As k(z) =1/ ko 4vr—p(z), the Fresnel reflectance R„ in
Eq. (3) approaches the following limit when b,z ap-
proaches an infinitesimally small value of dz:

; zn i o

m(d p/dz)
k

11m R, —
2 (4)

FIG. 1. Illustration of the superposition of elemental Fresnel
reflections from the differential steps in the SLD profile of a
stratified sample. The number "1" in the figure indicates the
unit amplitude of the incident wave. RI is the Fresnel
reflectance of the front surface of the sample. R„denotes the
Fresnel reflectance of the differential SLD step at z„. The ar-
rows represent the elemental Fresnel-reflected wavelets. Since
wavelets from different positions z„have to traverse different
ranges of the sample before reaching the incident space, they
should be weighted differently according to their respective
propagation effects as given by Eq. (5) in order to add up
correctly to the total reflectance of the sample.

will lead to very simple and accurate formulas in a
straightforward manner.

A. Derivation of the WSA

R~+r
r =

1 +RIr (2)

the squared modulus of which is the reflectivity measured
in experiments. The medium reflection r excluding the
front air-film interface can be calculated as follows. The

For the reflection from a film situated on top of a sub-
strate, the film-substrate combination can be regarded as
being composed of two parts: the air-film interface and
the rest. The reflected wave from the air-film interface
interferes with that from the rest of the medium (namely,
film plus substrate minus air-film interface) to result in
oscillations in the reflectivity-Q curve. This interference
comes in the form of multiple reflections. To properly
account for this effect, we choose to treat the front air-
film interface and the rest separately, and then combine
their contributions to obtain a composite multiple-
reflection solution. The front air-film interface has a
Fresnel reflectance given by

ko —k~
RI=, k/ = '1/ k 0

—4m p/,ko+k~
'

where pI =p( —d ) and ko = (2m/A, ) sin9, with A, denoting
the wavelength and 0 the grazing angle of incidence. The
reflection from the rest of the medium includes the region
from z = —d+ to z = ~. This means that it includes the
entire film-substrate medium except the air-film interface.
Suppose the reflection of the medium is denoted by r
then the combined reflection of the air-film interface and
the film medium is, according to Parratt's formula [8],

The weight factor for the elemental Fresnel reflection at
z„ is given by

Z

W(z„)= exp 2i f k(z)dz—d
(5)

Multiplying Eq. (4) by Eq. (5), summing the product over
n, and taking the limit that the number of points n ap-
proaches infinity, one obtains

r =n f dz P exp 2i f k(z)dz
dp/dz

Here —d+ means the integration begins on the plus side
of z = —d. Combining Eqs. (1), (2), and (6) and consider-
ing the fact that Eq. (6) equals RI if the integration limits
(
—d+, oc ) are replaced by (

—d, —d+ ), we obtain

fd. z exp 2i f k (z)dz
dp!dz . z

—d k —d

1 —R&+mRI f dz exp 2i f k(z)dz—d —d

(7)

k (z) =Qko —4mp(z),

where the integration limits ( —d, oo ) include the air-film
interface.

More generally, if —d in the integration limits is ex-
tended in the negative direction to include the front sur-
face such that p( —d) =0, Eq. (1) gives R& =0, and Eq. (7)
reduces to

r =n.f dz exp 2i f k(z)dz
dp/dz . z

—d k —d
(9)

Equation (9) has a very simple form yet will be shown still
to be very accurate as the correct phase relation Eq. (5)
has been included. We point out that Eq. (7) approaches
Eq. (9) when the front surface becomes gentle and
smooth, and only a small difference occurs when the
front surface of the SLD profile is sharp. It is noted that
the reflectance Eq. (9) is a simple generalization of the
Born approximation, because replacing the phase 2koz in
the Born approximation by j2k(z)dz directly leads to
Eq. (9).

It is observed from Eq. (9) that the reflectance r is re-
lated to the SLD in a nonlinear way, such that the
reflectance r is not equal to a Fourier transform of the
gradient of the SLD. However, at large Q, k approaches
the free-space value ko, making Eq. (9) a real Fourier
transform similar to the diff'raction amplitude [9] in crys-
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tallography. At small and intermediate ko, the SLD seri-

ously affects k and the phase factor in the exponential
term in Eq. (9). The phase for positive SLD values is
smaller than the free-space value. As a result, the non-
linearity comes about owing to a phase shift (or phase
lagging) caused by the SLD. This is a significant effect, as
it is well known that the interference of wavelets from
various locations inside the SLD profile depends very sen-
sitively on their relative phases.

B. Reduction of WSA to Born,
modi6ed Born, and free-liquid approximations

At large wave-vector transfer Q, the wave number k
reduces to the free-space wave number ko. Both Eqs. (7)
and (9) reduce to

77 m dp 2ikoz 47T ao dp ig~r= dz e cfz e-d dz Q -d dz
(10)

and one automatically obtains from Eq. (9) that

Rb ~ gP . z
r = f dz exp 2i f k(z)dz

Pb —d dZ —d
(12)

where pb and Rb, respectively, are the SLD and the

which is the Born approximation [2]. Note that Q is the
wave-vector transfer Q =2ko, and a constant phase e'~~

is omitted from Eq. (10).
For a free-liquid surface with a thin surface structure,

say 200 A thick, the k in the denominator in Eq. (9) can
be approximated by the value at the air-film interface,
s.e.,

ko+kb

Fresnel reflectance of the bulk liquid. This formula can
be used to calculate the reflectance of a free-liquid surface
of a few hundred A, and is called the free-liquid approxi-
mation.

If the free-liquid surface has an extremely thin struc-
tured surface region ( (50 A), Eq. (12) can be further re-
duced if one approximates the phase by exp(2ikoz). Then

r
Rb

' f"dz"Pe'(-"
Pb —d 8Z

(13)

III. NUMERICAL COMPARISONS

We evaluate the validity of Eqs. (7) and (9) by compar-
ing them numerically with Parratt's recurrence formula
and the Born and DWBA approximations for a few SLD
profiles. The profiles are labeled from (a) to (g) and their
functional forms are listed in Table I.

Profiles (a)—(g) in Table I are plotted in Figs. 2(a)—2(g),
respectively, with the proper substrate SLD's indicated.
For generality and practicality, profiles (a)—(c) are chosen
to represent increasing functions, profile equations (d) —(f)
decreasing functions, and profile equation (g) a nonmono-
tonic function. Figure 2(a) resembles the surface SLD
profile of a diffused protonated hydrocarbon layer on top
of a deuterated hydrocarbon bulk [11]. Figure 2(b) simu-
lates the surface density of some liquids which starts from

which is identical to the modified Born approximation
given in [10] for very thin liquid surfaces. This result
could also be obtained from Eq. (10) by forcing Eq. (10)
to equal the Fresnel reflectance Rb for a sharp interface.
Note that Eq. (13) applies to only very thin structures of
(50 A, while Eq. (12) could be applied to free liquids
with surface structures as thick as a few hundred A.

TABLE I. Scattering-length-density profiles used for evaluating Eqs. (7) and (9). The profile num-

bers (a) to (g) correspond to plots (a) to (g) in Fig. 2.

Pro61e

no.

Range of z

(A)

Functional form of p(z)

(A )

(a) —500+z ~0
z +250/100—0 5X10 +3 5X10 1+ e " du

0

(b)

(c)

—1000~z &0

—1000+z ~0

6.5 X 10 (z + 1930)+1.0X 10 sin
235

2

Q X 1Q 6+4 Q X 1Q 6 exp
2 200

(d) —1000~z +0 2.0X 10 +3.0X 10 exp
300

(e) —1000&z &0

—2000~z &0

2.5X10 +2.5X10 exp
z + 1000 . 2m.(z + 1000)

300 150
z + 1000/200

1.5X10 +2.5X10 1 — e " dg
0

(g) —1000+z +0 4 0X 10
—6+2 5 X 10

—6 cps
800
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air and increases oscillatorilly to the bulk level. Figure
2(c) mimics the neutron SLD profile of a polymer blend
with a Gaussian adsorption profile at the substrate sur-
face. Figure 2(d) is a typical exponential adhesion profile
corresponding to the Cahn model. Figure 2(e) is a
damped oscillatory density profile found in liquid crys-
tals, microemulsions [12],and some liquid metals. Figure
2(f) is representative of an interdiffused polymer bilayer
[13]. Figure 2(g) resembles a trilayer with difl'used inter-
faces.

Figures 3—9 are the reflectivities calculated from Eq.
(9) for the profiles Figs. 2(a) —2(g) in comparison with
Parratt's recurrence formula and the Born approximation
[Eq. (10)]. The calculated reflectivities from Eq. (9) are
plotted in solid lines, Parratt s formula in circles, and the
Born approximation [Eq. (10)] in dotted lines. In Fig. 3,
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FIG. 3. Comparison of the reflectivity calculated from Eq.
(9) with those from Parratt's recurrence formula and the Born
approximation [Eq. (10)] using the SLD profile [Fig. 2(a)]. The
circles are Parratt's result, the solid line is from Eq. (9), and the
light dotted line is for the Born approximation.

the solid line from Eq. (9) goes right through the circles
for Parratt's result except for small deviations on the to-
tal reflection plateau. The Born approximation is in-
correct by a few orders of magnitude at small Q values,
but approaches the correct result as Q increases. In Figs.
4—9, the same comparison is observed. Comparisons of
the calculations for seven different SLD profiles have led
us to believe that in general Eq. (9) agrees with Parratt's
exact result within 2% except for small deviations around
the critical plateau. As the deviations are small with
respect to experimental data fluctuations in x-ray and
neutron reflectornetry, the small errors are not expected
to degrade the validity of Eq. (9) if it is used to perform
data analyses. That means that Eq. (9) can be regarded
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FIG. 2. Plots of seven SLD profiles listed in Table I. They
are chosen for the comparison of Eqs. (7) and (9) with Parratt's
formula and the Born and DWBA approximations. Plots
(a)—(c) represent increasing SLD profiles, plots (d) —(f) are de-
creasing profiles, and plot (g) is a nonmonotonic SLD profile.
They combine to cover a range of functional characteristics
wide enough to represent most experimental SLD profiles in
neutron and x-ray reAectometry.

10
0 0.02 0.04 0.06 0.08

wave-vector transfer 0 (1/A)

1

0.1

FIG. 4. Comparison of the refiectivity calculated from Eq.
(9) with those from Parratt*s recurrence formula and the Born
approximation [Eq. (10)] using the SLD profile [Fig. 2(b)]. The
circles are Parratt's result, the solid line is from Eq. (9), and the
light dotted line is for the Born approximation.
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FIG. 5. Comparison of the refiectivity calculated from Eq.
(9) with those from Parratt's recurrence formula and the Born
approximation [Eq. (10)] using the SLD profile [Fig. 2(c)]. The
circles are Parratt's result, the solid line is from Eq. (9), and the
light dotted line is for the Born approximation.

FIG. 7. Comparison of the reflectivity calculated from Eq.
(9) with those from Parratt's recurrence formula and the Born
approximation [Eq. (10)] using the SLD profile [Fig. 2(e)]. The
circles are Parratt's result, the solid line is from Eq. (9), and the
light dotted line is for the Born approximation.

as an accurate formula for the reflectance. The Born ap-
proximation is strictly a large-Q approximation and is
correct only at large-Q values. We point out that the to-
tal reflection plateau is approximately reproduced by Eq.
(9) in all cases from Figs. 3 to 9, and this is significant be-
cause most known approximations cannot achieve this
for the different types of SLD profiles in Figs. 2(a) —2(g).

Equation (7} has a more complex form than Eq. (9),
and is expected to be more accurate than Eq. (9) when the
air-film interface is sharp. When the air-film interface is
very gentle and smooth, Rf tends to zero and Eq. (7) ap-
proaches Eq. (9}. To confirm this, we performed similar
calculations of Eq. (7), and the results are plotted in Figs.
10-16. In these figures, the DWBA as given by Eq.

(2.6c) in [4] is also calculated for comparison, and is given
by the thicker black dots. The circles are Parratt's for-
mula, the solid lines are Eq. (7), and the dotted lines are
the Born approximation [Eq. (10)]. Figure 13 is for the
exponential profile with a very sharp front surface. It
shows that the solid line from Eq. (7} is almost identical
to the circles from Parratt's formula. If one checks the
corresponding figure for Eq. (9), i.e., Fig. 6, it can be seen
that Eq. (7) is more accurate than Eq. (9). However, if
one compares Eqs. (7} and (9) through all the other
figures, the difference is marginal and can be neglected as
far as data analyses are concerned.

In Fig. 10 for the profile in Fig. 2(a}, the solid line from
Eq. (7) goes right through every circle from Parratt's for-

10', . 10

10 10
1

p10 p10

~ 1alp
8
Ln 1P.2

-1
m10

8
pi

10

10 10

10 10

10
0

I

0.02
I I I

0.04 0.06 0.08
wave-vector transfer Q (1/A)

I

0.1 0.12 10
0

I

0.02
I I I

0.04 0.06 0.08
wave-vector transfer Q (1/A)

I

0.1 0.12

FIG. 6. Comparison of the reflectivity calculated from Eq.
(9) with those from Parratt's recurrence formula and the Born
approximation [Eq. (10)] using the SLD profile [Fig. 2(d)]. The
circles are Parratt's result, the solid line is from Eq. (9), and the
light dotted line is for the Born approximation.

FIG. 8. Comparison of the reflectivity calculated from Eq.
(9) with those from Parratt's recurrence formula and the Born
approximation [Eq. (10)] using the SLD profile [Fig. 2(f)]. The
circles are Parratt's result, the solid line is from Eq. (9), and the
light dotted line is for the Born approximation.
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FIG. 13. Comparison of the reflectivity calculated from Eq.
(7) with those from Parratt's recurrence formula, the DWBA,
and the Born approximation [Eq. (10)] using the SLD profile
[Fig. 2(d)]. The circles are Parratt s result, the solid line is from
Eq. (7), the black dots are for the DWBA, and the light dotted
line is for the Born approximation.

FIG. 15. Comparison of the reflectivity calculated from Eq.
(7) with those from Parratt's recurrence formula, the DWBA,
and the Born approximation [Eq. (10)] using the SLD profile
[Fig. 2(f)]. The circles are Parratt's result, the solid line is from
Eq. (7), the black dots are for the DWBA, and the light dotted
line is for the Born approximation.

rate regardless of the functional shapes of the SLD
profiles.

IV. USING WSA FOR SLD RECONSTRUCTION

z
I (z,p)= 2 exp 2i k(z)dzk' (15)

I(r,p)= I dz I (z,p),dp (14)

The WSA formulas Eqs. (7) and (9) can be used to con-
struct schemes to determine the SLD profile from mea-
sured data. This was demonstrated in [3] using another
approximate formula. An iterative inversion algorithm
can be developed based on Eqs. (7) or (9). Equations (7)
and (9) can be rewritten as

for Eq. (9)
r

for Eq. (7) .
m. 1 —rRf

(16)

Integrating the product of Eq. (14) with exp( 2ikoz)—
over a range of ko from k, to k2, we obtain an integral
equation of the following form:
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FIG. 14. Comparison of the reflectivity calculated from Eq.
(7) with those from Parratt's recurrence formula, the DWBA,
and the Born approximation [Eq. (10)] using the SLD profile
[Fig. 2(e)]. The circles are Parratt s result, the solid line is from
Eq. (7), the black dots are for the DWBA, and the light dotted
line is for the Born approximation.

FIG. 16. Comparison of the reflectivity calculated from Eq.
(7) with those from Parratt's recurrence formula, the DWBA,
and the Born approximation [Eq. (10)] using the SLD profile
[Fig. 2(g)]. The circles are Parratt s result, the solid line is from
Eq. (7), the black dots are for the DWBA, and the light dotted
line is for the Born approximation.
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FIG. 17. The inverted SLD profile obtained via Eq. (21) from
simulated reflectance data of a linear SLD profile. The solid
line is the original profile, and the circles are the reconstructed
result.

C(z) = dz', W(z', z),, dp(z')
—d dz'

(17)

Z

C = f dzC(z),
m —

1

Z Z

W.„=f" dz f dz W(z', z).
n —l m —1

(19)

(20)

An iterative scheme calculates the jth value p~ from the

(j —1)th values PJ by using the matrix inversion for-
mula

[p„]=[W „(p„')] '[C (p„')] . (21)

The initial guess p„ for the iteration can be chosen in

such a way as to minimize the computation time.
Application of Eqs. (21) and (9) to one set of simulated

reflectance data produced an approximate inverted
scattering length density profile, as plotted with circles in

Fig. 17 together with the input profile. The inverted
profile is a close approximation of the input profile. Note
that this is only a test case, and more work is in order for
obtaining a method applicable to arbitrary SLD profiles.
Rough as it is, Fig. 17 preliminarily demonstrates how
the WSA may be used to invert reflection data in addition
to revealing the nonlinear relationship between r and the
SLD.

where C(z) and the kernel W(z', z), respectively, are the
integration of the products of exp( 2iko—z) with Eqs. (16)
and (15) over ko from k, to k2. We divide the spatial
range (

—d, o) into N segments, with the nth segment
spanning an interval from z„, to z„, and the derivative
of scattering length density in this interval is taken to be
a constant p„. Using Galerkin's method [14], we trans-

form Eq. (17) into a matrix equation:

imate closed-form formula Eq. (9) for calculating the
reflectance of a stratified sample characterized by a SLD
profile p(z). This treatment of x-ray reflection was based
on the fact that x rays are electromagnetic waves, and
electromagnetic fields obey the superposition principle.
This principle also applies to neutron waves and acoustic
waves because they are similar to x rays in that their
wave equations are all linear. As a matter of fact, the su-

perposition principle is a direct consequence of the linear-
ity of the wave equations satisfied by the wave functions.
This guarantees that the use of the superposition princi-
ple in this paper is physically legitimate. Because the
principle of superposition is simple, the formulas are ob-
tained in a straightforward fashion and are very simple in

form compared to other formulations such as the
Green's-function solution.

The formula Eq. (9) was shown to reduce to the Born
approximation in the large-Q limit and the modified Born
approximation for very thin liquid surfaces. Equation (9)
also produces a new formula Eq. (12) for thin liquid sur-
faces which may be too thick (say 300 A) to be accurately
described by Eq. (13). For arbitrary films, the Born ap-
proximation failed in the low-Q region because, contrary
to the assumption of weak reflection, the incident wave

was modified significantly by the film. On the contrary,
Eq. (9) is accurate because the exponential term inside the
integral represents the correct propagation effect. The
propagation effect has two parts: the phase change and
the amplitude attenuation, both of which are represented
very well by Eq. (5). Away from the critical edge, the
wave propagates in the film with little attenuation, and
the major factor is the phase shift as given in Eq. (5).
Below the critical edge, the wave number k may become
imaginary, and Eq. (5) predicts exponential attenuation,
and the wave may become evanescent. In the vicinity of
the total reflection edge, the wave may be propagating in

some part of the sample while being attenuated in some
other part of the sample. This complexity makes it
difIicult to calculate the amplitude change very accurate-
ly and causes errors. As a whole, Eq. (9) is found to be
valid over the entire range of wave-vector transfer Q ex-

cept for small errors in the vicinity of the total reflection
edge.

From the formula Eq. (9), one sees most directly that
the nonlinear dependence of the reflectance on the SLD
profile of the sample is through the phase factor. This is

an important understanding for reflectivity data analyses.
Besides being the simplest and most accurate approxi-
mate reflectance formula, Eq. (9) may be used to perform
data inversion as described in Sec. IV. The full develop-
ment of the inversion scheme based on the WSA is part
of the authors' ongoing research work.
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