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Hydrodynamic friction and the capacitance of arbitrarily shaped objects
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The translational friction coefBcient and the capacitance of a variety of objects are calculated with a
probabilistic method involving hitting the "probed" objects with random walks launched from an en-

closing spherical surface. This method is applied to exactly solvable examples to test the program accu-
racy and to physically important and analytically intractable examples (cube, chain of spheres at the ver-

tices of self-avoiding and random walks, etc.). Large fluctuations in the friction of polymer chains with a
random coil structure are found to give large deviations from the mean-field Kirkwood-Riseman theory
and "hydrodynamic fluctuation" efFects are found to diminish with the chain swelling accompanying ex-
cluded volume interaction. Capacity applications are reviewed and our probabilistic estimates of poly-
mer friction are compared with previous calculations using alternative methods. Transients to the capa-
city and related properties are expressed in terms of fluctuations in the "Wiener sausage" volume

(volume swept out by a Brownian particle where a repeated visit to a spatial region does not contribute
to the volume increase in time).

PACS number(s): 02.70.Lq, 83.10.Nn, 82.20.Fd

I. INTRODUCTION

There are many physical processes in which the solu-
tion of Laplace's equations on the exterior of a body of
general shape is central to the theoretical description.
The case of a constant boundary condition (the exterior
Dirichlet problem) represents a particularly important
class of such processes [1]. Although this kind of prob-
lem can be readily posed, an analytic solution can be no-
toriously diScult even for boundaries having simple
shapes [1,2]. For example, considerable efFort has been
made to solve the exterior Dirichlet problem for a cube,
leading Polya [3] to the pessimistic conclusion that there
is little hope of obtaining an exact solution. Following
the advice of Rayleigh [2], "Yet even when analysis fails
to give a solution in the mathematical sense, we need not
be altogether in the dark as to the magnitudes of the
quantities with which we are dealing, " Polya and Szego
[1,3] embarked on an ambitious program to bound func-
tionals of object shape related to the exterior Laplace
equation (capacity, virtual mass, polarization), corre-
sponding to different boundary conditions. Elaborate
analysis sets the bounds on the capacity (a central param-
eter in the exterior Dirichlet problem) of a unit cube to
the range [1,3,4] (0.632,0.710 55). The limited progress in
improving this bound reflects the intrinsic diSculty of
this type of problem.

Solution of the exterior Dirichlet problem is generally
limited to shapes related to special coordinate systems in
which Laplace's equation is separable [1,5,6]. However,
naturally occurring boundaries often do not conform to
these simple forms. In the present paper we cast the
problem of calculating the capacity in terms of a proba-
bilistic formulation, involving averaging over random

walk paths, which allows treatment of boundaries having
arbitrary shape. Actually this is a classical approach to
this type of problem in the mathematical literature [7],
but the results obtained have usually been formal in na-
ture. Modern computer resources allow for a direct im-
plementation of this approach to obtain qualitative esti-
mates of capacity.

The number of physical processes related to the exteri-
or Dirichlet problem for Laplace's equation is extensive
[1]. Many of these processes are related to the steady-
state diffusion of mass, energy, or some other quantity to-
ward or away from a body. The capacity in this context
determines the rate of the steady-state flux. In other
cases, the physical origin of the diffusion processes relat-
ed to the exterior Dirichlet problem is not so evident.
For example, the potential field on the exterior of a
charged conducting body is also governed by the solution
of the exterior Dirichlet problem where the capacity
governs the decay of the potential field at large distances
from a charged body. Other examples are discussed
below.

Most of our discussion relates to electrostatic capacity
or hydrodynamic friction on bodies of general shape and
occasionally we mention Smoluchowski rate constants.
Before proceeding to these problems we emphasize that
there are numerous other physical problems which re-
quire the calculation of the capacity. Kac and Luttinger
[8], for example, showed that the low energy scattering
length of an impenetrable body equals the capacity of the
body [9]. The capacity is then of considerable interest in
quantum theory. The far field acoustic scattering length
of "soft" bodies is also proportional to the capacity of the
scatterer [9(b)—9(e)], so capacity is important in acoustic
applications, especially applications associated with
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diffraction of sound through screens. The mutual virial
coefficient between a polymer chain and a protein or oth-
er compact particle having dimensions much smaller
than the polymer chain is proportional to the capacity of
the compact particle and the molecular weight of the po-
lymer chain [10]. Capacity is thus important in control-
ling the stability of protein solutions in the presence of
polymer additives and associated applications involving
protein separation [11]. The tones of resonators are relat-
ed to the capacity of the holes since capacity controls the
rate of flow of inviscid fluids (air to a reasonable approxi-
mation) through barrier holes [1]. The tones of imperfect
clamped drums having holes cut of various shapes is re-
lated to the tone of the perfect drum and the capacity of
the holes [12]. Capacity is then important in the theory
of musical instruments [2]. The remarkably high rate of
evaporation of water through the stomata of leaves can
be understood in terms of the capacity of the stomata
[13]. Numerous capacity applications involve surfaces in
contact and the How of energy in the form of heat, elec-
tricity, or the action of mechanical forces. For example,
the capacity of contact points between surfaces governs
the steady-state flow of heat [14] and electricity [15] be-
tween bodies in contact. Thus calculations of the capaci-
ty of complicated regions of contact between surfaces are
important in the design of insulating windows [14],motor
brushes, switches, and other electrical devices [15]. The
grounding of high voltage power systems in particular
has required a knowledge of the variation of capacity
with body shape since the resistance to ground is inverse-
ly proportional to the capacity of the grounding elements
[16]. There are also applications related to the shielding
of electrical devices from various kinds of incident fields
and the design of antennas [16,17]. The engineering
literature of all these applied problems is a rich source for
capacitance calculations on complicated-shaped bodies
and these examples also point to further practical appli-
cations for the probabilistic method discussed below.

Models of physical processes related to the exterior
Dirichlet problem naturally start with the simplest case
of a spherical boundary. For example, the Smoluchowski
rate constant k, for point particles diffusing toward a sta-
tionary absorbing sphere of radius a equals [18]

k, (sphere) =4mDa,

where D is the diffusion coefficient of the particles. The
steady-state "thermal capacitance" (or conductance} of a
sphere at constant temperature radiating heat into the
surrounding medium is described by (1.1) where D is re-
placed by the thermal conductivity a [3(a),14,19,20]. The
thermal capacitance describes the rate of heat Aux of a
heated (cooled) object into a surrounding medium having
a lower (higher) temperature at distances large compared
to the object size. The rate of heat transfer is evidently a
functional of surface shape and the (thermal) capacitance
is minimized by a sphere of all objects having finite fixed
volume [1,3]. In electrostatics the capacitance of a con-
ducting sphere, i.e., the total charge on a sphere having
radius a which is maintained at unit potential with
respect to infinity, equals [21]

f(sphere) =6m', a,
where g, is the solvent viscosity. The relation between
friction f and capacitance C is discussed below.

Generalization of these physical problems to objects
having arbitrarily shaped boundaries leads to a considera-
tion of the exterior Dirichlet problem in its full generali-
ty. In the generalized theory the capacity C replaces the
sphere radius a as the appropriate measure of particle
"size." From a formal standpoint the calculation of C
simply involves the solution P of Laplace's equation on
the exterior of the arbitrarily shaped region where the
surface boundary condition can be taken as unity without
loss of generality. The decay of P(r) at a large distance r
from an arbitrary point on the body defines the capacity
C [1,8],

P(r) Clr-+O(1lr ), r~~
or more concisely [24],

lim [rP(r)]—=C .
p'~ 00

(1.4a)

(1.4b)

There are complementary variational (Dirichlet and
Thomson) principles which give variational upper and
lower bounds to the capacity [1,5]. The probabilistic in-
terpretation of C in terms of the hitting probability of
random walks has also been discussed at length [7] and
this approach is implemented below.

The Smoluchowski rate constant k, for an arbitrarily
shaped object then equals [25]

k, =4~DC, (1.5)

which reduces to the sphere result for C(sphere) =a. Oth-
er properties related to the capacity follow similarly.

The relation between the friction coefficient f and the
capacity C is more delicate than the other physical prop-
erties discussed above. Hubbard and Douglas [26] re-
cently derived an approximation for the friction
coefficient of an arbitrarily shaped Brownian particle
[26],

f=6m', C, (1.6)

which generalizes the exact Stokes-Einstein result (1.3)
for a sphere. The derivation of (1.6} assumes an angular
averaging approximation, based on physical arguments.
As in other applications of the angular averaging approx-
imation in condensed matter physics [26], this approxi-
mation has proven to be accurate for estimating f.
Indeed, Eq. (1.6}has been shown to be accurate to better
than 1% in cases where exact solutions are known [26].
We caution, however, that the accuracy of the angular
averaging approximation for skew-shaped bodies is not
known presently, so that the approximation should not

C(sphere) =a .

Mathematically the thermal and electrical capacitanees
are equivalent [19] and we just use the term "capaci-
tance" to indicate both quantities. %e also observe that
the translational friction coefficient f of a sphere in a
viscous fluid is proportional to the particle radius [22,23]
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II. PROBABILISTIC CALCULATION
OF CAPACITY

The algorithm of Luty, McCammon, and Zhou
[27—31] is particularly suitable for calculating the capaci-
tance and the translational friction of arbitrarily shaped
objects. In its original design the algorithm treats a gen-
eral boundary condition for the probability density p(r)
of particles diffusing to an absorbing surface Q. The al-
gorithm for calculating Smoluchowski rate constants al-
lows for an interaction potential U(r) between the object
and the diffusing particles, but the applications below are
limited to a vanishing potential U(r) =0. The probability
density of the diffusing particles at infinity is fixed at 1,
and the Smoluchowski reaction rate then equals [27,29]

k, =k (b)P„. (2.1)

The rate constant k, characterizes the steady state flux
across 0 (see Fig. 1}, k(b) is the reaction rate toward a
spherical surface r =b that encloses the object 0, and p„
is the probability that particles which start on the
"launching surface" r =b will react with the "probed sur-
face" Q rather than escape to infinity. It is the hitting
probability P„ that is obtained by this probabilistic

be adopted uncritically. We expect that (1.6) should be
generally accurate to within a few percent, which should
be sufficient for many hydrodynamic applications. We
assume that this approximation holds for all shapes con-
sidered. Estimates below the friction coefficient for com-
plex shaped objects (e.g. , polymer chains), based on (1.6)
and our numerical estimates of C, accord to within nu-
merical uncertainty with the best current numerical esti-
mates of the friction coefficient obtained by alternative,
more conventional, hydrodynamic methods.

We note that the "hydrodynamic radius" RH is con-
ventionally defined by an equation of the form (1.6),
where RH corresponds to C, and that (1.6) can also be
employed to estimate particle capacity. Such estimates of
capacity from hydrodynamic measurements should be
useful in a variety of contexts.

C =bP„. (2.2)

To estimate P„we launch Brownian particles uniformly
from a spherical launching surface having radius r =b
[28]. When all the particles are stopped because they ei-

ther hit the surface 0 or have escaped to infinity, the
fraction which hits the surface first determines P„, the
"hit fraction. " From (1.5), (1.6), and (2.2) we then obtain
the diffusion-controlled reaction rate k„ the electrostatic
capacitance C, and an estimate of the friction coefficient

f from (1.6).

III. APPLICATIONS

The advantage of the probabilistic path method (PPM)
of calculating capacitance is that it allows a general treat-
ment of arbitrary mass distributions contained in a finite
region without program modification. We simply draw
our launch sphere about the set in question, launch the
walks ("paths"), and collect statistics. We illustrate the
versatility of the method by some examples. The first ex-
amples of a cube and intersecting spheres continue the ta-
bulation of "blunt" bodes given by Hubbard and Douglas
[26]. These calculations show that the capacity of objects
having sharp boundaries can be accurately calculated by
the PPM. We then treat a collection of spheres randomly
distributed on a large spherical surface to illustrate the
significant screening effects that arise in this geometry
and the role of receptor position fluctuations on the total
average reaction rate. Finally, we consider various
chains of spheres placed on rod and random walk frame-
works. The PPM results are compared with the
Kirkwood-Riseman double sum formula for the friction
of polymer chains [32,33] to estimate the configuration
preaveraging errors incurred in Kirkwood's calculations
and the PPM results are also compared with recent non-
pre-averaging Monte Carlo calculations for the friction.

method. A separate publication provides the technical
details for the efficient calculation of capacity [29], since
the algorithm has an independent interest from the appli-
cations developed below. The "capacitory potential"
P(r} is related to p(r) by $(r)=l —p(r). With this
choice the potential P(r) also satisfies Laplace's equation
and has value 0 at infinity and 1 on the surface Q. Since

C= (4—n).' f da".VP(r)=(4n) ' f do"Vp(r),

k, =D f der Vp(r},
0

and k, for a sphere of radius b equals k, (sphere) =4m'Db,
the capacity reduces to

A. Cube

FIG. 1. A schematic illustration of the calculation of the hit-

ting probability P„.

To illustrate the PPM algorithm in a nontrivia1 case we
consider the capacitance of a cube which has been
characterized as "one of the major unsolved problems of
electrostatic theory" [34]. Consider a cube having a side
of length a. This cube is closely encircled by a sphere of
radius r =(3'~ +0.1)a/2 and we adopt a time step
Ddt =5X10 a . We then launch 2 million particles
from the enclosing sphere. The particles "rain down"
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upon the cube and 1448023 of them ultimately hit the
cube so the hit fraction p„equals 1448023/2000000.
From Eq. (2.2) we directly infer the capacitance,

C(cube) /a = ( 32m /&6) /1 ( —,', )I ( —,', ) 1 ( —,', )I'( —,", )

=0.6594. . . (conjecture) . (3.1c}

C(cube)=rP =0.663a . (3.1a}

The PPM estimate agrees to within 1% of the best nu-
merical boundary element estimate of Cochran [35]

C(cube)/a =0.6596 (3.1b)

and with the conjectured exact value of Hubbard and
Douglas [26,36]

B. Intersecting spheres

The example of two overlapping or "fused'* spheres
also presents an example in which the boundary exhibits
a sharp edge at the point of sphere intersection. Inter-
secting spheres have shapes which range from "crescent"
to "snowman-like" forms [37]. Calculation of the capaci-
ty of intersecting spheres is possible by classical methods.
The electrostatic potential on the exterior of the touching
spheres can be expressed in toroidal coordinates as [37)

cosh( n.—Po )r
P(a, P, y) = [2&cosha co—sP/n ]J dr[sinh(P+Po —2n )r+sinh(2m+Pc —P)r]

0 sinh(n r )sinh(2Por )X,2~—0~ ~2m+ 0&cosh8 —cosha
(3.2)

where the coordinates (a,P, y) are related to the Carte-
sian coordinates as given in Ref. [31] and cosPo=l/2a.
An example of two intersecting spheres is illustrated in
Fig. 2. The capacitance equals

sinP sinha BPC/a = — da
0 cosha —cosp Bp p-2~ —p,

(3.3)

For pc= 30' and 45', the integral can be evaluated analyt-
ically and the results are C/a=1. 345 and 1.293, respec-
tively. We launched 10 random walks from a sphere en-
closing two identical spheres separated at two intersphere
distances l/2a =cos30' and cos45'. The PPM estimates
of the intersecting sphere capacity then equal

C(1=2a)/a =1.40, C(1=4a)/a =1.61 . (3.4c)

These results are compared with classical analytical esti-
mates of C(l) and f (I) summarized by Hubbard and
Douglas [26],

C(l =2a)/a =1.386, C(1=4a)/a =1.605;

f (l =2a)/6nrl, a =1.392,

(3.4d)

These simulation estimates agree with exact results to
within l%%uo.

For completeness we also mention the case of separat-
ed spheres of radius a which arise in the discussion
below. Taking l as the separation distance between the
sphere centers, we find by probabilistic simulation

(3.4e)
C(po= 30')/a = 1.36,
C(P0=45')/a =1.28,

(3 4a} f (l =4a)/6m', a =1.605 .

(3.4b)

following the procedure discussed above for the cube.

///

/

b

Ellipsoids subjected to Kelvin inversion constitute a
class of exactly solvable blunt body forms which were not
included in the summary by Hubbard and Douglas [26].
The inverted prolate ellipsoid is particularly important
because it closely resembles the shape of human red
blood cells and other irregularly shaped vesiclelike struc-
tures. We note the recent exact analytic calculations of
Dassios and Kleinman [38] for the capacity of inverted
ellipsoids.

C. Randomly distributed beads on a ball

FIG. 2. Two intersecting spheres for an intersphere separa-
tion of I/2a =cos30.

One of the most useful methods of calculating the fric-
tion of complicated shaped bodies involves placing spher-
ical "beads" at high density on the body surface [39,40].
This gives an increasingly accurate description of the
friction, but even for the simplest shapes the procedure
becomes computationally demanding [40]. Rather good
friction estimates of structures with complicated shapes
can be obtained if the Rotne-Prager improvement to the
idealized point Oseen approximation to the finite bead
friction is incorporated in these "shell model" calcula-



49 HYDRODYNAMIC FRICTION AND THE CAPACITANCE OF. . . 5323

tions [41]. Calculations of this kind are summarized by
de la Torre and Bloomfield [42]. It is emphasized that
the Rotne-Prager approximation is irrelevant to hydro-
dynamic calculations which do not attempt to approxi-
mate extended bodies by effective point sources (i.e.,
beads). Such approximations are not involved when the
PPM is employed in conjunction with (1.6) to calculate C
and the scalar friction f.

We start with a spherical surface of radius R and dis-
tribute smaller spherical beads of radius a =R/10 ran-
domly onto the spherical surface with a uniform distribu-
tion such that the beads are allowed to overlap. The
larger spherical surface is a phantom boundary intro-
duced simply to define the positioning of the beads in
space. A PPM calculation of the arithmetic mean of 250
configurations of beads (N=2, 11,51) gives

C(N =2)/a =1.85,

C (N = 11 ) la =5.77,
C (N =51)la =9.15 .

(3.5)

which was obtained previously by Pastor and Zwanzig

[45]. Since the KR theory involves the angular averaging
approximation of the Oseen tensor, this expression can be
equally considered as an approximation to the capacity of
the beads on a sphere where f is simply replaced by C
and g, Igb is replaced by a /R. The double sum estimates

of the capacity for the values of N investigated above are
equal,

C(N=2; DS)/a =1.83,
C(N =11; DS)/a =5.54,

C (N =51; DS) la =8.51 .

(3.7}

We notice a significant discrepancy between the DS and
PPM estimates for N=51 beads. This effect is due to
the configurational preaveraging approximation which

For large N the dimensionless capacitance C(N)la ap-
proaches the limiting value C(N~ ao )la= 1 1, since the
sphere becomes a dense spherical shell having an outer
radius equal to 1 la for N~ ~. (A separate publication
provides data for numerous values of N as an illustration
of the PPM for a statistically defined object [29].} The 51
bead example lies within 17% of the large N limit, even
though only about 10% of the shell is covered with
beads. This "screening effect" between the beads is
significant for diffusion controlled reactions and the bio-
logical importance of this effect is discussed by Berg and
Purcell [13,25]. The hydrodynamic analog of this screen-
ing effect is discussed by Bloomfield, Dalton, and Van
Holde [43].

The application of the standard Kirkwood-Riseman
(KR) double sum (DS) friction estimates of spheres ran-
domly distributed on a sphere gives [32,43]

f (N, beads on sphere; DS)

=N g, /[ I+ (N —1)(Ng, Igb )],
(3.6)

g, =6@vI,a, gb
=.6mg, R,

neglects fluctuations in the sphere configurations. The
effect of such fluctuations is less when the surface cover-

age is high or low [29].
A variation of the beads on a sphere calculation has

also been given by Berg and Purcell [25] for the rate of
diffusion controlled ligand binding to N randomly distri-
buted disk-like receptors of radius a on a sphere of radius
R. The Smoluchowski rate constant k, is calculated ap-
proximately as [25]

k, =Nkd, ,q /[1+(N —1)kd;,q /k, ph„, ], (3.8a)

(3.8b)

From (1.5) the capacitance analog of this expression
equals

C(disks on a sphere)

=NCd;, „I[1+( N —1)C~;,b IC,p„„,] . (3.9)

The Berg-Purcell [25] estimate of the Smoluchowski rate
constant evidently employs a preaveraging approxima-
tion similar to the KR hydrodynamic theory. We note
that (3.9) exactly corresponds to (3.6) where the bead
capacity (or friction} replaces the disk capacity. This
suggests the general approximation

C (N) = NC /[1+ (N —I )C/C, ph„, ], C,ph„, =R (3.10)

for compact particles of arbitrary shape having capacity
C distributed at random on a sphere. This expression can
be applied to a variety of contexts to estimate (roughly}
the friction f, the rate constant k„and the capacity C
when the absorbers have a specifically known structure.
Goldstein and Wiegel derived the estimate (3.10) for the
case of hemispheres on a large reflecting sphere [25(c}].

The configuration preaveraging approximation makes
the accuracy of the Kirkwood-Burg-Purcell-type esti-
mate [Eq. (3.10)] somewhat uncertain. Recently, Northr-
up studied the role of receptor fluctuations on the capaci-
ty in the case of N circular "receptors" on a sphere to test
the original Berg-Purcell mean-field ("independent recep-
tor"} calculation [46,47]. Northrop's calculation shows
that the mean-field estimate of C for the patched sphere
[(3.10)] is consistently lower than the simulated result
which accounts for fluctuations in the patch
configurations. This result accords well with the results
mentioned above for beads on a sphere. For N=50 re-
ceptor disks of radius a =R /16 the preaveraging error is
about 5%, compared with the nearly 4% discrepancy
mentioned above for N=11 beads on a sphere. Fluctua-
tions in the configuration of the receptors leads to a
significant increase in the rate constant k, from
what might be expected from a "typical" receptor
configuration because of the large contribution of rare
more symmetric configurations having signi6cantly
higher capacity [47]. This same effect arises in
configurations of beads situated on the vertices of a ran-
dom walk, but the effect is intensified because the density
of the beads does not become uniform as N~ 00. Fluc-
tuations are always large in random walk chains due to
the tendency of the backbone of the typical random walk
path to drift away from the position of its endpoint.
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D. Chains of spheres

For many years the hydrodynamic properties of poly-
mer chains have been modeled using the "pearl necklace"
model of beads strung along a volumeless and frictionless
filament [48—51]. There are variations in which the fila-
ment is "springlike, " a rigid phantom. rod, or a tethered
flexible string. The basic "beads on a string" picture,
however, is invariant. The earliest calculations by Kra-
mers [49], Debye [50], and Rouse [51] neglected the hy-
drodynamic interactions and these interactions were em-
phasized in later calculations by Kirkwood and Riseman
[32] and many others following their pioneering work.
Recent contributions have emphasized the configuration
preaveraging approximation which introduces significant
errors into mean-field calculations of polymer friction
and other hydrodynamic properties. Since the PPM does
not employ the configurational preaveraging approxima-
tion it is interesting to compare these calculations of po-
lymer friction (capacity) with recent non-pre-averaged
hydrodynamic calculations and with analytic (but pertur-
bative) renormalization group calculations.

1. Linear chain of spheres

The simplest example of a chain of spheres involves
placing spheres at a constant intersphere spacing along a
line. As in the example discussed above, we denote the
distance between the two neighboring sphere centers by l
and give this distance in units of the sphere (bead) radius
a. In Table I we tabulate the capacitance of a linear ar-
ray of spheres obtained by the probabilistic method at
two intersphere separations 4a and 2a. The error esti-
mates indicated in Table I are discussed in Ref. [29]. For
reference we calculate the (mean-field) double sum esti-
mate [32] of KR for the translational friction f,
f(KR, double sum)=Ng, 1+ g g a/r,

~
N

g„d =6m—ri, (.N//2 ), (3.11c)

where g(x)=I"(x)/I (x) is the psi function and y is
Euler's constant. Equation (3.11a) can be equally regard-
ed as a mean-field approximation for the capacity. A
comparison of the simulation results for the linear chain
of spheres and the KR double sum estimates shows that
the deviation is rather constant for a given bead separa-
tion. For l =4a and 2a the discrepancy is about 1-2%
and 4-6%, respectively. These deviations are compara-
ble with the error which exists between the KR expres-
sion for N=2 and the exact results mentioned above [52].
This relative constancy of the deviation between the
simulation and the DS estimates is natural given the very
weak screening in the rod configuration. In the complete
absence of screening f (C) is proportional to the number
of beads and (3.11) gives a slight correction
P(N+1) —1+y, which describes the screening for the
linear bead array. We conjecture that the linear bead ar-
ray in d=3 has the maximum capacity of all arrays hav-
ing linear chain topology. A sphere is known to maxim-
ize the capacity of objects of a given volume, but the ad-
dition of auxiliary shapes makes other shapes extremize
the capacity [1]. Knowledge of the capacity extremes is
important in modeling fluctuations in C (or f) in flexible
polymer chains. We next consider this more interesting
case.

2. Gaussian chain of overlapping spheres

The Gaussian chain model is a standard model of flexi-
ble polymer chains, In this model the bond vector dis-
tance r,"=

~ r; —r
~

is chosen to have a Gaussian distribu-
tion [33]

f(KR; double sum)

=Ng, /[ 1+[f(N + 1)—1+y ]N(, /g„d }, (3.11b)

i Aj (3.11a)
r(rj)=(2n. l /3) exp[ 3(r;~) /21 ]—, (3.12)

where r; is the average interbead distance ~i
—j~

1.

Discrete integration gives

2
5

10
17
26
37
50
65
82

101
401

I/a =4
C(PPM)/a

1.614+0.015
3.089+0.043
5.093+0.085
7.886+0.142
11.04+0.21
14.25+0.29
18.50+0.38
23.36+0.50
28.76+0.63
32.75+0.74
107.0%2.7

C(DS)/a

1.600
3.046
5.090
7.658

10.71
14.23
18.18
22.57
27.38
32.59

105.9

I/a=2
C(PPM)/a

1.396+0.009
2.294+0.025
3.595+0.048
5.366+0.080
7.067+0.105
9.582+0. 163
11.33+0.21
14.35+0.27
17.26+0.34
19.93+0.40
64.84+ 1.49

C(DS)/a

1.333
2.190
3.414
4.942
6.486
8.806

11.11
13.66
16.43
19.43
61.01

TABLE I. Capacitance of a linear rodlike array of spherical
beads.

where l is the root-mean-square bond length. First, we
placed spheres having radius a at the vertices of a Monte
Carlo generated chain and we then launched 10 random
walks from a spherical surface enclosing each chain
configuration. The capacitances for various ail values,
averaged over 250 configurations of chains of 26 and 101
spheres, are shown in Table II. The capacitances for
both %=26 and 101 can be well reproduced by a function
of the form

Xa
1+c, (1—c2a /l)(N —1)' a /l

(3.13}

The Kirkwood-Riseman (DS) estimate [32] of the fric-
tion (capacity) is also included in Table II for compar-
ison. In this case we observe very significant discrepan-

For %=26 the constants are c, =2.872 and c2=0.493
and for X=101 they are 3.109 and 0.383, respectively.

%'e note for reference in the discussion below that the
radius of gyration (S )o~ for a Gaussian chain equals

(3.14)
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TABLE II. Capacitance C of Gaussian chains of overlapping

spherical beads.

1V=26
C(PPM)/a

0.0630 13.85%1.41
0.0945
0.116
0.126
0.131
0.150
0.165
0.189
0.233
0.250
0.252
0.263
0.300
0.331
0.500

9.531+0.946

7.491+0.854
6.604+0.801

6.328+0.696
6.090+0.738
5.568+0.678
5.239+0.609
4.007+0.468

C(DS)/a

13.57

9.232

7.027
6.040

5.698
5.526
4.989
4.637
3.384

N= 101
C(PPM)/a

34.40+3.51
26.18+2.99
22.72+2.63
21.52+2.35
20.80+2.32
18.81+2.17
17.43+1.96

12.66+1.44

7.395+0.884

C(DS)/a

33.15
24.87
21.19
19.91
19.27
17.27
15.96

11.23

6.116

cies between the simulation and the mean-field DS esti-
mates. For N=101 and 2a/l=2 we find a significant
17% deviation. This discrepancy is usually discussed in
terms of the measurable ratio RH /{S ) '~—:gH, where

RH is the hydrodynamic radius (as mentioned in the in-

troduction RH equals C in the angular averaging approxi-
mation). This ratio for the Gaussian chain model
(N=101) is shown in Fig. 3 as a function of the bead-
bond length ratio. The solid line interpolates the simula-
tion results in the angular average approximation and the
dashed line denotes the Kirkwood-Riseman DS estimate.
Observe that the discrepancy between the simulation and
DS estimates grows significantl with increasing a/l.
Clearly, the error approaches zero in the limit a/I ~0+.
Fluctuation errors are generally small when the hydro-
dynamic interactions are weak as in the rod array dis-

cussed above.
Previous estimates of the preaveraging error in rigid

pearl necklace models of polymer chains have conven-
tionally chosen [53] a/l =—,

' or a slightly larger value [54]
a/I =0.271 since these choices seem to reproduce limit-
ing N~ 00 results in simulations of modest chain length
[53]. Interestingly, a similar "special" ratio
a/l = —,', =0.278 is commonly invoked to "optimally"
model excluded volume interactions in bead models of ex-
cluded volume interactions in polymers [54]. In Fig. 3
we obtain QH(DS)=0.684 for a/l= —,', which accords
rather well with the infinite chain length estimate
QH(DS, N ~ 00 )=3m' /8=0 667, ex.pected from the
continuum limit infinite chain Kirkwood-Riseman calcu-
lation [32,33]. The PPM estimate for P& for a/l = —,

'

equals PH(PPM)=0. 771, which is 11% larger than the
DS estimate. The simulation result is consistent with
Zimm s calculations, which indicate a 12% deviation of
gii from the Kirkwood-Riseman DS value for a 51 bead
chain with a/1=0.271 [53]. Zimm directly treats the
rigid body Kirk wood-Riseman equations without
configurational preaveraging using a Monte Carlo (MC)
method. This technique is quite independent from our

0.8

0.7—

0.6—

0.5
0.0 0.2 0.4 0.6

probabilistic method. More extensive MC calculations of
the preaveraging approximation for pearl necklace mod-
els of freely jointed polymer chains without excluded
volume (a/I =0.25) by de la Torre and co-workers [54]
confirm the original estimate of Zimm to be a good ap-
proximation.

Experimental estimates of fH in theta solvents (poly-
mer solutions for which the second virial coefficient van-
ishes) are often found in the range [55] (0.77,0.79), which
is consistent with the simulation estimate for a Gaussian
chain QH(Gaussian) =0.771. The alternative MC calcula-
tions, following the more traditional type of hydro-
dynamic calculations [53,54], also accord rather well with
experiment and the PPM calculations.

Although the agreement with experiment is encourag-
ing, Fixman [56] has provided evidence that the dynamic

flexibility ("internal viscosity") of the chain ean appreci-
ably affect gii so that the rigid body value of l(ii should
only be an upper bound. By allowing the rare extended
chain configurations, which give rise to the enhanced
friction (capacity), to relax at a rapid rate the mean-field
hydrodynamic theory of KR becomes a better approxi-
mation. (This observation obviously has implications for
the corresponding problem of mobile absorbing sites in
the sphere-receptor problem [25].) It also should be ap-
preciated that the Gaussian chain model is an idealiza-
tion for theta point polymers and that ternary interac-
tions can lead to appreciable contributions to fH [57].
Other complicating factors in estimating gH are summa-
rized by Wang, Douglas, and Freed [44] and Douglas and
co-workers [58]. Configurational preaveraging, however,
remains the largest factor which limits the development
of a quantitative theory of polyxner solution hydrodynam-
ics (capacity).

3. ¹noverlapping (self avoiding) spher-es

on a random walk string

The Gaussian chain of overlapping spheres model is a
rather idealized model of real polymer chains which ex-

2ai1

FIG. 3. Dimensionless ratio PH =Rn/Ro for Gaussian
chains of overlapping beads. The lower dashed curve is an in-
terpolation of the preaveraging results of Kirkwood and Rise-
man [32] and the solid line interpolates between PPM estimates.
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TABLE III. Radius of gyration and capacitance of a self-
avoiding chain of spherical beads.

a/I

0.0630
0.126
0.189
0.233
0.252
0.263
0.300
0.331

4.384
4.777
5.606
6.375
6.778
7.023
7.950
8.719

C(PPM)/a

13.94+ 1.32
10.00+0.90
8.235+0.796
7.516+0.733
7.282+0.704
7.164+0.664
6.838+0.630
6.605+0.561

C(DS)/a

13.66
9.611
7.838
7.139
6.893
6.829
6.466
6.249

hibit excluded volume interferences between the chain
elements and attractive short range interactions. The ap-
plication of the Gaussian chain model is limited to the
theta temperature where the excluded volume and attrac-
tive interaction effects largely compensate [33]. In a tem-
perature range where the polymer chain swells the ex-
cluded volume forces predominate and it then becomes
necessary to enforce the nonoverlapping condition so that
the simple Gaussian chain model is no longer adequate.
To take this effect into account we searched through the
configurations of a Gaussian chain, generated as de-
scribed in Sec. IIID2, and selected those in which no
spheres overlapped. The radius of gyration (5 )'~, cal-
culated by averaging over 10 such configurations, is
shown in Table III for a chain of 26 nonoverlapping
spheres at various a /I values. We than launched 10 ran-
dom walk particles from a spherical surface enclosing
each chain configuration. The capacitances for various
a/I values, averaged over 250 configurations of the chain
of 26 nonoverlapping spheres, are given in Table III
along with the Kirkwood-Riseman DS estimate for com-
parison.

The ratio lttH for the self-avoiding beads indicates some
interesting effects. First of all, we observe in Fig. 4 that
the DS value of gH(DS;SAW)=0. 667 is only slightly
different (less than 3% change) than the value of itH(DS)
in the absence of self-avoidance. Renormalization group
(RG) calculations of the configurational preaveraged KR
theory with excluded volume interactions indicate that
the change of gH(DS) with and without preaveraging
should be less than 1% [59,60]. The simulation results
then accord well with the expectations of these analytic
RG calculations. Another striking feature is that the
preaveraging error indicated by the PPM simulations is
smaller for the self-avoiding walk (SAW) than for Gauss-
ian overlapping sphere chains with the same a/l ratios.
For the conventional ratio a/l =—„' the error for the self-

avoiding chains is only about 5% rather than the 11%
discrepancy found for overlapping chains. (The chain
lengths differ, but this does not account for the large
discrepancy. ) This finding is rather sensible since the
chains become more extended with excluded volume in-
teractions and the preaveraging errors decrease because
of the diminished screening with swelling. Second order
in e =4—d dynamical renormalization group calculations
by Wang, Douglas, and Freed [44] accord qualitatively
with these findings and predict that l(H preaveraging

0.75—

0.70

0.65

0.60—

0.55

0.50;
0.45 .—

0.40
0.1 0.2 0.3 0.4

corrections should be nearly twice as large for continuum
Gaussian chains than for self-avoiding chains. Unfor-
tunately, the magnitudes of the preaveraging errors pre-
dicted by RG theory are too large by a factor of about —', .
The main problem is that the perturbative expansion pa-
rameter (4—d ) /4 of the hydrodynamic theory is not
small in d=3 spatial dimensions so that the e-expansion
perturbative theory is not as useful as in other applica-
tions (e.g. , polymer excluded volume).

We also observe that the simulation estimate of
for self-avoiding and Gaussian chains equals

l(H(SAW)/QH(Gaussian) =0.91 for a/l = —,'. In the poly-
mer literature this ratio is often denoted the "Flory con-
stant" ratio [33,38] P*/Po. Recent Monte Carlo esti-
mates of P /Po for rigid freely jointed chains in the ab-
sence of configurational preaveraging by Bernal et al.
[61] indicate p'/Po =0.92 for %=80, in accord with our
simulation estimate. These calculations (analytic and nu-
merical) indicate that the largest contribution to the ex-
cluded volume dependence of dimensionless ratios such
as P*/Po derives from the excluded Uolume dependence
of hydrodynamic jluctuations, i.e., the preaveraging errors
are dependent on the excluded volume interaction. Since
there is no quantitative method for performing analytic
calculations of hydrodynamic properties in the absence of
preaveraging (even in the absence of excluded volume in-
teractions), we must conclude that the presently available
analytic theory of polymer chain dynamics is rather
inadequate. The probabilistic path method is especially
valuable under these circumstances.

For temperatures below the theta point the attractive
interactions predominate so that flexible chains coil into
a compact "spongelike" configuration. The friction (and
capacity) is highly screened in this type of compact
configuration and f and C approach M' '~ scaling in
the limit of very strong attractive interactions where M is
the chain mass. The I'" '~ scaling for d&2 is a

2a/1

FIG. 4. Dimensionless ratio PH =RH /RG for Gaussian
chains of nonoverlapping beads on a random coil chain. The
lower dashed curve denotes the preaveraging (DS) calculations
of Kirkwood and Riseman [32] and the solid line interprolates
between PPM estimates.
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rigorous lower bound for the scaling of capacity with
mass [7(e)]. The Smoluchowski rate constant for the po-
lymeric chain of absorbers evidently undergoes a steep
drop as the chains "collapse" into a compact state below
the theta temperature. In other instances the capacity
(rate constant) may greatly increase with a polymer con-
formational transition. For example, when polymers ab-
sorb onto surfaces the chains tend to spread out due to
increased excluded volume interactions in the adsorbed
state and the capacity thus greatly increases. The Smolu-
chowski rate constant for a polymeric chain of receptors
exhibits great variability as a function of chain conforma-
tion [33]. Chain conformation in turn is influenced by
chain environment.

IV. CAPACITY, FRICTION, AND FI.UCTUATIONS
OF THE "WIENER SAUSAGE"

The capacitance of an arbitrarily shaped particle can
be understood from a very simple alternative geometrical
point of view which complements the probabilistic path
averaging method considered in the main body of the pa-
per. Capacitance can also be interpreted in terms of the
volume VN swept out per unit "time" N by a spatially ex-
tended Brownian particle [8,26]. In other words, a parti-
cle undergoing Brownian motion sweeps out a volume
("Wiener sausage") that increases in a simple additive
fashion with time N after transients die away. A Browni-
an particle spends a significant time visiting regions pre-
viously visited so that the limiting increase of "sausage"
volume is a nontrivial functional of particle shape.
Spitzer's fundamental ergodic theorem for the increase of
the sausage volume indicates the universal asymptotic
behavior [18,19]

lim ( V~ ) /N ~2m C,
N —+ oo

(4.1)

where C is the capacity of the diffusing particle and ( )
denotes averaging with respect to Brownian motion paths
(Wiener measure). However, it is well known that the
random variable V~ exhibits large fluctuations [Eq. (4.1)
suggests that the VN fluctuations are closely related to
fluctuations in the capacity of the individual chain
configurations]. Specifically, the variance o
=(V~) —(V~) of VN increases strongly with chain
length below d=4 dimensions and o /N diverges for
large N in d= 3 [63],

lim(o /N)-lnN, N~oo . (4.2)

Above four dimensions the Vz fluctuations exhibit a
more normal behavior [63] o /N-const. The strong
fluctuations in Vz reflects itself in a breakdown of mean-
field theory. This effect is nicely illustrated by the cele-
brated limit theorem of Donsker and Varadhan [64] for
d=3,

lim (exp( —Vz))-exp[ —A,sN ~ ], N~oo (4.3a)
&~ oo

where A,s is a specified constant [63]. The problem here is
that the random variable exp( —Vz ) places greater
weight on paths for which V~ is small (i.e., paths "local-

which is the "Rosenstock approximation" [65] in the
analog case of lattice random walks. Clearly, a mean-
field description is incorrect as N~ao. Extreme rather
than typical configurations dominate the average in
(4.3a).

The sausage construction for calculating capacity is
also helpful in calculating transients from the steady-state
capacity. Estimation of transients requires the solution
of the Dirichlet problem for the diffusion equation on the
exterior of the object rather than Laplace's equation
[19,66]. The capacity is the steady-state rate of the
diffusive flux E(N) and Spitzer showed that the leading
order transient to E (N) for arbitrarily shaped bodies
equals [19]("Spitzer's formula" )

E (N)-(2irC)N +4(2n )
~ (2m C) N' +0 (1), (4.4)

where C is the capacity. The "sausage volume" ( VN ) is
equivalent mathematically [8] to E(N}, which gives a
rather curious geometrical interpretation of heat flow and
other diffusion-limited fluxes. We should note that
Spitzer's formula has been considerably extended to gen-
eral random walks (Levy flights), to variable spatial
dimensionality, and the asymptotic expansion (4.4) is
known through fourth order [67].

We also comment on a relation between (4.4) and the
problem of excluded volume in flexible chain polymers.
The coeScient 4 in the second term corresponds to the
expectation of the number of binary random walk inter-
sections. In general dimensionality (d & 2) this coefficient
equals [67,68] 1/P(1 —P), where the "fluctuation ex-
ponent" of N equals P=(4—d)/2. It is rather curious
that the critical dimension of four arises in this context.
This property of the fluctuations must be related to the
vanishing of the capacity of a Brownian path in d=4 and
higher dimensions [69]. In physical terms this connec-
tion comes about because the "intersection volume"
equals the "total volume" swept out by a particle,
without regard to previous history of spatial occupation,
minus the "sausage volume. " For d & 3 the predominant
class of intersections should be binary intersections.
These properties can be shown on a lattice where the
number of distinct sites visited is the analog of the
Weiner sausage volume [7(b),19(a)] and the number of
chain steps taken is the analog of the total volume
without regard to the previous history of occupation.

The transients of the Smoluchowski rate constant k,
are obtained by taking the derivative of E(N) with
respect to 1V and replacing N by the more conventional t
variable. This leads to a time dependent rate k, (t),

k(t)I4~D =C [1+(Dn )
' Ct ' +O(t 3 2}],

C =k, (t~ oo )/4mD, (4.&)

where D is the diffusion coe%cient. Spitzer's formula

ized" to finite regions of space). The mean-field approxi-
mation amounts to replacing VN by its mean or "typical"
value ( V ),

(exp( —V~})=exp( —( VN))-exp( 2—nCN), N~oo

(4.3b)
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(4.4) employs the convention D =
—,', but the variable D is

restored in (4.5). In electrochemical [70] and reaction
kinetics applications [25] the absorbing object is often
considered to be embedded in a nonconducting or non-
reacting plane (i.e., "reflecting" or "Neumann" boundary
condition) which reduces the flux to the object by a sym-
metry factor of —,

' if the fiux arrives from only one side of
the plane. Note that the leading transient is quadratic in
the capacity so these Auctuation terms are sensitive to
particle shape. The particular case of current Auctua-
tions from a disc electrode is discussed by Shoup and Sza-
bo [70(b)].

The transients for the translational friction are also in-
teresting and recent experiments have focused on measur-
ing the "long time tails" associated with these transients.
We observe that the time-dependent friction f (t) on a
sphere instantaneously brought into uniform motion
equals [71] (d=3)

f (t)/6nr), =R [1+(v„,„m) '"Rr '"+O(r '")),
t ~ oo (4.6a)

which reduces to the "time-dependent capacity" of a
sphere C(t),

d(V, )
C(r)= k, (t)/4nD= f (r. )/6n. rj, =

2m dt

1 dE (t )
(4.6b)

2w dt

where the kinematic viscosity vi,;„(i.e., the diffusion
coefficient of the vorticity) is equated to the difFusion
coefficient in (4.5). We thus conjecture that the transla-
tional friction transient of an arbitrarily shaped Brownian
particle impulsively brought into uniform motion approx-
imately equals [see (1.6) and Ref. [26]]

f(r)/6~g, =C[l+(v„,„m) '"Ct '"+O(t '")],
t —+ oo (4.7)

The transient ("skin") friction of a long rod or extended
plate, which is impulsively brought into uniform motion
along a direction in which the body is highly extended, is
exactly related (slow flow limit where inertial terms are
neglected) to the transient diffusive flux (capacity) to a
line or plate, respectively, where the diffusion coeScient
is v„;„in the hydrodynamic "analog" problem. This anal-
ogy between transient "heat How" and friction transients
for these geometries is discussed by Levine [72],
Batchelor [73], and Rayleigh [74]. We view the con-
jectural result (4.7) as a natural generalization of these
well known results for "large" objects (theoretically
infinite extent) to objects of finite extent. It should be
possible to check the approximation (4.7) using dynamic
light scattering on suspensions of particles having well
characterized geometrical shapes.

The transient in (4.6a) and (4.7) is sometimes called the
"Boussinesq-Basset" contribution to the friction [71].

There is also a "virtual mass" (inertial) transient, which is

discussed in the next section, which is important for ac-
celerated particle motions and when pressure gradients
exist in solutions.

V. DISCUSSIGN

In the present paper we calculate the capacities C of a
variety of objects using a probabilistic method originally
developed for the calculation of diffusion-controlled reac-
tion rates. The Hubbard-Douglas approximation
(f=6~rl, C) also allows for an estimate of the transla-
tional friction coefficient f. We apply the probabilistic
simulation method to nontrivial shaped bodies (cube, in-
tersecting spheres) where accurate estimates are available
and to more complex bodies where calculation is neces-
sarily numerical (spheres randomly distributed on a
spherical surface, spheres positioned at the vertices of a
random walk with a Gaussian step distribution function
with or without excluded volume interactions enforced).
The polymer simulations show that the configurational
(not angular) preaveraging approximation errors are
significantly less for self-avoiding chains than for random
walk bead chains because of the decreased screening with
swelling. Results obtained by our probabilistic method
for rigid random walk chains in conjunction with Eq.
(1.6) are consistent with numerical estimates of the scalar
friction by Zimm [53] and de la Torre and co-workers
[54] using similar bead models of polymer chains, but
very different methods for calculating the friction. An
accurate analytic calculation of the fluctuations in the
capacity (friction) of rigid random coil polymers and oth-
er statistically defined objects requires a better descrip-
tion of the fiuctuations in the capacity associated with
relatively rare chain configurations that can give a
significant weight to the correct configurational average
[47]. Mean-field-type calculations such as those of Kirk-
wood and Riseman [32] and Debye and Bueche [62] for
polymer hydrodynamics implicitly assume such fiuctua-
tions are small so that the polymer chains can be modeled
as effective spheres having dimensions on the order of the
average chain radius of gyration. Similarly, the classical
"receptors on a sphere" ligand binding model of Berg and
Purcell [25] neglects fluctuations of the receptor
configurations which can significantly increase the bind-
ing rate constant if the binding sites are fixed
("quenched") in position on the sphere surface [4].

In Sec V we consider an alternative method for calcu-
lating capacity which exploits an ergodic theorem relat-
ing to the volume swept out by a Brownian particle. This
point of view not only gives insight into the Auctuation
effects which limit the accuracy of mean-field polymer
hydrodynamic calculations, but also provides a separate
probabilistic method for estimating capacity. There is
apparently no explicit algorithm implementing this ap-
proach, although Barrett and Benesch [75] have con-
sidered a closely related problem of the "total excluded
volume of a Pearson walk" having beads placed at the
vertices of the random walk. Fluctuation corrections to
the steady-state capacity and related properties can be
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fz(axisym. ) =(2/sr)[H(d +2)/2]C(d +2)ri, , (5.2)

H(d)=4m" /I'(d/2 1), H(—d =3)/2=2m, (5.3)

where I denotes the gamma function. The ubiquitous
factor [H(d)/2] is the norming constant for the free
space Green's function of |r /2. The derivation of (4.9),
which will be developed elsewhere, exploits a relation be-

calculated from the fluctuations in the approach of the
sausage volume per unit time to its fixed-point value at
long times. We argue that friction transients and associ-
ated long time tails can be understood from this geome-
trical viewpoint.

As a final point we mention that the rotational friction
coefficient can be related to capacity in certain cases. For
example, the rotational friction of an axisymmetric body
rotating about the axis of symmetry is proportional to the
capacity of the body in d+2 dimensions. In the exten-
sion to higher dimensions we simply rotate the body into
the two "extra" dimensions so that the three-dimensional
object can be thought of as a "cross section" within the
higher-dimensional space. We summarize the d-
dimensional results for the (angularly averaging approxi-
mation [26]) translational friction coefficient fT and an
exact result for the rotational friction coefficient

ftt {axisym. ),

fT-[2d/(d —1)][H(d)/2]C(d)ri, , (5.1)

tween the capacity of an axisymmetric body in d+2 di-
mensions and the virtual mass component along the sym-
metry axis and volume of the body in d dimensions
[76,77]. The virtual mass determines the effective hydro-
dynamic mass under nonsteady motions (acceleration and
deceleration) and thus is another parameter which is im-
portant in calculating frictional transients [1,3,5,78].
Calculation of the virtual mass involves solving Laplace's
equation with a modified boundary condition [1],so that
virtual mass is then just another variety of "capacity. " A
probabilistic calculation of the virtual mass should also
be possible from an averaging over random walk paths.

The conjectured relation between friction and capacity
transients [Eq. (4.7)] would similarly imply that the
t' " transients of the translational friction would be re-
placed by t for the transients of the rotational fric-
tion of axisymmetric bodies. Explicit calculation of the
rotational friction of certain axisymmetric bodies (sphere
and dumbbell) indeed gives a t decay in d= 3 for the
rotational friction transients as expected [79]. The exten-
sion of the fundamental "Spitzer formula" (4.4) to de-
scribe rotational friction transients therefore seems
promising. An extension of the probabilistic potential
theory approach and the associated probabilistic simula-
tions to describe intrinsic viscosity would be very helpful
in the physical characterization of irregularly shaped bo-
dies.
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