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Multicomponent percolation schemes are introduced and discussed. They represent a generalization
of usual percolation models to an arbitrary number of species. A detailed analysis of the probabilistic
properties of multicomponent percolation is developed and extended to a non-numerable (continuous)
distribution of species. Some initial results on transport properties are presented. The connection be-

tween multicomponent percolation models and (chemical) reaction schemes in granular materials is ana-

lyzed in detail and an application to exothermal self-propagating reactions proposed.

PACS number(s): 05.40.+j

I. INTRODUCTION

Percolation theory represents a general framework for
analyzing disordered structures (e.g., porous media) and
geometric phase transitions [1—3]. The application of
percolation models is widespread in all fields of science
from biology to statistical physics. Many different simu-
lation models have been developed for the analysis of dy-
namic phenomena in disordered structures (e.g., invasion
percolation), for the extension of the purely probabilistic
model of percolation in the form of a growth scheme
(e.g., spreading percolation and Leath algorithm) [4], and
for the analysis of off-lattice percolation in a continuous
space (e.g., continuous percolation [5]}.

In general, percolation models are two-state spatially
distributed systems: the state of each site is equivalent to
a Boolean variable which may assume 0 (1}value: spin
up (spin down) in random magnetic systems; pore (walls)
in porous media, insulator (conductor) in dielectric mod-
els.

A useful generalization of percolation theory is to con-
sider an n-state model representing a distribution of
species with different physical properties, and with an ag-
gregation kinetics which is specific for each pair of
species. This generalization is similar to the q-state Potts
model of statistical physics. This percolation model can
be called multieomponent percolation.

The extension of percolation models to more than two
components was first discussed by Zallen [6], who named
his model polychromatic percolation. The polychromatic
percolation problem in the form proposed by Zallen is
essentially a geometrical equilibrium problem regarding
the possible number of species which can simultaneously
percolate (i.e., form infinite clusters of the same species)
in a given lattice. The original polychromatic percolation
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model has been extended by Halley and Holcomb [7] to
consider a reactive percolation model. More explicitly,
Halley and Holcomb considered a three-component po-
lychromatic percolation in which two atomic species, say
A and B, react to form a molecular species AB,
A +B=AB. The chemical reaction between A and B is
defined through the equilibrium constant E, which deter-
mines the fraction of molecules AB formed in the lattice.
A review on polychromatic percolation models can be
found in [8].

As will be made clearer in the next section, multicom-
ponent percolation differs radically from polychromatic
percolation in the sense that a unique infinite cluster is
present through the formation of bonds between the
different species, so that the model is not only character-
ized by species heterogeneity but also by dynamic param-
eters describing the probability of forming a bond be-
tween the species.

To quote Halley [8], polychromatic percolation models
have not received a large amount of attention because
they belong to the same universality class as ordinary
percolation. This is also the case of multicomponent per-
colation. However, as will be discussed in the article, a
multicomponent percolation scheme can be generalized
to describe simultaneously heat and mass transfer, and
lead to a new class of models which deserve attention in
the study of dynamic scaling phenomena (in the sense ex-
tensively discussed by Family and Vicsek [9]).

The article is organized as follows. We introduce the
multicomponent percolation scheme and develop the pro-
babilistic analysis for an arbitrary finite and non-
numerable distribution of species. We briefly analyze the
transport properties of the resulting clusters. This
analysis is similar to that developed by Bunde, Dieterich,
and Roman [10], Rojo and Roman [11], and Roman
Youssouff [12] in connection with the random resistor
network problem in two-component systems and applied
by the authors to the analysis of dispersed ionic conduc-
tors. We then analyze the application of multicomponent
percolation to nonisothermal reactions in granular ma-
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terials, discuss the simulation techniques, and present
some initial results on the stability properties of simple
exothermal reactions.

II. MULTICOMPONKNT PERCOLATION

percolation, is represented by a single species in the lat-
tice, p &

= 1, in which the tuning parameter of the process
is the reaction probabihty r» '- p ="» . Distribution
percolation is defined by r» =1, r, 2 =r22 =0, and p =p, ,
while reaction percolation is defined by p &

= 1 and p = r „.
The percolation-theory model of uncorrelated spatial

disorder can be adapted to describe more complex granu-
lar structures in order to model transport phenomena
with reactions in granular materials by introducing a lev-
el of structuring in the model. The structuring of per-
colation models can be obtained by considering that (1)
the granular matrix is formed by n distinct species; and
(2) the aggregation probabilities in forming a cluster are
specific and depend on the species.

In accordance with the second assumption we can
define a reaction matrix R=(r; ) where r;~ represents the
probability that the species A; and A react to form the
product cluster. In the case of a solid-solid reaction in a
powder mixture, the reaction matrix R characterizes the
kinetics in terms of the probabilities of forming a bond
between the nearest neighbors of species A; and A .

These positions can be expressed in formal terms by as-
serting that multicomponent percolation is described by a
triplet (X,p, R), where X is a d-dimensional lattice with
its topology of nearest neighbors; p an n-dimensional
probability vector p=(p„. . . ,p„), g;p;=I, represent-
ing the fraction of species distributed randomly in the lat-
tice; and R an n X n symmetric matrix, 0 ~ r, & 1, whose
elements r; are the probabilities that the i species react
with the j species to form a bond in the reacting cluster.

Two general observations can be made about the
definition of multicomponent percolation. Multicom-
ponent percolation models are introduced to describe an
intrinsic dynamic phenomenon leading to a growth algo-
rithm for the evolution of the product cluster.

The aggregation process can be simulated on the lattice
by means of a modified Leath algorithm in which the
growth probabilities are specific for the considered
species: if the actual growth site is A; and one of its first
nearest neighbors belonging to the product cluster is A, ,
the growth site will aggregate to the product cluster with
probability r;~ and otherwise will be blocked.

Moreover, the probability structure of the species dis-
tribution and of the reactive events induces a double level
of probabilistic description which can be used for modu-
lating percolation phenomena with the probability distri-
bution vector p and with the reaction matrix R. This
redundancy allows us great versatility in simulating
kinetic phenomena. However, we can define two limiting
situations, in which the percolation process is controlled
exclusively by the distribution vector p (called for simpli-
city distribution percolation) or by the reaction matrix R
(reaction percolation). Referring for simplicity to a two-
component system, and letting p be the percolation prob-
ability, distribution percolation corresponds to the case
of a random distribution of the two species, of which only
one (say A, ) is fully reactive (r &,

= 1) and the other com-
pletely inert (r&z=rzz=0). In this situation, the tuning
parameter of the percolation phenomenon is p, , i.e.,
p =p, . The opposite case, which can be called reaction

III. PROBABILISTIC PROPERTIES

An initial problem connected with multicomponent
percolation schemes lies in the evaluation of the percola-
tion threshold p, as a function of the probabilistic param-
eters p and R, and more generally in the evaluation of the
equivalent percolation probability p as a function of these
parameters.

Let us first consider the case of a two-component sys-
tem. In this situation we have

p =4(P„R),
since p2 = 1 —p, .

Letting p ( A;; C ) be the probability that a site belong-

ing to the infinite cluster C is of A; species (i = 1,2), we

have

p=p(Ai'C)tpi&ii+pzrlz)+p(Az C)lpi&21+pzrzz~

=p(A„C)II, +p(Az, C)IIz . (2)

The probabilities p ( A;; C ) can be evaluated by consid-
ering that if p (A, ) (i =1,2) are the probabilities that a
site A; will form in the growth process, then

p (A, )=P(A, ;C)p, r»+p(A zC)p, r iz,

pg( A 2 ) p ( A 1 ~)p zz1r+p ( A 2 ~)pzrzz

From the asymptotic steady-state behavior of the growth
process, the probability that an aggregate site is to be of
A; species is equal to p ( A;; C ), i.e.,

ps(A, )
=p(A„'C) .

P (A, )+P (Az)
(4)

Correspondingly, we obtain a single equation in

x =p(A, ;C),

ax +P(1—x)
II,x+11,(i —x) '

where a =p, r» and P=p, r, z. The solution Eq. (5) reads
1'

—I./2+&1.z/4+P/(II, —II, ) if 11,—II,W0X—
P/(IIz+P —a) if II, —IIz=0,

where I =(IIz+P—a)/(II, —IIz). In the case of
II,—Ilz&0 only one solution (6) is admissible, lying in

the interval [0,1]. Once x is known, the percolation prob-
ability can be evaluated through Eq. (2). Figure 1 shows
the behavior of the percolation probability p as a function
of the probabilistic parameters p, and R together with
the estimate of p deriving from Monte Carlo simulations.
Satisfactory agreement is reached between the theoretical
estimate ofp and the simulations.
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A special case which can be solved analytically comes
from the assumption of Gaussian distribution in the
reacting species, A = ( —ao, aa ),

p(a)= exp[ —a /(2o )]
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by also assuming a Gaussian convolutory reaction kernel

r(a, p)= exp[ —p(a —p) ] .

Under this hypothesis, p (a; C ) is still Gaussian distribut-
ed,

p (a; C ) = exp[ —a /(2A, )],j.

&2~X'

with A. satisfying the equation

FIG. 1. Behavior of the equivalent percolation probability p
vs rz& for a two-component system with r» =0.85; r» =0.80 for
several values of p&. The solid lines are the theoretical predic-
tions, Eqs. (2) and (6); the points are the simulation results ob-
tained from the analysis of the infinite cluster grown by means
of the Leath algorithm (modified according to the definition of
multicomponent percolation schemes) in two dimensions:
600 X400 lattice averaged over 100 realizations.

2pA,

1+2K, p 0.

1

+I+2p(cr +A, )
(12)

which admits only one positive solution. After some
algebraic manipulation, we obtain from Eqs. (9) and (10)
the expression for the probability p,

The theoretical considerations developed for two
species can be extended in a straightforward way to n

species. By applying the same analysis we have

p = g p ( A, ; C )II;, II; = g p r;

The growing probabilities ps;=ps(A;) are given by
ps; =p;g~p ( AJ; C )r J, and from the steady-state assump-
tion we have

p(a) f~p(P;C )r(a, P)dP
p(a;C)=

f~p(r)dr f~p(P;C)r(r, P)dP
'

fp(a;6 )da= 1 .

(10)

g p( AJ, C )r J

p(A, ;C)=p;
X Xpsp(A, ;~)rs,

h =1j=l

which is a system of n nonlinear equations in the n un-
known variables p ( A;; C ).

The same analysis can also be extended to a continuous
distribution of reacting species. By adopting the same
notation, and letting p (a) be the probability distribution
function (PDF) associated with the distribution of species
parametrized with respect to the continuous parameter
aEA, r(a, P) the corresponding reaction kernel (which
in the continuous formalism plays the role of the reaction
matrix), and p (a; C) the PDF associated to the species
distribution in the infinite cluster, we have

p = f p(a;C)II(a)da, II(a)= f p(P)r(a, P)dP, (9)
A A
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FIG. 2. p vs p for the continuous distribution percolation,
Eqs. (11) and (12), for dig'erent values of rr~ p, is the thr.eshold
for two-dimensional square lattices.

Figure 2 shows the behavior of the percolation probabili-
ty p as a function of the two parameters p and 0. entering
into the model. The analysis of the continuum limit
developed above is purely mathematical. However, it is to
be expected that such models may have some practical
relevance in dealing with the structural properties of
amorphous materials (e.g., glasses) characterized by high-
ly heterogeneous structures of bonds [13].

Attention should be drawn to the fact that multicom-
ponent percolation generalizes the usual percolation
models but belongs to the same universality classes in-
duced by the dimensionality of the lattice [2].
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IV. TRANSPORT PROPERTIES

The transport properties of multicomponent percola-
tion clusters can be studied in exactly the same way as
the conduction properties in random resistor networks
(RRN) [10—12] by introducing an n Xn symmetric ma-
trix D = [D; ]of. diffusivities. The element D;J. represents
the diffusivity associated with a jump from a site A, to
one of its neighboring sites which is of A species. The
diffusivity matrix D is related to the hopping rate matrix
w= [w;i] through the relation [11]

0.6

0.4

ZQ
&J 2d V

(13) 0.2

where a is the lattice constant (characteristic length be-
tween nearest neighboring sites), d the dimensionality of
the lattice, and Z the coordination number.

For the development of an effective-medium approxi-
mation (EMA) theory of transport properties in mul-
ticomponent percolation clusters, it is necessary to deter-
mine the quantities p;~i(C ) representing the fractions of
A;—A bonds in the infinite percolation cluster

;( p;si(C)=1. For a generic discrete n-component
system, p,"(8) is given by the product of the probability
that a site belonging to the infinite percolation cluster is
A, , p ( A, ; C ), times the probability that a reactive event
will form a bond A, —A, i.e.,

p;s(e) =p(A, ;e)p, r, , /rr;,
(14)

p~~i(C)=p(A;;8)p rJ/III, . +p(A iC )p;r; /II, i'
It is evident from these equations that multicomponent
percolation clusters differ from ordinary percolation
structures in that the probabilities p;~1(C ) depend on the
reaction matrix elements, i.e., on the kinetic condition as-
sociated with the growth.

Figures 3 and 4 show the simulation results for
p(Ai, 8) and p,"(C ) for a two-component system with
r»=0. 6, r,2=0.8, r22=0. 6, as a function of p*=p&.
The Monte Carlo results were obtained by the analysis of
the resulting infinite cluster on a 600X400 square lattice
averaged over 50 realizations. The solid lines are the
theoretical expressions (6), (14). The agreement between
simulations and theory is satisfactory.

Given p;1(C ), the effective diffusion coefficient D, can
be calculated by means of EMA theory [14,11], and is
given by

0.0
0.0 0.2 0.4 0.6 0.8, 1.0P*

FIG. 3. x =p(A&,'C) vs p =p& for r» =0.6, r» =0.8,

r» =0.6. The solid line is the theoretical result, Eq. (6), and the

points the simulation results.
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difference techniques can be applied to transport prob-
lems in fractal and disordered lattice structures and can
be extended to analyze nonlinear transport phenomena
[17] which would be extremely difficult to handle within
the framework of Monte Carlo simulations. In [16] a de-
tailed description is presented of the relaxation analysis
of a diffusion experiment in a random resistor network
leading to the estimate of D, .

Comparison of the simulation results and EMA predic-
tions indictates that EMA theory is able to capture the
behavior of D, qualitatively: the value of p'=p, for
which D, attains its maximum predicted by EMA theory
coincides practically with the numerical result. Howev-

er, theory and experiments show a significative quantita-
tive discrepancy. This is fundamentally due to the fact
that for p' ranging between 0.15 and 0.85, the value of

D, —D; .

p," ' +(1—p) =0,'1 D, +D, -

(15) 0.4

where p;. =pp; (C ) and p is the equivalent percolation
probability, Eq. (1). Figure 5 shows EMA calculations in
the case D» =1.0, D,2=10.0, D22=0. 1 arbitrary units,
as a function of p

' =p, , together with the simulation re-
sults obtained by applying a finite-difference algorithm
and by making use of the exponential scaling typical of
diffusional relaxation for the numerical evaluation of the
diffusion coei5cient. The details of the numerical simula-
tion method are fully described in [15,16] and are there-
fore omitted here. In [15] it is discussed how finite-

0.2

0.0
0.0 0.2 0.6 0.8 p 1.0

FIG. 4. p;, (C) vs p*=p, under the same conditions as Fig. 3:
(a) p~~(C); (b) p»(C); (c) p»(C) ~ The solid lines are the
theoretical results, Eq. (14), and the points the simulation re-

sults.
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FIG. 5. D, vs p =p& for the two-dimensional multicom-
ponent percolation clusters of Figs. 3 and 4: D

~ ] = 1 ~ 0;
D&2=10.0; D22=0. 1. The solid line is the value predicted by
EMA theory, Eq. (15), the points are the numerical results. The
difFusivities are expressed in arbitrary units.

the equivalent percolation probability varies between 0.65
and 0.70, and it is known that for such low values of the
percolation probability EMA theory is not able to furnish
a correct value of the diffusivity (conductance} [14].

Of course, similar calculations can be performed for
different operating conditions, i.e., for different R and p.
It is important to point out that the numerical method
employed [16] is a powerful tool for the numerical esti-
mate of transport parameters and is more closely related
to the phenomenological description of transport than
Monte Carlo simulations based on "complex" definitions
of the random walk probabilities (as in the case of the
RRN problem, which in random walk simulation implies
the introduction of a process having different properties
in the normal and in the superconductive regions of the
material; see [18]for more details).

V. APPLICATION TO NONISOTHERMAL REACTIONS
IN GRANULAR MATERIALS

One of the most interesting applications of multicom-
ponent percolation is the analysis of chemical reaction
schemes in granular materials. The most relevant case is
given by exothermal reactions, in particular in conditions
where the enthalpy of reaction is suSciently high to
maintain the reactions with no external energy transfer
(self-sustained propagation). These reactions are usually
indicated with the acronym SHS, self-sustained high-
temperature synthesis, and arise in the production of
ceramic materials [19,20]. Following Varma, Cao, and
Morbidelli [19],SHS reactions can be modeled by simple
kinetic schemes A +A~product. By assuming a simple
axial dispersion model of the heat transfer and by consid-
ering that the reaction can be modeled as first order with
respect to one of the reactants (e.g., A) and zero order
with respect to the other (B) [19],the energy and balance
equation reads

8(x,0)=8o, q(x, O) =0, 8(O, r) =8s,
(18)

x=1
=5,(8—8c),

where y=k/(kz(pc&)L ), P=( bH}co/(T«—(cz)),
5=45, /D, and 5, = Ul(( pc~ )ko ).

The conversion g is the fraction of the reactant which
has reacted up to time t. This system of partial
differential equations can be simply solved numerically,
as discussed in various articles [19,20], in order to obtain
information on reaction evolution and stability. It is im-
portant to stress that the local model of the form (16)
comes from a local averaging approach which could be a
fairly crude approximation in dealing with solid-solid re-
actions in granular materials. In particular, these models
do not furnish any information about the geometric
structure of the product cluster, which is an important
parameter for testing the quality of the reaction product,
and are not suited for the analysis of instability and oscil-
lation effects deriving from a random distribution of reac-
tants.

In order to obtain such information, kinetic models of
reaction propagation in disordered lattice structures are
the only alternative, and multicomponent percolation
schemes seem particularly suited for this task. This can
be simply done by considering the simultaneous propaga-
tion of a thermal pointwise field T = T(x, t) diffusing on
the structure (lattice} and by assuming that the reaction

where T is the temperature, c the reactant concentration
(in this case A ), (pc ) the average specific heat per unit
volume, k the thermal conductivity, ko the prefactor in
the reaction rate, To the external temperature, hH the
enthalpy of reaction (negative for an exothermal reac-
tion), E the activation energy, U'=4UlD the eff'ective

heat transfer coefficient in cylindrical geometry (U is the
heat transfer coefficient and D the pellet diameter}, To
the external temperature, and o(T Tc) t—he radiative
contribution to heat transfer. Unless explicitly men-
tioned we shall overlook the radiative term. The stan-
dard initial and boundary conditions read T(z, O)=To,
c (z, 0) =co; T(0, t) = Ts ( Ts is the forcing temperature on
one side of the pellet); k [t)T(L, t) /t)z] = U( T To ). I—n
dimensionless terms, by setting

ref l Tactivation~ ref k0 ~

r=tlt «, x =z/L, 8=T/T «, g= 1 c/co,—

the differential scheme attains the form

88 88=y +P(1—g) exp( —1/8) —5(8—8c),
t)x

dvl =(1—ri) exp( —1/8),
dr
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matrix depends in each site on the local temperature

r, "=r, ("T)=r, exp. [ E—/RT(x, t)], (19)

with O~r, . 1. The lattice simulation is therefore re-
duced to the simultaneous propagation of the ternpera-
ture field and of the reaction front.

In principle, these kinds of simulation can be carried
out by means of a modified Leath algorithm [21] which
also takes into account the propagation of the thermal
field. Since these simulations can be developed in many
different ways which admit an interesting physical and
kinetic meaning, it is worth considering the simulation

details carefully.

where h (",+, )' is equal to one if the site (i,j) has been aggre-
gated to the growing cluster at time n+1 and is zero
elsewhere. In Eq. (21), I(i,j) indicates the set of the
nearest neighbors of the site (i,j). This kind of modeling
implies that the reaction evolves only at the reaction
front and therefore only a single connected cluster is
formed.

Of course, another simulation alternative arises from
the fact that the reactant may react in every point in the
lattice depending exclusively on the value of the local
temperature field 8[, ). Even in this case, blocking and
nonblocking conditions can be considered. This situation
will not, however, be considered here.

VI. SIMULATION CONDITIONS

+6(8(; )
—8o)+Bh(",+,)', (21)

The dynamic analysis of multicornponent percolation
schemes can be developed by considering the Monte Car-
lo propagation of the reaction front in a similar way to
the classical Leath algorithm. To simplify the matters,
let us consider the case of a single reactant, analogously
to the averaged differential models of the preceding sec-
tion, forming a product P.

The simulation of the simultaneous heat and mass
transfer can be performed in many ways since two
different problems can be brought into focus: (1) the
"purely" percolation problem of the evolution of a reac-
tion front modulated by the temperature field, which im-
plies the propagation of a spreading percolation in the
presence of a variable percolation probability depending
on T(x, t); and (2) the definition of a lattice simulator for
exothermic reactions in granular materials in order to
study the structural properties of the product cluster.

These two problems are quite similar but show some
differences and therefore lead to different simulation stra-
tegies. Let us consider first the percolation problem of
reaction evolution with a reaction probability depending
on the temperature field associated with the heat genera-
tion produced by the reaction itself. This phenomenon
can be modeled with a classical Leath algorithm, by con-
sidering both blocking (as in the case of the classical
Leath algorithm) and nonblocking conditions. Non-
blocking conditions imply that, given one site on the re-
action front, if a nearest-neighbor site will not aggregate
to the cluster, it will not be blocked and can eventually
aggregate as the reaction proceeds.

In Monte Carlo simulations, the kinetic Arrhenius
term (19) must satisfy the closure condition that for a
temperature equal to the activation temperature it should
be equal to the corresponding percolation threshold, i.e.,

r = exp( —8~/8), 8~ = —in(p, ) .

The evolution equation for the dimensionless temperature
8(";,) =8(x;,xj, t„) may be written on the lattice in terms
of an explicit finite-difFerence scheme. In two dimen-
sions,

r
8(i j) 8(i j)+ g X [8(kk) 8(ij)),

(h, k) GI(i, j)

VII. STABILITY AND PROPAGATION

1.0

C 'g&
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FIG. 6. Average conversion (i) ) vs 8 for different values of
I: (a) I =0.9; (b) I =0.7; (c) I =0.5; (d) I =0.3. The solid
lines are merely a visual aid.

We shall consider here only the percolation problem of
the growth of the reaction cluster in blocking conditions.
In the adiabatic case 6=0, the only two parameters
entering the model are the dimensionless conductivity I
and the enthalpic constant B. Of course if an explicit al-
gorithm is adopted for the temperature propagation then
I &1.

Figure 6 shows the value of the average conversion
(i)) as a function of 8 for different values of I. The
average conversion ( rj ) is defined as the average of
rj(x,y, t) over the y axis, i.e., along the direction orthogo-
nal to the propagation direction of the reaction front.
The simulations were performed in the simple case of a
single species, p i

= 1 with r =r» given by Eq. (19). These
results were obtained by averaging over 100 realizations
on a 200X200 square lattice. The initial conditions of the
simulation are uniform temperature 8o=0. 1 over all the
lattice and uniform distribution of the reactant (p, =1).
The boundary conditions are a forcing temperature
8& =1.0 on one side of the pellet (x =0) and adiabatic
condition elsewhere. At time t =0, x =0, a fraction of
sites is activated (i.e., belongs to the product cluster) with
probability r given by Eq. (20), in which 8=8„. it
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tions on a lattice and stochastic difFerential forma1ism can
be used.

Apart from these theoretical aspects, the development
of multicomponent percolation schemes can be useful for
analyzing solid-solid reactions of industrial interest.
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