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Resummation of higher-order terms in the free-energy density of nematic liquid crystals
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The presence of the surfacelike elastic constant E» in the expression of the elastic free-energy density

F, for a nematic liquid crystal (NLC) makes the free-energy functional unbounded from below. A
discontinuity of the director field has been predicted to occur at the interfaces of the NLC. In recent
years two very different theoretical approaches have been proposed to bypass mathematical difficulties
related to the It» problem. Hinov and Pergamenshchik [Mol. Cryst. Liq. Cryst. 148, 197 (1987); 178, 53
(1990), and references therein; Phys. Rev. E 48, 1254 (1993)]consider the surface director discontinuity is
an artifact of theory and make the assumption that the director field must be sought in the class of con-
tinuous functions. With this assumption a well defined solution for the equilibrium director field can be
found and new phenomena are predicted to occur. Barbero and eo-workers [Nuovo Cimento D 12, 1259
(1990); Liq. Cryst. 5, 693 (1989)] expanded the free-energy functional I' up to the fourth order in the
director derivatives (second-order elastic theory) and showed that the minimization problem now be-
comes mathematically well posed. A strong subsurface director distortion on a length scale of the order
of the molecular length is predicted to occur by using this approach. The macroscopic consequence of
the strong subsurface distortion is an apparent renormalization of the anchoring energy as far as the
lang-range bulk distortion is concerned. In the first part of this paper we propose a simple and rigorous
test based on the general principles of mechanics to establish the internal consistency of these very
different theoretical approaches. The second-order elastic theory is found to satisfy this test, while the
Hinov-Pergamenshchik model is found to be in contrast with it. In the second part of this paper we

make a systematic expansion of the free energy at any order in the director derivatives and we analyze
the physical effects of the higher-order contributions that were disregarded by the second-order theory.
At any expansion order a strong subsurface director distortion is predicted to occur and its macroscopic
effect is shown to be equivalent to an apparent renormalization of the anchoring energy. Therefore, the
main qualitative predictions of the second-order elastic theory remain satisfied at any expansion order,
although the quantitative behavior of the system is found to be greatly affected by higher-order contribu-
tions.

PACS number(s): 61.30.—v, 62.20.0c, 68.10.Cr

I. INTRODUCTION

The macroscopic behavior of nematic liquid crystals
(NLC's) is described by the director n which denotes the
average molecular orientation. The space variation of the
director can be obtained by minimizing the Frank elastic
free energy [1]. Nehring and Saupe [2], in 1971, showed
that a new term must be added to the free energy. This
new contribution, which is proportional to the surfacelike
elastic constant E,3, explicitly contains second order
derivatives of the director and, thus, behaves as a surface
free-energy contribution. Oldano and Barbero [3], in
1985, showed that this new surface contribution makes
the free energy unbounded from below, so that no
minimum of the free energy can be found. In these con-
ditions, a discontinuity of the director field is predicted to
exist at the interfaces [4—6]. This mathematical discon-
tinuity is due to an oversimplification of the surface prob-
lem and it tends to simulate an actual strong director dis-
tortion which occurs in a very thin subsurface layer of
molecular characteristic length. In this greatly distorted
subsurface layer, the director derivatives assume very
high values and thus one expects higher-order elastic
contributions in the expansion of the free energy to play a
considerable role. On the basis of this idea, Barbero and
co-workers [7,8] generalized the Frank theory of elastici-

ty by making a power expansion of the free elastic energy
density of a NLC up to the fourth order in the director
derivatives. In the following we will refer to this elastic
theory as the "second-order elastic theory. " The
second-order free energy is shown to be bounded from
below and to possess a minimum. The equilibrium direc-
tor field is now represented by a continuous function but
there is a sharp variation close to the interfaces within a
thickness of the order of the molecular length. From the
macroscopic point of view this short-range subsurface
distortion is equivalent to a discontinuity of the director
field in agreement with the theoretical predictions of the
first-order elastic theory [4—6]. The macroscopic effect
of the subsurface distortion has been demonstrated to be
equivalent to an apparent reduction of the surface an-
choring energy coefficient W [8,9].

A very different solution to the problem of the surface-
like elastic constant K,3 was proposed some years ago by
Hinov [10,11], who made the a priori assumption that
discontinuities of the director field at the interfaces are
unphysical and the director field that minimizes the free
energy must be sought in the class of continuous solu-
tions of the bulk Euler-Lagrange equations everywhere
(also at the interfaces). More recently, Pergamenshchik
[12] reached the same conclusion on the basis of difFerent

physical arguments. The main idea of Pergamenshchik is
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that the presence of a strong subsurface distortion is an
artifact of theory because the theory consists of a power
expansion of the free energy that is stopped at a finite or-
der. According to the Pergamenshchik conjecture, the
truncation procedure at a finite order automatically pro-
duces surface elastic contributions and a solution for the
director field which is characterized by surface discon-
tinuities, while a complete resummation over all the
higher-order terms should bound the free energy from
below in such a way that director distortions with a very
short characteristic length are no longer possible. There-
fore he suggests that the true director field can be ob-
tained by using the Nehring and Saupe first-order elastic
theory (with K»%0) on the condition that the director
distortion must be sought in the class of continuous func-
tions that are solutions of the bulk Euler-Lagrange equa-
tions. With this assumption, the mathematical problem
is shown to be well posed and qualitatively new phenome-
na are predicted to occur [13,14]. In the following we
will refer to this theoretical procedure as the "modified
first-order elastic theory. "

Both these theoretical models made special assump-
tions or approximations whose actual validity should be
verified. In particular, the modified first-order theory
makes the assumption that the director field does not ex-
hibit any discontinuity. On the other hand, the second-
order theory consists in a power expansion of the free-
energy density up to the fourth order in the director
derivatives. In principle, a truncated power expansion is
justified only if the length scale of the director distortion
is much higher than the molecular scale length. This is
certainly not the case as far as the strong subsurface dis-
tortion is concerned and thus the role that elastic contri-
butions of order higher than the second order may play is
not clear.

In this paper we want to analyze in detail the validity
of these assumptions. In particular, we want to answer
the following questions.

(1) Are the two theoretical approaches consistent with
the principles of mechanics?

(2) What is the infiuence of higher-order elastic contri-
butions that are not taken into account by the second-
order elastic theory? Can these contributions modify the
main predictions of the second-order elastic theory?

In Sec. II we answer question 1 by proposing a simple
and rigorous theoretical test to assess the internal physi-
cal consistency of these elastic theories. This test is based
on two general laws of mechanics: the principle of virtu-
al work and the equilibrium laws for a mechanical sys-
tem. The modified first-order theory is found not to satis-
fy this test, while the second-order theory is found to
satisfy it. Therefore the modified first-order theory is in-
consistent with the principles of mechanics. We remind
that this theory is based only on the assumption that no
director discontinuity is present at the interfaces. There-
fore the direct consequence of our theoretical analysis is
that, within a first-order elastic theory, a discontinuity of
the director-field must always occur at the interfaces if
the surfacelike elastic constant K,3 is different from 0.

Although the second-order elastic theory is found to be
consistent with the principles of mechanics, it cannot be

considered to be a definitive solution for the X» problem,
since the role that elastic contributions of order higher
than the second order may play is not clear. A complete
analysis of the elastic problem would require a resumma-
tion over all higher-order contributions of the elastic free
energy for any kind of director distortion. This is an im-
possible task in practice due to the very great number
and the complex form of the new higher-order contribu-
tion that must be taken into consideration. However, in
order to obtain some understanding of the effects of
higher-order surface and bulk contributions, we can re-
strict our attention to the very special case of planar
director distortions and very small director angles. In this
way we can greatly reduce the number of significant new
elastic contributions and infer certain important general
trends of solutions for the director field by exploiting the
great scale separation between the macroscopic charac-
teristic length scale related to the first-order elastic con-
tributions and length scale which characterizes the
higher-order contributions. In Sec. III we summarize
briefly the main aspects of the expansion procedure used
by Barbero, Sparavigna, and Strigazzi [7] to obtain the
second-order elastic free energy and we discuss the main
consequences of this approach. In Sec. IV we make a sys-
tematic expansion of the free-energy density at any order
in the director derivatives by using the same theoretical
approach as [7] and we analyze the shape of the equilibri-
um director distortions. At any expansion order n, a
strong subsurface director distortion is predicted to
occur. The amplitude and the spatial shape of the strong
subsurface distortions are found to depend greatly on all
new higher-order elastic contributions. At any expansion
order n, the macroscopic distortion is found to be fully
equivalent to that which is predicted by using the Frank
elastic form for the free energy (with K&3 =0) with a re-
normalized value of the anchoring energy coefficient and
of the easy axis angle. Therefore we infer that a complete
resummation over all higher-order contributions does not
qualitatively modify the main conclusions of the second-
order elastic theory as far as the macroscopic distortion
is concerned. However, we must emphasize that the
discontinuity b,8 of the director angle at the surface and
the renormalized value of the effective anchoring
coefficient are functions of the surfacelike elastic constant
K&3 and of all higher-order surface and bulk elastic con-
stants. Therefore the theoretical predictions of the
second-order elastic theory are not quantitatively correct.

II. THE ELASTIC TORQUE TEST

Consider a NLC layer of thickness d, sandwiched be-
tween two parallel plates as shown schematically in Fig.
1. We suppose that the easy director alignment at both
the bounding plates lies in the vertical x-z plane of an or-
thogonal right-handed Cartesian system and makes the
angle Po with respect to the normal z to the plates. For
the sake of simplicity, we assume the same anchoring en-
ergy at both the plates. A magnetic field 8 is applied
along an axis which makes the angle a with the normal to
the plates.

The surface torque per unit surface area that must be
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NLC

FIG. 1. Schematic view of a nematic LC layer sandwiched
between two parallel plates. d is the thickness of the layer,
8=8(z) is the angle between the director n and the normal z to
the plates, a is the angle which the magnetic field H makes with
the z axis, and Po is the easy angle at both the surfaces.

d~= —J y, (n.H)(n X H }dz,
0

(2)

where g, is the anisotropy of the diamagnetic susceptibil-
ity of the NLC. Equations (1} and (2} are direct conse-
quences of the general principles of mechanics and thus
any theory of elastic properties must satisfy both these
equations. The proposed surface torque test consists,
then, in verifying the identity

dF y= —I y, (n.H)(nXH}dz .
8'g 0

In order to reduce the mathematical diSculties and to
make the theoretical analysis clearer, we make the follow-
ing simplifying assumptions.

applied on the solid bounding plates to maintain mechan-
ical equilibrium when the magnetic field is applied can be
calculated using two different theoretical procedures.
The first method consist in making a virtual rotation b rl
of both the plates around the y axis (see Fig. 1). Accord-
ing to the principle of virtual work, the total mechanical
work which must be spent by the operator to make this
rotation is equal to the variation of the free energy of the
system. Therefore the total torque per unit surface area
which must be applied to the system of two plates to
maintain mechanical equilibrium can be written in the
general form

dF&=&)+&2=
dn

where F is the free energy per unit surface area, v =~ is
the total mechanical torque per unit surface area, v.

&
and

~2 are the mechanical surface torques acting on plates 1

and 2, and y is the versor of the axis orthogonal to the
x-z plane. The second theoretical procedure for calculat-
ing the total surface mechanical torque consists in apply-
ing the general laws for the equilibrium of a mechanical
system. At equilibrium the total external torque, which
is given by the sum of surface torques acting on the plates
and the bulk magnetic torque exerted by the magnetic
field, must be zero. All other torques such as the elastic
torques and the surface anchoring torques are internal to
the system and cannot influence the balance of external
torques. Therefore the total torque per unit surface area
which must be exerted on the plates to maintain mechan-
ical equilibrium is

(i) The bulk elastic constants K» and K33 have the
same value K (K» =K33 =K).

(ii) The magnetic coherence length g=(K/y, )' /0 is
much smaller than the thickness d of the nematic layer,
where H is the intensity of the magnetic field. This con-
dition can be satisfied, for instance, using a NLC layer of
thickness d =200 pm and a magnetic field H =10 kQ
((=2 pm).

It is important to emphasize here that conditions (i)
and (ii} are not necessary to our analysis and the same
main conclusions are obtained without making these sim-
plifying assumptions. In this case, however, the theoreti-
cal calculations become more complicated and numerical
integration of the Euler-Lagrange equations for the equi-
librium director field is needed.

The anchoring energy of the director at the two inter-
faces of the NLC layer is represented by the anchoring
energy function W(8, ) which is assumed to be the same
at both interfaces. This function represents the work
which must be spent to rotate the director from the easy
angle Po that minimizes the surface free energy to the ac-
tual surface angle 8, . In the literature, authors often as-
sume the Rapiniand Popoular form [15],

W(8, )= sin (8, —Po),

where 8'is the anchoring energy coeScient. This expres-
sion is not the most general form for the surface poten-
tial; in particular, the symmetry of the interface makes
other more complex contributions possible [16] which
have been effectively observed in experiments [17—20].
Therefore, to avoid any model-dependent theoretical re-
sult, we do not make any assumption as to the actual
form of the surface potential.

A. The Srst-order elastic torque

+ W(82 }— (8zsin282 —8', sin28, ), (5)

where K,3 is the surfacelike elastic constant and 8=8(z)
is the angle between the director and the axis z orthogo-
nal to the plates. The primes denote differentiation with
respect to z and the subscripts 1 and 2 correspond to
quantities measured at the surfaces z =0 and z =d, re-
spectively. Equation (5}has been obtained by assuming a
planar distortion of the director field. The Euler-
Lagrange equation for the bulk director distortion is

sin2(8 —u)
22

The director distortions close to the two interfaces are
identical and thus we can restrict our attention to the re-
gion O~z &d/2, where the first integral of Eq. (6) be-
comes

According to the foregoing assumptions, the Nehring-
Saupe first-order elastic free energy per unit surface area
1S

dF2= —,
'

J [K8' y, H cos (8 —a)]dz+ W(8,—)
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sin(8 —a)
(7)

torque per unit surface area is given by Eq. (1), which be-
comes

where we have considered the case Po & 0 and

Po& a &7T/2+Po. Equation (7) has been obtained by us-

ing the "semi-infinite sample approximation" which con-
sists in assuming 8(d/2)=a. Indeed, for g«d, the
director distortion remains almost entirely confined
within two thin subsurface layers of characteristic thick-
ness of a few coherence lengths g, while the director
orientation is virtually parallel to the magnetic field at
the center of the nematic layer. As shown in Appendix
A, this approximation is very accurate if d/g»1. The
free energy per unit surface area is obtained by substitut-
ing Eq. (7} in Eq. (5) and by accounting for the symmetry
of the director field with respect to the center z =d/2 of
the nematic layer [81=82,8(z)=8(d —z)]. After some
straightforward calculation we find

W(8, )
F =2K g ——cos(8 —a )+2 0

g
1

R
sin28, sin( 8,—a )

where go= —I/g(d/2$ —1) is an isotropic contribution
and R =K» /K is the surfacelike adimensional
coef5cient. The surface director angle 6, is obtained by
minimization of E2 and thus must satisfy

BF2 1 8W(81)

ae, g
' Kae,

=—sin( 81—a ) ——cos(281 )sin( 81—u )

R
1 1

sin(28 )cos(8 —a}=0 . (9)

The solution of Eq. (9) can be found in a close analytical
form only if we make special assumptions on the anchor-
ing energy function W(8, ). However, as far as our
theoretical discussion is concerned, the actual value of
the surface director angle is not an important parameter
and thus we do not make any specific assumption on
W(8, ).

At equilibrium the y component of the total surface

BF2 BF2 88, BF
+

aa ae, aa aa ' (10)

where we have exploited Eq. (7) and the boundary values
8(0}=8, and 8(d/2)=a. Note that a very unusual
behavior is predicted by Eq. (11) if the magnetic field is
applied parallel to the director at the surface (a =8, ). In
this case the surface torque in Eq. (12) correctly vanishes,
as expected by simple physical arguments, while that in
Eq. (11)becomes r = (KR /g )sin( 28, ). For R %0, Eq. (12)
differs substantially from Eq. (11) if 8,%0 or 8,%n/2
Therefore the modified first order elastic theory is found
to be inconsistent with the principles of mechanics. Note
that this inconsistency also remains for small values of
angles 8& and a.

We discuss now briefly the accuracy of the theoretical
results in Eqs. (11) and (12). To obtain Eqs. (11) and (12}
we have made two approximations: the isotropic elastic
constants approximation (K;; =K) and the semi-infinite

sample approximation. The calculations above can be re-
peated for K»AK33 using the semi-infinite sample ap-
proximation. In this case, Eq. (11)becomes

where we have exploited the equilibrium condition
BF2/88, =0 in Eq. (9) and the fact that a simultaneous
rotation hg of both the plates is fully equivalent to a ro-
tation —b,a of the magnetic field (see Fig. 1). Substitut-
ing F3 given by Eq. (8) in Eq. (10), we find

2K . R
sin(8 —a) ——sin28 cos(8 —a)1 2 1 1

L

Now we calculate the surface torque by using Eq. (2}with
n = ( sine, 0,cos8) and H =H(sina, 0,cosa }. Exploiting
the symmetry of the director field with respect to
z =d/2, we find

d/2r=2 yaH sin(8 —a)cos(8 —a)dz
0

2K .
sin(8 —a }

K33 . 2 1+g . . v' —eicos(a)
sin(8, —a)+1+31sin (8,)+ sin(a) arcsinh

3 1+ri

—arcsinh
&—icos(8, )

v'I+q

+ Iarcsin[v' —oisin(81)] —arcsin[3/ —oisin(a)]]
cos(a) K,3sin(28, )cos(81—a )

$3+1+g sin (8, }

while Eq. (12}becomes

K,3sin(28, }cos{8,—a }
v =v()+

g3+1+11sin {8,}
(12')

where g=(K» —K33}/K33 is the relative anisotropy of
the elastic constants and $3=(K33/y, )'~ /H is the bend
magnetic coherence length. To obtain Eqs. (11'} and
(12') we have assumed —1&g&0. Analogous expres-

I

sions for the elastic torques can be obtained if g & 0. We
easily verify that Eqs. (11') and (12'} coincide with Eqs.
(11) and (12) in the limit g~0. Note that the same kind
of inconsistency already found for Eqs. (11) and (12) is
still present in Eqs. (11') and (12'). Therefore this incon-
sistency is not due to the use of the isotropic constants
approximation.

The second approximation we have used to obtain Eqs.
(11) and (12) is the semi-infinite layer approximation,
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which allows us to obtain theoretical results in a closed
analytical form. In order to check the accuracy of our
approximate solutions, we have performed a high pre-
cision numerical integration of the exact Euler-Lagrange
equation (6) to obtain the director field and we have
found Eqs. (11) and (12) represent very accurate approxi-
mations to the "exact" results (see Appendix A). For in-
stance, we find that the above relative difference between
exact and approximate torques is much smaller than
10 for d /g =30 and goes to zero as well as
exp( —d/2g) for increasing values of the ratio d/g.
Therefore our theoretical results in Eqs. (11) and (12) can
be considered as virtually exact theoretical results for
large values of d /g. Finally we emphasize that Eqs. (11)
and (12) are obtained without making use of any specific
expression of the surface anchoring potential.

From the discussion above we infer that the incon-
sistency between Eqs. (11) and (12) [or between Eqs. (11')
and (12')] cannot be interpreted as due to approximations
but represents a basic inconsistency of the modified first-
order theory. We recall that the modified first-order
theory is based only on the assumption that the director
field is continuous everywhere in the NLC layer. There-
fore our theoretical test shows this assumption to be in-

correct and thus we can infer that a subsurface director
discontinuity at the interfaces must always occur if
K,3%0 [4—6].

B. The second-order elastic torque

We now calculate the surface torque by using the
second-order elastic theory. A general analysis of this
problem by means of the second-order theory is practical-
ly impossible since the expression of the second-order free
energy density contains 35 new elastic constants that
make the mathematical problem practically impossible to
solve [7]. For this reason we restrict our attention here
to the special case of small values of the angle 8,PO and
a(8«1,Po« 1, and a«1) where only one second-
order bulk elastic constant E* plays an important role
[7,8,21]. Under these assumptions, the surface anchoring
potential becomes

W(8, )= (8, —po) = (8, —po)',
ext

where 8' is the anchoring energy coefficient and
l.,„,=K / W is the extrapolation length [16]. The
second-order free energy per unit surface area is [7]

8 2

F =F2+F4= —'K 5 (8") +(8') ——1—
o (2 2

dz

K (8i —0)' (82—~o)'
+— + —2R (8282 —8,8) )

2 Lext
(14)

where F2 and F4 are the first-order and second-order free
energies per unit surface area, respectively, and
5=(K'/K)' is a characteristic length of the order of
typical molecular dimensions ( =20 A), where K" is the
second-order elastic constant. Minimization of Eq. (12)
with respect to small variations of 8(z) gives the follow-

ing Euler-Lagrange equations for the director field in the
bulk:

and

(8i —&0)
5 8',"—(1—R)8i+ =0

L erat

(18)

with A,2))A, The A and 8 coefficients must solve the
two boundary conditions [8]

g2gIV gi I + &
o

2 7

where the superscript IV denotes the fourth derivative
with respect to z. The general solution of Eq. (15) in the
semispace 0(z (d/2 [disregarding very small contribu-
tions proportional to exp( —

A, ,d/2) and to exp(A2d/2)],
is given by

The total free energy per unit surface area can be ob-
tained by substituting the director angle 8(z) given by Eq.
(16) in Eq. (14) and by exploiting the symmetry of the
director field with respect to the center z =d/2 of the
nematic layer. After some straightforward calculations
[disregarding very small contributions proportional to
exp( —

A, ,d/2) and to exp(A2d /2) ], we find

F=F2+F4

8(z) = Ae ' +Be ' +a,
where

' 1/2
1 —(1—45 /g )'~

25
1/2

1 +( 1 452/g2)1l2

25

(16)

(17)

=K AiA +A2B +2yAB+ (A+B+a—Po)
1

ext

—2R(A +B+a)()(, A+A, B)—d
1 2 (20)

where coefficient qv, exploiting the secular equation for &

and k2 (5 A,
—

A, + 1/g =0), can be written in the form

y= —5 (&, +&2)+(k, +k2)+5 A. ,A2(A, , +A2) . (21)
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At equilibrium the total external torque per unit surface
area is

r}F dF BA dF dB
Ba BA Ba BB Ba

BF
Ba

where we have exploited the equilibrium conditions
dF/dA =dF/dB =0. We can easily show, after straight-
forward but tedious calculations, that these equilibrium
conditions are totally equivalent to the boundary condi-
tions (18) and (19). By substituting (20) in (22), we obtain

v=2K R(A&A+A&B) — (A +B+a—Po)
1

ext
(23)

The parameter (A +B+a Po)/L—,„, can be obtained
from Eqs. (18) and (19) in terms of R, A, B, A, „and A.z.
Substituting this parameter in Eq. (23}and exploiting the
equalities —5 A. , +I,!=1/g and —5 A,&+A,&= I/g, we

obtain, finally,

2' A B
(24)

A, 2

Note that, since A, &=1/g«A, z= 1/5, r is virtually coin-
cident with the surface torque r=2KA/g predicted by
the standard Frank elastic theory (with K» =0). By us-

ing the alternative equation [Eq. (2)] for calculating sur-
face torque, we find

v=2 J y~ (8—a)dz = +d l2 2 2E 3 B
A! A2

(25)

where we have disregarded contributions proportional to
exp( —

A, ,d/2) and to exp(A, 2d/2). Equation (25) is coin-
cident with Eq. (24}. Therefore the second-order elastic
theory is consistent with the principles of mechanics.

We wish to emphasize that this theoretical test does
not demonstrate that the second-order elastic model is
correct but only that its predictions are compatible with
the general laws of mechanics. In particular, as discussed
in the Introduction of this paper, we can expect that
higher-order elastic contributions can play an important
role in the subsurface distorted layer. In the further sec-
tions we will investigate this point in detail by making a
systematic expansion of the elastic free-energy density at
any order n.

III. FIRST- AND SECOND-ORDER ELASTIC THEORIES

To make the following theoretical analysis clearer, in
this section we summarize briefly the main aspects of the
procedure developed by Barbero, Sparavigna, and Stri-
gazzi [7] for obtaining higher-order elastic contributions
and we discuss the main predictions of the first-order and
second-order elastic theories in the case of a tilted nemat-
ic layer. A NLC system in a similar geometry has al-
ready been investigated in Ref. [22] for strong anchoring
boundary conditions.

A. Expansion of the free-energy density

The local free-energy density can be expressed as a
function of the deformation sources n,- 1, n;~k, and n; JkI

as F=F(n; j. n;. jk,'n; jki, . . . ). The virtual variation of
the free-energy density is written in the general form

dF =A, ,5ni j+pikj 5nijk+~ijk!5ni jki+ ', (26)

where n; . denote the first derivatives of the i component
of the director with respect to xj., n; k the second deriva-
tives with respect to x and xk, and so on. A,;,p;.k, and

p,"k! are tensor fields which can be expressed as suitable
power expansions of n;, n; .k, and n; .kI. According to
the point of view put forward in Ref. [7] at the lowest or-
der (first-order theory) the only deformation source
which must be retained is n; ., at the second order
(second-order theory) both n; and n; jk must be retained,
and so on. The main advantage of this expansion pro-
cedure is that the free-energy density is bounded from
below at any order n of expansion and thus the
mathematical problem is well posed at any order. In par-
ticular, the first-order free-energy density F is reduced to
the standard Frank elastic expression which does not
contain the surfacelike elastic contribution I(:». Indeed,
this contribution depends on the second derivatives n; Jk
and thus within the present theoretical formalism, it must
be considered as a second-order contribution. More de-
tails on this and other important aspects of the expansion
procedure can be found in [7]. At the second order both
the deformation sources n;J and n; ~k must be introduced,
and the second-order surfacelike elastic constant E» ap-
pears together with other second-order elastic contribu-
tions that depend on square powers of n; k and make the
second-order free-energy functional bounded from below.
The same kind of phenomenology occurs at any order n

of expansion. By exploiting the symmetry properties of
NLC's, Barbero, Sparavigna, and Strigazzi were able to
find a general expression of the second-order free-energy
density where a great number (35) of new second-order
elastic constants occur, which make it practically impos-
sible to find the general expression of the bulk director
distortions. The problem can be greatly simplified if the
amplitude of the elastic distortion is very small, such as,
for instance, close to a distortion threshold, and the
director lies everywhere in the same plane (planar distor-
tions). In this case, all terms of the kind n; nk in and

n; Jnk &n ~nq, can be disregarded with respect to
n; ~knI and thus one can easily show that the second-
order new elastic constants are reduced to only two, the
surfacelike elastic constant E» and the bulk elastic con-
stant K' [7—9].

We consider the same geometry of Fig. 1 with the
director which lies everywhere in the x-z plane (planar
deformation) and can be written in the form
n=(sin8, 0, cos8) with 8=8(z). Furthermore, we make
the simplifying assumption of small angles 8„Po, and a.
Under these conditions the anchoring energy is given by
Eq. (13) and linear di6'erential equations for the director
angle 8(z) are obtained at any order n of expansion.
These equations admit exact analytical solutions. How-
ever, in the following sections, we will use the semi-
infinite layer approximation (d /g ))1 } in order to simpli-
fy the theoretical expressions and to make clearer the
theoretical analysis. This means that small contributions
of the kind exp( —d/2g) are disregarded in our theoreti-
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cal analysis. We emphasize, however, that our theoreti-
cal conclusions are not affected by this simplification,
which only simplifies the form of the analytical expres-
sions. and

1 —R 1Q+
po

—a
A+cB =

Lext
(35)

B. Predictions of the first-order elastic theory

Under previous assumptions, the first-order elastic free
energy per unit surface area of Ref. [7] coincides with the
Frank elastic free energy:

[b+R]A+dB = —Ra,
where

5 1 5Q= ——« —,6= ——«1, (37)

2

Fi =
—,
' K8' — H 1—+a c= —5 A,i+(1—R)l,i+ 1

L,„t
(38)

+ —,
' W(8, —Po) + —,

' W(82 —Po)

The Euler-Lagrange equation for the director field is

(27) and

d= —(5 Aq
—R)= —(1—R) .

(8—a)
2

(28)
Note that, due to the large separation of scale lengths
(g»5), the coefficients a and b can be set to zero in Eqs.
(35) and (36). Therefore Eqs. (35) and (36) become

18i+ (8i —Po) =0
ext

(29)

while the boundary condition at the lower interface z =0
1S 1 —R 1

RA+dB= —Ra .

po
—a

A +cB=
Lext

(40)

(41)

The solution of Eqs. (28) and (29) in the region
0&z &d/2 is

The solution of Eqs. (40) and (41) is

po
—a z

8(z) =a+ exp1+L.,„,/
(30)

and

A=
1+L,q/(

(42)

This means that the surface director angle is

a
1+L,„,/g

8)=a+

C. Predictions of the second-order elastic theory

(31)

R [(L,ira/g )+Po ]B=
(1—R)(1+L,fi/g)

' (43)

where we have defined the "effective extrapolation
length" L,s and the "efFective easy angle" Po by

At the second order, the deformation sources are 8'
and 8" and, for 8 &(1, the bulk elastic free-energy density
becomes [7,9] and

1 1 1

Leff 1 —R L,„,
(44)

F=—,'E(8') + ,'E'(8") +E,i—(88')' .

The Euler-Lagrange equation for the director angle is

g28iv 8(i+ a
0

2

(32)

(33)

po eff

(1—R)L,„,

By substituting in Eq. (44) the values of c and d given by
Eqs. (38) and (39), we find

while the boundary conditions at the lower plate (z =0)
are given by Eqs. (18) and (19). The solution of Eq. (33)
in the semispace 0 & z & d /2 is given by

8(z) = Ae ' +Be ' +a, (34)

where A, , =l/g and A,&= 1/5»A, , are given in Eqs. (17).
Coefficient A in Eq. (34) is the amplitude of the standard
macroscopic slow solution [see Eq. (30)], while coefficient
B is the amplitude of the short-range distortion due to
the second-order elastic contributions. CoefBcients A

and B can be obtained by substituting Eq. (34) in the
boundary conditions (18) and (19), which become

1 1 1

(1—R)
(44')

&e must emphasize that the short-range director dis-
tortion of amplitude B, predicted bp Eq. (34), occurs on
the molecular scale length 5 (5=20A) which is hardly ac-
cessible to standard experimental methods. In particular,
standard optical methods are not very sensitive to direc-
tor distortions which occur on a much smaller length
scale than the optical wavelength A,(A, =500DA »5).
Therefore, from the macroscopic point of view, the bulk
director distortion is indistinguishable from the long-
range distortion 8(z)=A exp( —z/g)+a, which is just
the same kind as that predicted by the first-order theory



49 RESUMMATION OF HIGHER-ORDER TERMS IN THE FREE-. . . 5339

0

1+L,rrlg
(46)

By comparing Eq. (46) with Eq. (31},obtained in the case
of the first-order elastic theory, we infer that the first-
order elastic theory correctly describes the macroscopic
behavior of the NLC layer if the easy director angle Po is
substituted by the efFective easy angle Po and the extrapo-
lation length L,„, is replaced by the effective extrapola-
tion length L,z. Therefore the only macroscopic effect of
the second-order surfacelike and bulk elastic constants is
an apparent variation of the easy tilt angle and of the an-
choring energy coefficient. Note that this interpretation
of the theoretical results is also in agreement with the
Gibbs thermodynamic approach, according to which the
free energy per unit surface area can be expressed as the
sum of a bulk contribution and a surface contribution
that accounts for the modified molecular interactions
close to the interface [16,23]. According to this point of
view, the greatly distorted interfacial layer behaves
effectively as a new source of excess free energy, which
renormalizes the ordinary surface tension of the NLC in-
terface. Note that 80 corresponds effectively to the ex-
perimental value of the surface easy director orientation,
which is measured by means of standard optical or dielec-
tric methods [16—18], since these methods are practically
insensitive to distortions with a much smaller charac-
teristic length that the optical wavelength.

The above discussion suggests that, as far as planar
director distortions are concerned, one can correctly in-
vestigate the macroscopic director distortions in a NLC
by using the Frank first-order elastic theory (with

K&3
—0} and be defining an efFective anchoring energy

ff which implicitly accounts for surfacelike and
second-order elastic contributions. This is very close to
the point of view put forward in Ref. [21].

IV. PREDICTIONS OF
HIGHER-ORDER ELASTIC THEORIES

[see Eq. (30)]. In particular, the macroscopic surface
director angle, which is defined as the limit for z~0 of
the macroscopic bulk director distortion, is then given by

portional to 8'8"' and (8"')z. The first elastic term can be
decomposed into the surfacelike contribution (8'8")' and
the bulk contribution (8") which only renormalizes the
second-order elastic constant K' in Eq. (32). The Euler-
Lagrange equation for the third order distortion is then

g4gVI+ g20IV g~ ~ + + —02 1 2
(47)

—5 8' +(5 +h )8"—R8, =0,
—528',"+h 8'=0

(49)

(50)

where h is a new third-order parameter of the order of a
typical molecular dimension. Note that the free-energy
functional is also bounded from below. Indeed, the bulk

Euler-Lagrange equation is of the sixth order and the
general solution depends on six arbitrary coefficients that
can be obtained by solving the six boundary equations
(three at the lower interface and three at the upper inter-
face). Therefore in this case, too, the problem of finding
the director field is mathematically well posed. This im-
portant point is always satisfied at any order if the expan-
sion procedure in Ref. [7] is used. Depending on the
values of 5, and 5z there are two difFerent possible cases.

(a) b, =5& —45z & 0. In this case, the general solution of
Eq. (47) in the region 0&z&d/2 for g«d/2 and

5,,52«g is

8(z) =a+ A exp ——+B exp( —
A, ,z)

z

+C exp( —
A,2z), (51)

where A, , and A,2 are of the order of the inverse of a
molecular characteristic length and are given by

where 5, and 52 are two characteristic lengths of the or-
der of molecular dimensions. Note that 5, does not coin-
cide with 5 given by the second-order theory, since
third-order terms renormalize this coefficient. The
third-order boundary conditions which must be satisfied
at the lower surface z =0 are

5p8) +5f8I"—(1—R }8)+ (8) po—)=0, (48}
1

ext

A. Third-order elastic theory
A, , z=+(52+~6, )/25, . (52}

The theoretical procedure described above gives a very
interesting interpretation of the anchoring in NLC's and
provides strong support for the current theoretical and
experimental procedure of disregarding the surfacelike
elastic constant E&3 in the expression for the free-energy
density. However, the theoretical results above have
been obtained by disregarding elastic contributions of or-
der higher than the second order. In this section we shall
analyze the case where the third-order deformation
source n; Jkl is taken into account. By using the same
theoretical procedure as in Ref. [7], we can show (see Ap-
pendix B} that the only important new contributions
which are allowed by the symmetry properties of NLC's
and which are of the second order in the amplitudes of
the distortion sources are two elastic contributions pro-

(b) b, =5,—452 & 0. In this case the general solution for

g « d l2 and 5„52« g is

z
8(z) =a+ A exp ——+B exp( —kz)cos(coz}

where

+C exp( —kz)sin(roz ), (53)

k =Re Q(52+ V'6)/254)

co = Im Q(52+ Mb, )/25,
(54)

and where Re(Z) and Im(Z) denote the real and the
imaginary part of the complex number Z, respectively.
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The unknown coeScients A, 8, and C can be obtained by
substituting Eq. (51) [or Eq. (53}] in the boundary condi-
tions (48)—(50). In both cases we find a linear system of
the kind

1 —R 1
Qii+ +

L,„,

Po
—a

A +a )zB+a )3C+a )4D

1 —R 1a„+ +
L,„,

o a
(55) [a21+R]A +azzB+az&C+a2&D= —RaA+a»8+a&3C=

L,„,
(66)Q» A +a3z8 +a33C +Q34D =0

a4& A +a&z8+a$3C+Q44D Q4) a
(56)[a 21 +R ]A +a22B +&23 C

a» A+a3z8+Q33C=O,
(67)

(57}
%e can show that the coeScients a», az„and a» which
multiply the A amplitude and come from the higher-
order elastic constants are completely negligible, and thus
they can be set to zero. By solving the two equations (66}
and (67) with az, =0 we find C=a,(A+a)+ad and
D=ai(A+a)+a4B, where a, , az, a~, and a4 are suit-
able functions of the coef6cients a3; and a4, with
i =1,. . . ,4. By substituting these expressions in the two
equations (64) and (65), the linear system of equations
(64)—(67) is reduced to the linear system of two equations
in the unknown coeScients A and 8

Po
—a

A +a)z8+a)3C=
L,„t

1 —R 1+
Lax~

(58)

(59)R A +azz8+az3C = —R a,
Po

—a
A +cB= —P,a,

L,„,
1 —R+ 1

(68}(60)Q 3z8 +a 33 C 0

From Eq. (60) we obtain directly C = —(a&zB )/a&&,
which can be substituted in Eqs. (58) and (59) to give (69)(132+R ) A +dB = Ra p2a—, —

where the a; coefficients depend on g and on higher-
order constants 5i, 52, and h. We can easily show (see
Appendix C) that, due to the large separation of length
scales between the short-range and long-range distor-
tions, a», az&, and a» are negligible, and thus the linear
system becomes

1 —R 1

Lext

Po
—a

A+cB =
ext

(61)

RA+d8= —Ra, (62)

where

a i3Q3z
c =a)z and d =azz-

Q33

az3a3z

Q33
(63)

Equations (61) and (62) are formally identical to Eqs. (40)
and (41). Therefore their solution is still given by Eqs.
(42) —(45); this means that in this case also, the macro-
scopic behavior of the system is fully equivalent to that
predicted by the linear elastic theory if the extrapolation
length L,„, and the easy director angle Po are substituted
by the effective values given by Eqs. (44) and (45) with c
and d given by Eqs. (63). Note that the values of c and d
predicted by the third order theory can differ greatly
from those which were predicted by the second-order
theory since they also depend on the two new third-order
elastic constants (see Appendix C). Therefore the
second-order expression for L,fr [Eq. (44')] is no longer
valid.

B. Higher-order elastic theories

Analogous results can be obtained if we consider the
fourth-order distortion source O' . In this case, the bulk
director distortion is the superposition of the usual long-
range distortion of amplitude A with characteristic
length g and three short-range distortions of amplitudes
8, C, and D which must satisfy four boundary conditions
at the lower interface. The coeScients A, B, and C, and
D are obtained by solving a linear system of four equa-
tions of the kind

where P„Pz, c, and d are coefficients that depend on all
elastic constants. The dimension of P, and c is the in-
verse of a length, while P2 and d are adimensional
coeScients. A very important peculiar characteristic of
this system is that the two coefficients P, and Pi which
multiply A on the left-hand side of Eqs. (68) and (69) are
equal and opposite to the new coeScients which multiply
a on the right-hand side of Eqs. (68) and (69). We can
easily show that, due to this special feature of the linear
system, the general solution for the amplitude A of the
macroscopic director distortion has the same general
form as in Eq. (42) with Po still given by Eq. (45), but
with a renormalized expression for the effective extrapo-
lation length, which becomes

1

L.a
1 1 C C

R—+Pi——Pi
1 —R L,„, d d

Therefore amplitude A of the macroscopic bulk distor-
tion is still well represented by the first order elastic
theory with suitably renormalized values of the extrapo-
lation length and of the easy tilt angle. It is important to
emphasize, however, that both these renormalized pa-
rameters are dependent, in principle, on all elastic con-
stants. As far as the amplitudes 8, C, and D of the
short-range distortions are concerned, we note that their
theoretical expressions are very complex and depend ex-
plicitly on the "macroscopic" parameters L,&. and Po but
also on all higher-order elastic constants.

It can be shown that, due to the large separation of
scale lengths, the same kind of behavior occurs at any or-
der. In particular, at any expansion order n, we always
obtain a system of two linear equations with the general
structure of Eqs. (68) nd (69} with difFerent expressions
for the coefficients c, P„P2, and d. If we use c„,Pi„,P2„,
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and d„ to denote the values of the coefficients c, P, , P2,
and d which are found at the nth order, we can expect
these successions to be convergent to well defined values

c, P„P2, and d for n —+ ao. If this is the case, we can con-
clude that the macroscopic behavior of the system is fully
equivalent to that of a nematic layer with the easy angle

Po and the extrapolation length L,s given by Eqs. (45)
and (70), respectively.

V. THEORETICAL DISCUSSION AND CONCLUSIONS

This paper is devoted to the analysis of two elastic
models which have recently been proposed in the litera-
ture to bypass the mathematical problems related to the
K ]3 surfacelike elastic constant: the modified first-order
theory and the second-order theory. In the first part of
this paper we show that the modified first-order theory is
inconsistent with mechanics. The second part of this pa-
per is devoted to analyzing the effects due to higher-order
elastic constants that are disregarded by the second-order
elastic theory.

It is important to emphasize that our theoretical re-
sults are a direct consequence of the special expansion
procedure proposed in Ref. [7], where the order of the
free-energy expansion is related to the order of the defor-
mation source. According to this procedure, the K&3 sur-
facelike contribution must be considered as a second-
order contribution since it comes from the second-order
deformation source 8", although it is formally of the
same order of magnitude as (8'}z. Therefore, the first-
order elastic free energy does not contain K&3, while this
contribution is present in the second-order elastic energy
together with a new stabilizing contribution (8") . In
both these cases, the free-energy functional is bounded
from below. Note that, if the standard method of group-
ing the elastic contributions depending on their order of
magnitude were used instead of the previously mentioned
method, the K» contribution should be added to the first
order Frank elastic free energy since it is apparently of
the same order of magnitude. In this case, the Nehring-
Saupe expression for the free energy is obtained [2] and
the free-energy functional becomes unbounded from
below. The same behavior occurs at any expansion order.
For instance, the third-order surfacelike elastic contribu-
tion (8'8")' which comes from the deformation source
8"' is of the same order as (8"},and thus it should be
added to the second-order expression of the free-energy,
rendering the free energy functional unbounded from
below. On the contrary, the expansion procedure de-
scribed by Barbero, Sparavigna, and Strigazzi [7] pro-
duces a bounded free energy functional at any order of
expansion.

Our main theoretical results are restricted to the spe-
cial case of planar director distortions and can be summa-
rized in the following main points.

(i) As far as inacroscopic distortion is concerned, at
any expansion order we find that the bulk director field is
exactly the same as that obtained by using the Frank elas-
tic free-energy density (with E,3=0) with a suitable
effective anchoring energy coefficient and easy angle. In
a subsequent paper [23] we will show that this conclusion
is in complete agreement with the Gibbs theory of inter-

faces. These theoretical results are in a qualitative agree-
ment with the predictions of the second-order theory.
However, we wish to emphasize that the effective easy
angle and the effective extrapolation length depend on all
the elastic constants. Therefore the second-order expres-
sion for the effective extrapolation length [Eq. (44')] is
not accurate from the quantitative point of view.

(ii) At any expansion order, a strong subsurface distor-
tion is found to occur close to the interface of a NLC
with a tilted director orientation. Therefore the "macro-
scopic" surface director easy angle Po can greatly differ

from the actual surface easy angle Po if Pa%0 [see Eq.
(45)]. Note that a strong subsurface distortion of this
kind has been detected by using the very sensitive optical
method of second harmonic generation [24]. This point,
too, is in qualitative agreement with the predictions of
the second-order elastic theory. However, the actual
quantitative value of the surface director discontinuity
58=PO —

Po can greatly differ from that predicted by the
second-order theory. Indeed, 68 is expected to be a very
complex combination of all surface and bulk elastic
coefficients. In particular, K»does not play any special
role with respect to all other higher order elastic con-
stants since its contribution to the effective easy angle
and to the effective anchoring energy coefficient is of the
same order of magnitude as those of the other higher-
order contributions. Therefore, in our opinion, the K&3
elastic constant cannot be measured by making experi-
ments with planar distorted NLC layers. We here ern-

phasize that our theoretical results concern only the spe-
cial case of planar director distortions. In the more gen-
eral case of nonplanar distortions, we can show that the
surfacelike elastic constant K» produces new important
macroscopic effects that make possible a direct experi-
mental measurement of this constant [23].

(iii} The above theory has been developed by making
the implicit assumption that the elastic constants do not
depend on the distance z from the interface. This as-
sumption is certainly correct if the distance z from the in-
terface is much greater than the interaction range of in-
termolecular forces, but it is no longer correct in the op-
posite case. Therefore, close to the surface, all the elastic
constants are expected to depend greatly on the distance
z. Furthermore, the presence of the interface breaks the
translation symmetry of the system, and thus new elastic
constants, which were forbidden by the symmetry prop-
erties of NLC's can play an important role as far as inter-
facial behavior is concerned [21]. Some of these new con-
tributions can favor the occurrence of a director distor-
tion close to the interface and can greatly affect the actu-
al form of the subsurface director distortion and of the
anchoring energy coefficient. Some of these effects have
been recently analyzed in Ref. [21] by using a first-order
elastic expression and have been shown to be equivalent
to a new anchoring source. Finally, the elastic constants
also depend on the local value of the scalar order parame-
ter S which is known to be very sensitive to the presence
of the interface [25—28]. A spatial variation of S pro-
duces a spatial variation of the elastic constant and thus
it makes a new important contribution to the anchoring
energy as shown in Refs. [27] and [28].



5342 S. FAETTI 49

(iv) The theoretical analysis in this paper was restricted
to the very special case of small director angles. Howev-
er, in our opinion, the main conclusions of this approach
are still valid even in the more general case of arbitrary
amplitudes of the distortions. In particular, we can ex-
pect the strong subsurface distortion to still be equivalent
to a new anchoring contribution, since this result is a
direct consequence of the large separation of lengths
scales more than of the special form of the free-energy
density [23]. However, if the condition 58«1 is not
satisfied, many more elastic terms must be retained.
These elastic terms are complex functions of sinO and
cos8 (see, for instance, Ref. [7]) and thus one can expect
the elastic contribution to the anchoring energy function-
al to show a complex dependence on 8. This means that
strong deviations of the anchoring energy function from
the Rapini form W(8) = W sin 8 can be expected, in
agreement with the experimental results 17—19. On the
contrary, as far as azimuthal anchoring is concerned, sur-
facelike elastic constants do not make any contribution to
the azimuthal anchoring function. Indeed, the azimuthal
anchoring energy potential has recently been found to be
in very close agreement with the simple Rapini expres-
sion [29,30].

From the macroscopic point of view, our theoretical
analysis shows that the influence of the higher order elas-
tic constants on the bulk director orientation in planar
NLC layers can be entirely accounted for by defining a
suitable phenomenological anchoring energy coefficient
according to the "standard" theoretical approach.
Therefore our theoretical analysis lends strong support to
the usual theoretical and experimental procedure of using
the Frank elastic free energy in place of the Nehring-
Saupe free energy for studying the macroscopic behavior
of planar NLC's.

According to higher order theories, the anchoring en-

ergy coefficient implicitly account for any subsurface
anomaly. However, it is almost impossible to calculate
this anchoring energy using an elastic theory since an
infinite number of elastic constants plays an important
role in the interfacial layer. In our opinion, the use of mi-
croscopic theoretical models of NLC interactions
[30—36] could be more suitable in order to establish the
relative influence of strong subsurface distortions on the
anchoring properties of NLC's.
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APPENDIX A:
THE SEMI-INFINITE SAMPLE APPROXIMATION

In this Appendix, we briefly analyze the accuracy of
the semi-infinite sample approximation which has been
extensively used in this paper to obtain simple analytical
solutions. The exact director field in the NLC layer
should be obtained by solving the exact Euler-Lagrange
equation (6). Due to the symmetry of the NLC layer with

respect to the center z =d/2 of the layer, we can solve
Eq. (6) in the region 0 & z & d/2 with the boundary condi-
tions 8(0)=8, and 8'(d /2) =0. The exact first integral of
Eq. (6) in the region 0 & z & d /2 is

1/2
slil (g )»n ( po )

(2 g2
(A 1)

where we have exploited the conditions 8'(d/2)=0 and
where y(z) =8(z)—a and go= 8(d /2) —a. Integration of
Eq. (Al) gives

f y(z)

+sin (g) —sin (q&o)

(A2)

where q&
= I9, —a. yo can be obtained as a function of y,

by solving

f 0 dP

+sin (y) —sin (yo) 2g
' (A3)

Equations (A2) and (A3) cannot be solved analytically.
However, if d ))g, the director field is nearly parallel to
the magnetic field at the center z =d /2 of the NLC layer.
Therefore a very accurate approximate expression for
y(z) can be obtained by setting pro=0 in Eq. (A2). With
this assumption, the solution of Eq. (A2) is

z
tan ~ = tan exp

2 2
(A4)

Equation (A4) is known in the literature as the semi

infinite sample approximation In or. der to estimate the
order of magnitude of the difference hy between the ex-
act solution of Eq. (A2) and the approximate value in Eq.
(A4), we consider the special case where 8«1 and
a«1. In this case Eq. (6) is reduced to Eq. (28), whose
exact solution (symmetric with respect to z =d /s) is

y(z) = A [exp( —z/g)+exp[(z —d )/g]], (A5)

where 2 =gr, /[1+exp ( —d /g)]. For y, « 1 and y « 1,
the semi-infinite sample solution in the region 0 & z & d /2
[see Eq. (A4)] becomes y(z)=y, exp( —z/g). Therefore
the difference by between the exact and the approximate
solution is bq&=y, exp[(z —d)/g]. by reaches its max-
imum value b,y,„=yiexp( —d/2$) at the center z =d/2
of the NLC layer. By analogy with this simple case, in
the more general case 8&=1 and a=1, one can expect
4y,„to be

b,y,„&2 tan(y, /2)exp( —d/2g') .

In order to confirm the validity of Eq. (A6) we have per-
formed a numerical integration of the exact Euler-
Lagrange equation (6) by using a high precision nuineri-
cal algorithm. Our numerical results and in good agree-
ment with Eq. (A6). Therefore the semi-infinite sample
approximation in Eq. (A4) is a very accurate approxima-
tion if d ))g. Let us consider, for instance, a 5CB NLC
layer of thickness d =100 JMrn in the presence of a 10 kG
magnetic field. The magnetic coherence length is /=2
pm and thus by, „/y, =10
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APPENDIX B: HIGHER-ORDER
EXPANSION

Third-order expression of the free-energy density

At the third order, the free-energy density must be ex-
pressed in terms of the deformation sources
n; j,n; jk, n; jk&

F..=F(n; j;n, Jk,'n; jk&}. The virtual varia-
tion of the free-energy density can be written in the gen-
eral form

dF =A,jsn, j+jz,,k5n, jk+P,jk15n. , jk1,. (Bl)

~'j ijklmp k, imp

I ijk ijklmpqnl, mpq

I ijkl C1jkl +Cijklmpnm p +Cijklmpqnm pq

ij klmpqr m, pqr

(B2)

(B3)

(B4)

The tensor fields aijklmp& ~ijklmpq cijkl& cijklmp cijklmpq, and

c;jkl ~, can be expressed as a complete expansion on the
basis (n;, 5;& e;jk } where 5; is the Kronecker symmetric
tensor and c.;k is the Levi-Civita antisymmetric pseu-
dotensor. This expansion procedure is known as the Riv-
lin rule [37]. Furthermore, the free-energy density must
satisfy the symmetry properties of NLC's: invariance for
any up-down or right-left transform. This symmetry
property greatly limits the number of possible elastic con-
tributions. Finally the differential dF must be exact, and
thus the tensor fields in Eqs. (B2)—(B4) must satisfy the
Maxwell thermodynamic relations. This means that the
following equalities must be satisfied

ij klmp
—

Cklmpij s ij klmpq
—

Cmpql jkl (B5)

By integrating Eq. (Bl) and exploiting Eqs. (B5), we find
that the new third order contribution to the free-energy
density is

where n; denotes the first derivatives of the i component
of the director with respect to x, n; -k the second deriva-
tives with respect to xj and xk, and so on. A,;., p; k, and

p;jk1 are tensor fields that can be expressed as suitable
power expansions of n, , n; k, and n; kl up to the fifth,
the fourth, and the third order, respectively. Here we re-
strict our attention to the special case of small amplitudes
of the director distortions (8« 1,8' « 1,8"« 1,8"'
«1). This means that only the contributions which are
linear in the deformation sources must be retained in the
expressions for A, ,j, p,,k, and p,,k&. Furthermore, most of
these contributions were already found in writing the
second order expression [7]. Therefore the new contribu-
tions which must be considered are

butions higher than the first order in the small ampli-
tudes 8, 8', 8", and 8"', we easily find

n=(8, 0, 1);n; 3=(8',0,0);
n; 33 (8",0,0); n; 333

(8"',0,0) . (B7)

This means that, in the general expansion of the tensor
fields aijklmps ~ijkimpq~ cijkl, and cijklmpqr on the bases

(n;, 5;~ , E, k
. ), the products of the kind n n; , n . n, k, and

n n; jk1 are negligible or zero if m, j,k, l%3 and i%1. By
exploiting all these simplifying conditions together with
the invariance for any up-down or right-left transform,
we easily find that the first term on the right-hand side of
Eq. (B6) gives a contribution of the kind E1 8'8"', and

the last term in Eq. (B6) gives Ez (8"') !2. The other
two terms vanish due to the symmetry properties of the
NLC. Note that the contribution E

&

8'8'" can be rewrit-
ten as the sum of the bulk and surface contributions

E;(8") and E', (8'8")'. The bulk contribution is of the
same kind as the higher order elastic term in the expres-
sion for the second order elastic free-energy density, and
thus it only renormalizes the elastic constant K*.

Fourth- aud higher-order expansion contributions.

By using the same general procedure we find that the
new fourth-order terms in the expression of the free-
energy density that are of second order in the deforma-
tion sources 8, 8', 8", 8"', and 8' are (8' ); 8"8',88'".
These expressions are suitable for a simple generalization
to any expansion order. The possible new contributions
which are allowed at the nth order of expansion can be
expressed as the product of 8" and 8" where
0& k & nl2 and where n and n —2k denote the order of
the derivative.

APPENDIX C: THIRD-ORDER
COEFFICIENTS

a„=5~j(,, —5,A, , +(1—R)A, , +
1

ext
with i =2,3, (Cl)

In this section we show that the third-order coefficients
a», az, , and a» of Eqs. (55), (56), and (57) are negligible.
Let us consider, for instance, case (a) of Sec. IV A, where
the bulk solution for 8(z) is given by Eq. (51). By substi-
tuting Eq. (51) in the boundary conditions (48)—(50), we
find the following values for coefficients a;j (i = 1, . . . , 3,
j= 1, . . . , 3) of system (55)—(57).

$4 $2

11

III ijklmp k imp i j +~ijklmpq l mpq i jk

+—'c+Cljkl nl,jkl+ 2C lj klmpqn m, pqrn 1,jkl ~ (B6}

A further great simplification is obtained if we consider
planar deformations with the director field given by
n=(sin8, 0,cos8) and 8=8(z) «1. In these conditions,
only director derivatives with respect to z (coordinate
i =3) do not vanish. For 8«1, by disregarding contri-

5 5+h
a»= — + «1,
az,.= —52)1., +(51+h )A,; —R with i =2,3,

a31= —
3

+ «52,

a3;= —5zk,-+h k; withi=2, 3 .

(C2)

(C3)



5344 S. FAETTI

By exploiting the condition 5„52,h «g, we find that a»
can be completely disregarded with respect to the contri-
bution s =(1—R)I)+ I/L, „, in Eq. (55), while ai2 and
Q 'I 3 are of the same order of magnitude as s. Further-

more, az& «1, awhile a» and a» are of the order of uni-

ty. Finally a» ((52, while a32 and a33 are of the order of
a characteristic molecular length. Similar considerations
hold as far as case (b) in Sec. IV A is concerned.
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