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Dependence of electrorheological response on conductivity and polarization time

M. Whittle, W. A. Bullough, * D. J. Peel, and R. Firoozian
Department ofMechanical and Process Engineering, The Uniuersi ty ofShield, P.O. Box 600, Shield Sl 4DU, United Kingdom

(Received 24 August 1993;revised manuscript received 5 January 1994)

The mechanisms which govern the performance of electrorheological (ER) fluids must be established
if the response times and electrostress levels required for industrial applications are to be achieved. Ear-
lier work by this group has led to a comprehensive description of the electrical and pressure response ob-
served in engineering scale ER valve systems operating under realistic conditions. The present paper
carries this program further by showing that in this regime the measured ER valve characteristics are
consistent with the polarization-conductance mechanism commonly taken to be the basis for the genera-
tion of electrostress. Theoretical descriptions of ER fluids often ignore the role of conductance and fre-

quency dependence of the permittivity. Here, within the context of a model incorporating these material

properties and a polarization time, we examine factors affecting the speed, form, and magnitude of ER
response. Using this model we are able to establish a relationship between the experimentally observed
pressure and current for biased sine and step voltage excitation.

PACS number(s): 83.80.Gv, 47.50.+d

I. INTRODUCTION

Electrorheological (ER) fluids respond to large electric
fields ( —10 V m '}with a substantial reversible change
in rheological properties. Under zero-field conditions
these fluids are generally characterized by simple
Newtonian viscosity g, while at high fields they approxi-
mate a Bingham plastic and exhibit a yield stress So.

S =So+gy,
where S is the total stress, and y the strain rate. The ER
response can occur in much less than a millisecond, and
fast ER clutch and valve systems are currently under de-
velopment with the aim of extending the range of flexible
machine duties covered by electromagnetic mechanisms
in some areas of operation [1—4]. To optimize such de-
vices there is consequently considerable interest in reduc-
ing the response time and increasing the yield strength of
the fluids on which many ER devices depend. The con-
trollability of ER devices also depends upon an apprecia-
tion of these characteristics.

Particle polarization is now widely thought to be re-
sponsible for the interaction forces that lead to the rheo-
logical changes [5], and the ER fluids currently available
are dispersions formed from polarizible particles support-
ed by an insulating nonpolar fluid phase. A variety of
materials has been used to make ER fluids, and the polar-
ization mechanism seems not to be critical. Many ER
fluids are "activated" by a small amount of water associ-
ated with the particles, and polarization by charge sepa-
ration in an electrical double layer is the favored process.
However, polarization may be achieved by electron trans-
port if the particles are composed of a dry semiconduct-
ing material.

'Fax: (0742) 753671.

Associated with the rheological response of the fluid,
structural changes occur that are commonly described as
chaining or fibrillation. This alludes to the particle
chains or columns that are seen to appear in dilute sys-
tems under zero or near-zero flow conditions. Computer
simulations [6] suggest that under the conditions of flow,
where the fluids are most likely to be of engineering use,
the structure is characterized by the formation of sheets
in the plane defined by the flow direction and the field.
Within these sheets particle chains may form, but their
length and lifetime are limited by the balance of viscous
and electrical forces. In the absence of a field the same
simulations suggest that particles align in the direction of
the flow to form a so-called hexagonal string phase [6,7].
An increase in the interparticle force in response to the
electric field is the primary cause of rheological changes,
but under practical operating conditions the rate of tran-
sition between these two dynamic structures may be ex-
pected to influence the observed response time.

In a series of earlier papers [8—11] we analyzed the re-
sults from controlled tests on a set of five ER valve re-
strictors of difFerent dimensions over a range of flow rates
and voltage inputs operating at a well-controlled temper-
ature. The valves consist of concentric cylinders of
sufficiently large radii that they can be treated as a pair of
flat plates (Fig. 1). Fluid flows along the length of the
cylinders, and when a high voltage is applied rheological
changes in the ER fluid lead to an increase in the pressure
required to maintain the flow. The tests involved simul-
taneous recording of the pressure and current responses
to step voltage and biased sine wave inputs as well as
steady-state measurements. Because of the equipment
limitations the sine wave tests were only made up to 200
Hz. A11 our results were carried out at 30'C using a fluid
containing 30% lithium polymethacrylate (Lipol} in a
chlorinated hydrocarbon oil obtained from Laser En-
gineering Ltd. , London. The polymer particles were "ac-
tivated" with a water content of about 15%.

Our earlier analysis of the current response has led to
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work are probably responsible for the oscillatory features
observed [11]. By removing these contributions we have
been able to suggest a form of pressure response that
would occur in the absence of these effects and thus iso-
late the underlying stress response of the ER Quid itself.

The present paper furthers this approach by showing
that the underlying ER performance is consistent with
the polarization-conductance mechanism commonly tak-
en to be the basis for the generation of electrostress. %e
begin by outlining the relevant dielectric theory as a basis
for the development of a model —Sec. II. In Sec. III we
show that this model can account for the main features of
the experimental electrical response. Finally, in Sec. IV
we examine the consequences of this model for the inter-
particle force, the rheological response of the Quid, and
thus the pressure response of the valve. The latter is
compared with experimental data.

II. DIELECTRIC THEORY

For composite dielectric materials polarization occurs
as a result of the mismatch of dielectric constants [12].
According to a simple point dipole model the dipole p in-
duced by an electric field E in a spherical particle (radius
a) can be described in terms of the particle and fluid rela-
tive perrnittivities c and cf.

p =4m cocfa PE, (2)

FIG. 1. (a) Twin channel cooled experimental valve. (b)
Simplified valve geometry used in the calculations. The ER
fluid flows at a mean velocity U between plates of length I,
width b, and gap h held at voltage V.

where co is the perrnittivity of the free space. The factor
p represents the dipolar distortion of the field surround-
ing the particle, and for a spherical particle takes the
form

an electrical model for the valve which is of practical use
to control engineers [8]. For small voltage changes on a
steady background bias voltage we found that the valves
have electrical characteristics described by the circuit of
Fig. 2. However, as we discuss in more detail in Sec. III
larger voltage changes invoke the nonlinear nature of the
ER conductivity, and the model requires some
modification. In addition, there is a small coupling effect
between the pressure and current, apparently mediated
by transient fiow-rate changes, that is described in our
earlier work [9]. Analysis of the valve pressure response
has shown that traveling waves in the associated pipe-

FIG. 2. Equivalent electrical circuit for the valve system. In
the nonlinear analysis, resistance R, is replaced by a nonlinear
conductivity coefficient =, and resistance R, is replaced by g
(see Sec. III).

Ep Cf

E~ +2CI
(3)

This factor is basic to ER theory. It arises from the con-
straint that the component of the electric displacement
vector D, perpendicular to the particle surface, must be
continuous at the boundary on passing from one dielec-
tric medium to another. The dipole-dipole interaction
potential between two such particles (separation r),
aligned at an angle 8 to the field, may be written

(3cos 6I —1),
4wcocf r

(4)

and the interaction force is obtained by differentiation. If
we assume that the structure of a static ER Quid is dom-
inated by chains aligned along the field direction, that the
particles within chains are initially touching, and that in-
terchain interaction is negligible, then an approximate ex-
pression for the yield stress So is [6]

So ——', QA(1+y )cocf(PE )

where i' is the particle volume fraction and A, is a
geometric factor, numerically about 0.45, which deter-
mines the point on the stress to strain curve where chain
breaking occurs. It is well known that the dipole-dipole
interaction force is valid only for polarizable spheres
separated by more than a diameter, and that for closer in-
teractions the force is considerably higher [6,13—15]. In
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cT'(co) = 'c(r)co+jo"(co),

and in general the representations are related by

(7)

Eq. (5) this deficiency is addressed in an ad hoc manner

by the factor g which represents the extra force at parti-
cle contact compared to the point dipole model. Corn-
parison of experimental yield stresses with Eq. (5) sug-
gests that this factor may be as high as 200, while for the
pure dipole-dipole interaction it vanishes. In deriving
this expression it is notable that the dependence of force
on particle size is balanced by the opposite dependence of
chain density, with the result that the electrostress is in-
dependent of particle diameter. This is strictly true only
for the relatively large particles (&10 m) currently
used to manufacture ER fluids. For smaller particles
Brownian motion can disrupt the structure on relatively
short time scales, and should be considered [16]. Expres-
sions containing P have commonly been used in represen-
tations of the interaction forces and stresses appearing in
ER fluids. However, the frequency dependence and com-
plex nature of P have usually been neglected. This may
be a gross oversimplification, especially at low frequency,
if a measurable conductivity is present in either particles
or fiuid [17].

The relative permittivity represents the polarization
response of a material to an electric field, and is in gen-
eral a frequency-dependent complex variable s'(co) indi-
cated by the asterisk:

s'(co) =s'(co) —js"(co),

where we have adopted the normal sign convention [18].
An equivalent representation can be made in terms of the
complex conductivity cr '(co }

s"(co) represents the transient current that is drawn when
a capacitor filled with that material is charged. Real
dielectric materials may also have an appreciable dc con-
ductivity which can be included in this formalism as an
additional imaginary component:

os
s*(co)=e'—j s"+

COE,p

(10)

where cr, is the zero-frequency conductivity. Including
the relaxation term of Eq. (9) explicitly, we have

JCOEpED
0*(co)=cT, + . +jcosos„.1+jcov

(12)

We will use Eqs. (11) and (12) to model the dielectric
behavior of the materials composing ER Quids.

III. CURRENT RESPONSE

A. Experimental results

The operation of devices using ER fluids requires large
electric fields of the order MVm '. Our studies of ER
valves [8] have shown that the steady-state current densi-
ty i drawn at field E is given by

Os CDs'(co)= . + . +s„,
JNE, p 1+Jc07

where sD=a, —s„. Applying Eq. (8) to (11) we can ob-
tain an equivalent expression for the frequency-dependent
conductivity:

cr'(co) =jcosos'(co) . (8) i =:-(E Er), E &—Er, i =0, E &Er, (13)

E E
s'(co}= . +s„,1+jcov.

(9)

where c, is the static dielectric constant and c„ is the
high-frequency (optical) limit. In fact, this expression has
much wider application than its original derivation would
suggest [18]. The imaginary part of the permittivity

The polarization of a material may proceed on several
time scales according to the contributing physical pro-
cesses. These may include a high-frequency component
related to fast electronic processes often termed the opti-
cal polarization since it can be related to the refractive in-
dex. Other processes, e.g., particle reorientation and ion
transport, may contribute to the polarization at lower fre-
quencies. Debye originally introduced an expression with
a single relaxation time ~ to account for reorientation res-
onances [19]:

where = is a nonlinear conductivity parameter indepen-
dent of valve dimension with units A V, and ET is a
threshold field strength that depends on the flow rate.
The combined results for all valves [8] gave a roughly
linear dependence:

ET=Ep+BU, (14)

with Ep-0. 1 MVm ', B-0.4 MVm s, and U is the
mean flow velocity through the valve in ms '. For a
large step in the field (1—4 MVm '), which typically
occurs when a valve is activated, the resistors R, and R2
in the electrical model shown in Fig. 2 must be replaced
with nonlinear elements = and g following Eq. (13}. The
current in the resulting circuit can be solved [8] to give a
good representation of the current response iH(t), to a
step in the field strength represented by the Heaviside
function H(0}: H(t —t') =0 for t & t' and 1 for t & t':

(sos )
iH(t) =(E ET ) [:"—:-„exp(—t /r„)]+ — H (0}, E & ET

[g(E ET)t +sos ]— (15)
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where " determines the limiting steady-state current, g is
related to the maximum current drawn in the initial
response and is defined analogous to =, and c. is the
efFective relative permittivity of the Quid mixture. In
terms of the circuit in Fig. 2, this is related to the capaci-
tance C (which, within the accuracy of the determination
[8], is almost invariant with field) by a scale factor ob-
tained by treating the valve as a parallel plate capacitor
with gap h and surface area A:

h=C—.0 rn

0.8

0.6—

0.4-

0.2', - o

o

A

e
vo &v

0.5 1.5
%e quote values of c. obtained in this way from our re-
sults [8] in Table I. Equation (15) also includes a relaxing
term to account for the long-time drift in current prob-
ably associated with dynamic structural relaxation. The
"structural" time constant ~„ is between 3 and 10 ms,
and is associated with the parameter =„defined in an
analogous way to =. Equation (15) gives an excellent
description of the observed response, although in practice
a further adjustment must be made to include coupling
with the mechanical response of the system thought to be
related to the fiow rate [9].

For small field steps AE imposed on a steady system at
field E, the current response can be approximated by a
linearized form:

Ai (t, E)=26,E(E —ET)[:-—:"„exp( t/~„)—
+(exp( t/r, )]H(0—) . (17)

Neglecting the slowly relaxing "structural" term, Eq. (17)
corresponds to the response of the linearized circuit in
Fig. 2, and the time constant r, represents the charging
time for the capacitance C through the resistor r In.
terms of the nonlinear conductive element g, this be-
comes

o&m

2$(E ET)— (18)

Mean response times obtained at two applied field

strengths are given in Table I, and in Fig. 3 they are plot-
ted to show the dependence on Qow rate. The parameters

and g may show some field dependence themselves,
but any variation is lost in the experimental error of our
determination.

Making the assumption that a large step response can
be represented as a series of superimposed smaller steps,
we find that the nonlinear response given in Eq. (15) can
be represented reasonably well by a sum of linearized
terms:

(U) ( ms-i)

FIG. 3. The electrical relaxation time w& plotted against the
mean fiow rate ( U). , valve A. 6, valve B o, v. alve C. 0,
valve D. V, valve E. Empty symbols: E=2.4 MVm ', filled:
E =1.2 MVm

iH(t)= g bi(t, Ek), Ek+)=Ek+hE, Eo=ET .
k=0

(19)

A comparison between this summation representation, a
single linear term, and the nonlinear response is shown in
Fig. 4. In practice there is little change in the summation
results for n & 10. This procedure is not strictly valid for
a nonlinear system; nevertheless, it does give moderate
improvement over the use of a single response time and is
retained in the interests of generality and in recognition
of the nonlinearity that appears under the operating con-
ditions for which our results have been obtained. It en-
ables us to represent the nonlinear response approximate-
ly as a sum of linear terms with a range of time constants
determined by Eq. (18). Other methods of obtaining the
distribution of time constants for related models are dis-
cussed by Daniel [18].

If g (r) is the response of a system to a step function, we
can obtain the response to a unit impulse by
di8'erentiation and then obtain the frequency response by
one-sided Fourier transform [20]:

g'(co)= J —g(t)e ' 'dt .
o dt

(20)

Equation (17) can be transformed to the frequency
domain to give an expression for the frequency-
dependent conductance at 5eld E, and since the conduc-
tivity cr (t,E)=hi Ib E we obtain

TABLE I. Experimental values obtained for electrical parameters (Ref. [9]). s (eS is obtained from

Eq. (24).

(Mv m-')

1.2
2.4

(Expt. )

19.2+5.6
13.6+2.3

c.p (efF)

50.5+18.6
31.8+7.7

1.47 x 10-'
3.1x 10-'

(mA MV )

291+114
202+115

6.4X 10-'
9.3x10 '

~, (Expt. )

(ms)

0.4+0.2
0.21+0.14
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1.5

0.5

0
0 0 5 1.5

t (ms)

J60%1 JC07 st
(21)

FIG. 4. Comparison of the nonlinear electrical model Eq.
(15) with best-fit single relaxation time Eq. (17) ~

and the summation approximation Eq. (19) ———with n =20
steps.

our capacitance measurements would suggest, and may
indicate the existence of alternative polarization mecha-
nisms. In particular, the existence of lithium ions in and
on the surface of the particles will lead to a charged dou-
ble layer that can augment polarization [5,24]. However,
we note that Marshall, Goodwin, and Zukoski [25] did
not observe such a discrepancy when they made a similar
calculation for their system. Furthermore, our valves
were not calibrated as capacitance cells, and absolute
values of the capacitance must therefore be regarded with
some caution.

The experimental nonlinear parameter g is related to
the maximum current drawn in the initial response, while
the steady-state current is characterized by =. The latter
can be related to the steady-state mixture conductivity
0. , which again we express in terms of the component
conductivities by a mixture model

cr =go +(1 P)c—rf . (25)
where

o =2:-(E Er}, —cr, =2)(E Er), —

o „=2:-„(E—Er )
(22)

&0m
(23)

are field-dependent conductivities. The experimental
time constant in Eq. (18) can now be written

For the series of valves studied [8,9] we obtained a value
of:-=67 mAMV, giving values for 0. at low and
high fields (Table I). Since the base Quid conductivity is
negligible [25] (of-8X10 ' 0 'm '}, Eq. (25) then
leads to an estimate of the particle conductivity o

p (Table
II). This turns out to be close to values of o „and by
analogy with Eq. (23) we might therefore write the parti-
cle polarization time as

'r
P

&0&m
(26)

B. Theoretical current resyonse

Many expressions have been derived for the dielectric
constant and conductivity of heterogeneous mixtures in
terms of particle and fluid parameters [21]. These expres-
sions generally relate to randomly dispersed systems
whose structure is not disturbed by the probe field. The
situation for ER fluids is of course considerably compli-
cated by the interaction of the field and structure. In the
interests of mathematical simplicity, while retaining an
element in the model to describe the principle, we adopt
the simplest first-order approximation of a mixture model
[22,23]:

s =Pap+ (1—P }sf, (24)

where P is the volume fraction which for our experiments
is 0.3. In fact this expression is appropriate for a capaci-
tor whose plates are filled with fibers stretching from
plate to plate [24] and may therefore be more appropriate
to the case in hand than more complicated expressions.
According to manufacturers' data the relative permittivi-
ty of the suspending fiuid at 30 C was 5.8. Combining
this value with our experimental results for c. given in
Table I, Eq. (24) gives an estimate of the particle static
dielectric constant c, (efl') between 32 and 50.

The dielectric constant of water is 76.5 at 30'C [24],
and particles in our system have an absorbed water con-
tent of approximately 15/o. Taking the dielectric con-
stant of dry lithium polymethacrylate to be 3.5 [25], a
straightforward linear sum gives a particle dielectric con-
stant c of about 14. This is a much smaller value than

This expression gives values within the experimental er-
ror of the average measured electrical response time ~& at
each field strength (Table II). It must be said that the
justification for the identification of 0 with 0.

&
is entirely

empirical at this stage, and it would be interesting to see
if it still applies at diS'erent volume fractions. Applying
Eq. (11},for the particle permittivity we can now write

~P ~P ~Psp(co)+(1+}+sp (27)

TABLE II. Values obtained from Eqs. (25), (26), (34), and
(37) with e, =14, e&=5.8, and /=0. 3.

(MVm-')
0'p

(Q 'm ')
1p c mw

(ms) (ms) (ms)

1.2
2.4

4.9 X 10 0.35 0.46 0.76 13.2
10.3 X 10 0.12 0.22 0.36 13.2

8.3
8.3

where s „ is the high-frequency limiting permittivity of
the particle. For water [24], a „-4.5, and for
polymethacrylate we assume the static value of 3.5 holds,
giving c „-4.2 by a volume average calculation.

It is not appropriate to treat the base fluid in the same
way as the dispersed phase, and in any case applying a
similar expression would give very long polarization
times due to the low fluid conductivity. We include only
conductive processes, and assume a rapid polarization of
the fluid by molecular mechanisms so that



5254 %'HITTLE, BULLOUGH, PEEL, AND FIROOZIAN

JCOED 1 +J COVp

+(1—P) . +Ef„
JQ)CO

(29)

which, by Eq. (8), we can write as

JCOEp(Ep Ep~ )o' (co)=[tI}cr +(1—P)o ]+/ (1+jcow )

+jCOEP[ljkEp + ( 1 tI'l)Ef ]

Putting

(30)

Tp&p l oPEO(Ep Epm ) ~ (31)

where o ~& is a conductivity associated with the dielectric
polarizati. on current

JC07

+m ~ +m +pol (1+
+jCOEO[pE „+(1—$)Ef„] . (32)

We do not expect to be able to account for a structural
relaxation term with this model, and if we identify 0. ,&

with 0.
&, and ~ with ~„ then the first two terms of Eq.

(32) are identical to the linearized form of the experimen-
tal frequency response Eq. (21). As we have seen,
o &-o.~, and we can therefore replace 0. ,&

with 0, al-

though whether this is generally true must wait for fur-
ther experimental confirmation. Both the real and imagi-
nary parts of cr (co) are positive, giving a positive phase
angle between the current and voltage. This is experi-
mentally confirmed by steady-state-biased sine experi-
ments which show that current leads the voltage over the
frequency range studied ( (200 Hz).

Expressed in the time domain as the response to a step
at t =0, Eq. (32) then becomes

cr (t)= [o +o pexP( t Imp )]H(0)—
+Eo[PE „+(1—P)Ef„]5(0) . (33}

The high-frequency components c „and c&„are ex-
pressed as a delta function 5(0) at zero time, and will not
be recorded in our time domain experiment [18]. If we
remember that the slow structural term is not included in
Eq. (33), this expression can be compared with the linear-
ized time domain response Eq. (17). Notably, the in-
clusion of the particle polarization term in Eq. (27) is
necessary to explain the initial current response and the
inclusion of a direct current term [17) as the only contri-
bution to the imaginary part of the particle permittivity
is insufFicient.

Ef(CO)= +Ef„JCOED

where c&„ is the high-frequency limiting permittivity of
the base Quid, assumed equal to the static value.

By combining these expressions using Eq. (24), we pro-
pose, as a working hypothesis, that the dielectric frequen-
cy response can be described by

Nevertheless, for a system which includes only dielec-
tric and conductive terms, Anderson [17] describes the
transition from capacitance- to conductance-dominated
polarization regimes with a "crossover" time constant ~,. :

2Ey+ f
~c =~O

20y+Op
(34)

Since O.I is negligible, this expression is similar to Eq.
(26), but replaces E [Eq. (24)] with 2Ef+E . With
c. =14 as calculated according to the particle-water con-
tent (see above), Eq. (34) gives times rather longer than r
that compare more favorably with our experimental
times (Table II). However, if the particle relative permit-
tivity is set to E (eff), then values of r, are well in excess
of our results.

In the Maxwell-Wagner polarization model, charge
builds up at the particle-Quid interface as a result of
dielectric and conductivity mismatch. This mechanism is
often proposed to account for ER phenomena [26]. The
relaxation equations for this process take the form of the
Debye expression Eq. (9), with E„E„,and r calculated
according to the dielectric parameters [21,24]

2Ef +Ep+2$(E —Ef )

f 2Ef+E —P(E —Ef)

(2o f + Cr
p }(E —Ef )

—(2Ep + Ef )(Crp CTf )
E~

=3$o'f
[2Crf +cr —P(O —Of )]'

2of+o +2/(crp —
crf)

+Fyf 2of+op —
P(op

—of }

2Ef +E P(Ep
—

Ef )—
~Mw =0'2ef+v, y(~p ~f )—

(35)

(36)

(37)

The Maxwell-Wagner relaxation times vMw calculated
from this formula, using c =14 as estimated from the
particle water content, are just outside the experimental
error for r, (Table II) and rather longer than r and r, .
For low volume fractions we note that the Maxwell-
Wagner time is identical to the crossover time Eq. (34).
Estimated values of c., are comparable to c but do not
reQect the field dependence. Also, despite the incorpora-
tion of nonzero values for o and 0.

&
the Maxwell-

Wagner model does not include the direct current term
introduced in Eq. (10) and therefore predicts vanishing
conductivity at zero frequency. This apparent contradic-
tory result is a consequence of the Debye form [Eq. (9)] of
the Maxwell-Wagner expression which has the transform
Eq. (12}with o, =0. Schwann et al. [27] have previously
been unable to account for the low-frequency dielectric
behavior in electrolyte dispersions of polystyrene spheres
using the Maxwell-Wagner model. Schwarz [28] included
an extra term derived from polarization of the counterion
atmosphere to explain the results. In the ER system
studied here there is clearly a direct current term present
at long times (or low frequency), and this contribution in-

creases quadratically with field [Eq. (13)]. The detailed
mechanism of current conduction in ER Auids is not
clear, but in view of the high volume fractions and
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structural modifications that take place we may envisage
that the counterion polarization introduced by Schwarz
may form bridges between particles forming conduction
pathways through the Quid.

To summarize, using expressions based on Eq. (11) to
describe the particle and fluid relative permittivities, and
combining them using a simple mixture model, we obtain
the frequency and time domain representations Eqs. (32)
and (33). These expressions contain terms that can be re-
lated to Eqs. (17) or (21) which directly describe the ex-
perimental response. The expressions for ~ and ~, give
results which agree favorably with the experimental
current response, while ~Mw is a little long. Finally, the
Maxwell-Wagner model is unable to account adequately
for the low-frequency behavior of the permittivity, at
least partly because it does not include a dc conductivity
component.

10

5
(9

C44

Q
0 0.005 0.01 0.015

FIG. 5. The predicted time domain pressure response [11]for
an ER valve in the absence of associated pipework . Com-
pared with the experimental response ———.Valve length,
0.1 m; width, 0.362 m; gap, 0.5 mm, How rate, 9 L min ' and
E =2.4 MVm

IV. THE RHEOLOGICAL RESPONSE

A. Experimental results

The operation of electrorheological devices can often
be linked, through the Bingham expression Eq. (1},to the
appearance of yield stress. For example, in ER valves the
relation between the steady-state ER pressure change
hP, and the yield stress is well known [29], and can be
approximated by the linear expression

hP, 3SO

I
(3g)

$ ( t)=$o t exp( t l~), — (39)

with a time constant ~-0.35 ms fitted on an empirical
basis to account for the results. The model enables the
prediction of the pressure response for an ER valve con-
nected to the circulatory system by short pipes to mini-
mize the interference from elastic waves, and the result is

where l and h are the valve length and electrode gap.
The yield stress So appearing in this equation may be re-
lated to the dielectric mismatch factor P via Eq. (5). The
latter was derived for a static ER Quid excited by an elec-
tric field prior to the imposition of a shear Qow, and its
application to a system flowing before the field is applied
must be regarded with some caution. Equation (5) never-
theless suggests that there is a direct relation between the
pressure appearing in an ER valve and the factor P which
is in turn related directly to material properties. This re-
lationship may be expected to extend to the frequency
domain, although here other contributions must also be
involved such as the time required for structural reorgan-
ization to take place.

We have previously described in detail some experi-
rnental results for the step voltage pressure response in an
ER valve [10,11],and an example of the time domain step
response is shown in Fig. 5. Using a multielement
lumped parameter model we were able to show [11]that
the oscillatory behavior between 2 and 6 ms originates
from traveling elastic waves in the system pipework.
This model included a hypothetical ER response of the
form

shown in Fig. 5. The initial delay seen in the experimen-
tal data can also be attributed to the system [11]. In Fig.
6 the experimental data are transformed using Eq. (20} to
the frequency domain. This highlights the oscillatory
contributions as peaks, and also compares the
transformed response with data obtained directly in the
frequency domain from steady-state-biased sine experi-
ments. The biased sine voltage input here was relatively
small (the sinusoidal field amplitude was typically -0.1
MV m ' on a dc bias of 2.4 MV m '), and the resulting
output is in the linear-response regime.

B. Theoretical rheological response

In the static Quid, according to the model we are con-
sidering, the ER phenomenon is initiated by particle po-
larization which takes place on a time scale ~ . It is a
common observation that the faster the Qow rate imposed
the more rapidly ER devices can respond [1]. This sug-
gests that for Couette flow we could write formally

$ =f (E,y, «), (40)

10.

S 0
C44 —5

—10
0 500

f (Hz)

1000

FIG. 6. Experimental step input pressure response (condi-
tions as in Fig. 5) transformed to the frequency domain; real

and imaginary ———.Compared with biased sine input
results: real, ~; imaginary, o.

where ht indicates the time between switching on the
electric and shear fields. Equivalently, we may say that S
depends on the frequency of both field and mechanical
oscillations. If we consider for the moment a hypotheti-
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cal system where polarization is instantaneous, there will
be a corresponding change in the interaction force lead-
ing to some immediate change in the rheological proper-
ties of the fluid, which is not necessarily suScient to man-
ifest as a yield stress. This will be followed by further
rheological changes as the particles take up positions of
minimum energy. In a moving fluid this corresponds to a
reorganization of the dynamic structure that may take
place over several time scales [6], and is expected to be
field and flow rate dependent. Even for the ideal case of
instantaneous polarization the appearance of yield stress
or the increase of effective viscosity is subject to a
response time associated with structural reorganization.
For the present case simulations suggest that structural
time scales between 0.1 and 5 ms may be expected.
Values of r„-(3—10 ms) are obtained in fitting the
current response, and may correspond to relatively large
scale cooperative changes. An attempt [11] to incorpo-
rate the notion of structural changes is embodied in Eq.
(41), which for long time scales reduces to the Bingham
constitutive equation [Eq. (1)]:

S ( t }=So [ 1 —exp( Ey t) ]+—tlat' . (41)

c.'(co) —ef'(co )
p" (co)=

E'(co ) +2ef'(co )
(42)

In this expression, the yield stress changes smoothly from
zero to So as a function of the strain y =y t with a time
constant (Ej'} '. Equation (41) was designed to describe
fluids excited in an initially static state when K =SolG,
with 6 the shear modulus. In this case the formula
expresses the idea that particle chains formed before any
flow must be stretched under the strain y before they
break leading to yielding. The situation for a fluid which
is already flowing before the electric field is applied is
different. Nevertheless, to offer an explanation for the
observed reduction in response time with flow rate, it is
conceivable under these circumstances that particles are
"helped" into dynamic equilibrium rather earlier by their
motion in the velocity field. Such a mechanism might
also be represented by Eq. (41), although the value of E is
likely to be different.

If the fluid is treated as a continuum, there is an addi-
tional viscoelastic response time which refers to the rate
of change of the velocity profile across the valve as the
fiuid changes character. In the type of ER valve we are
considering, a range of flow rates exists, and this analysis
is complicated. However, simulations that we have car-
ried out [11]for the valve system using Eq. (41) suggest
that the overall contribution from this viscoelastic pro-
cess is relatively fast at about 0.015 ms. These considera-
tions suggest that the basic frequency response of the in-
teraction force as determined from a polarization model
should be combined with further response times related
to particle movement and the viscoelastic response.

%'e turn now to the implications of a frequency-
dependent permittivity on the rheological response. This
appears through P in Eq. (5). Following the prescription
which proved successful in describing the current
response, we introduce Eqs. (27) and (28) for the particle
and fiuid permittivities into Eq. (3):

A similar approach was taken some years ago by Furedi
and Valentine [30] to account for pearl chain formation
in related systems. They used a model similar to
Anderson's [17]and did not incorporate a separate polar-
ization time which, as we have seen, is necessary to ac-
count for the observed current response. In terms of the
simple theory [6] described briefly in Sec. II, the shear
modulus Go can be written

dS
Go = =—', $(1+y)eoef (PE) (43)

S(t)= G~(t—)+riy . (44)

The analytical expression for P' incorporating Eqs. (11)
and (12) is unwieldy, and we resort to computing its fre-
quency dependence, assuming through Eqs. (43) and (44)
that it forms the basis for the rheo1ogical response. In
Figs. 7(a) and 7(b) we examine the behavior of P' for a
single polarization relaxation time ~z, and compare the
result with the responses obtained for the cases of a van-
ishing ~ and for zero particle conductivity. In these
figures we have neglected o.f and used a rather low parti-
cle conductivity of 0. =10 0 'm ' to highlight its
effect on this frequency scale. We have also assumed here
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FIG. 7. {a) The frequency dependence of P [Eq. {42)]: real

components. cp 14 cp 3 0'f 0 and Ef 3.
cr~=1X10 Q 'm ' and v =0.3 ms. ———,o =1X10
0 m and s =O. - . . - e =Oand s =0.3 ms.

—l —1

P 7 P p e ~

op =0 and r~=O. {h} The frequency dependence of P ' [Eq.
(42)]: imaginary components. Conditions as in {a).

from which comparison with Eq. (5) gives So=(A/2)Go.
Substitution of Eq. (42} gives an electrical contribution to
the complex shear modulus GE(jto) in terms of P* and
thus the yield stress becomes a complex function. If the
structural response is suSciently fast, we may expect the
total stress to be dominated by this electrical contribu-
tion, so that



49 DEPENDENCE OF ELECTRORHEOLOGICAL RESPONSE ON. . . 5257

P' (a),E)= g P' (co,Ek, bE),
Ic =0

(45)

where P (co,Ek, b,E) is calculated from Eq. (42) using
Eqs. (27) and (28} with appropriate particle conductivities
at field Ek estimated from = on the basis of Eq. (22). The
polarization time constants are calculated from the ex-
perimental relation Eq. (18), but Eq. (26) could be used
with little error. The final result is shown in Fig. 8 and is
not very different in shape to that obtained using a single
conductivity and relaxation time from Table II. As we
have already discussed, the crossover and polarization
components cannot be resolved by eye.

If it is accepted that the peaks in the experimental
spectrum are due to oscillations in the system pipework,
then it can be seen that our present theoretical result is a
reasonable form far the underlying rheological response,
and correctly predicts the sign of the imaginary part
which determines the direction of the phase shift.
Steady-state-biased sine experiments have shown that the
pressure lags the voltage while the current leads below
200 Hz. Our experimental work [11],described briefly in
Sec. IVA, introduced a critically damped second-order
response [Eq. (39)] as a model for the ER stress, which in

that the high-frequency limits c „and cf„are equivalent
and therefore cancel, thus ignoring any instantaneous
response from this mechanism. The model commonly
used to represent ER fluids is purely dielectric with in-
stant polarization (o =O, r =0) and results in a flat fre-

quency response for P with magnitude of -0.3 given by
Eq. (3). With o =0 and the inclusion of a polarization
time r~, the same value of P' is attained only at low fre-

quency. For nonzero o. with ~ =0, it can be seen that
the efFect of particle conductivity is to increase P' to
unity at zero frequency which is significantly above the
static dielectric expectations. The crossover relation
from dielectric- to conductivity-dominated polarization
[17] is evident at low frequency r, =0.885 ms [see Eq.
(34)]. In this case the finite limiting value at high fre-
quency is the result of instantaneous polarization (rz =0}
associated with c, since the optical components have
been chosen to cancel. If instead ~ is chosen to be very

long with nonzero o.~, then the high-frequency contribu-
tion vanishes (not shown in the figure). The inclusion of
the polarization term with an intermediate time constant

comparable to ~, further modifies the high-frequency
response with attendant consequences for the short-time
behavior. For this choice of parameters the resulting
composite relaxation can evidently be resolved by eye
into the crossover and polarization components. For the
particle conductivities estimated for our system (Table II)
the crossover and polarization times are closer and the
components not so easily resolved.

For large voltage steps we found that an approximate
model for the current response could be constructed by
summing the linearized model over a series of smaller
steps. In an attempt to get as close as possible to our ex-
perimental situation, we adopt the same approach here
and calculate the frequency response of P' for a field

step as a sum of linearized terms:

0.5
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FIG. 8. The frequency dependence of P ' obtained by the
summation Eq. (45) with n =20 aud r~ =r& =0.21 ms, from Eq.
(18) cTp 10 3 X 10 0 m Bp 14 E'rp 4 2
elf 8 X 10 ' 0 ' m ', and cf„=7.3; real ~ ~ and imagi-

nary ———.; Compared with the experimental normalized
pressure response EP, (jco)/EP, (0) (as in Fig. 6); real and
imaginary ———.

the frequency domain takes the form

T„'(jai) = 1

(1+juror)"
(46)
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FIG. 9. Normalized spectral densities for the experimental
pressure (as Fig. 6) bP, (jco), theoretical response

P ———as in Fig. 8, aud T2(j co) [Eq. (46)] with r=0.35 ms

with n =2. This function is shown in Fig. 9, where we
compare normalized spectral densities (obtained by mul-

tiplying the complex spectrum by its conjugate) of the ex-
perimental pressure, the theoretical response, and a
second-order response with ~=0.35 ms. The low-
frequency cusp in the experimental data is well represent-
ed by P', but this feature cannot be reproduced by the
second-order function. In the time domain this cusp cor-
responds to a slowly increasing component which has
usually been attributed to slow structural behavior. The
present model suggests that conduction processes may
also contribute. We note that the real part of the theoret-
ical response shown in Fig. 8 becomes negative beyond
—1000 Hz, which cannot be matched by a first-order
function [n = 1 in Eq. (46)].

To make a more direct comparison with our results,
Fig. 10 shows the theoretical response function for P'
transformed to the time domain by the inverse of Eq.
(20), superimposed on the normalized pressure response
for the appropriate field strength to which it is related
through Eqs. (5) and (38). The low-frequency cusp in P»
transforms to a slow upward drift which is reflected in



5258 WHITTLE, BULLOUGH, PEEL, AND FIROOZIAN

1 5

f

cd

0.5
C4 0"

0
I t

0.005 0.01
t (s)

0.015

FIG. 10. Time domain response of P ', obtained from
the frequency response in Fig. 8 compared with the experimen-
tal pressure response (normalized to unity at t =1.5 ms) to a
step voltage input for an ER valve ———.Conditions as in

Fig. 5.

the experimental pressure. This figure should be com-
pared with Fig. 5, which shows the expected pressure
response with effects due to the system effectively re-
moved. A good comparison is also obtained for lower
values of the field strength, where the response time is
somewhat slower.

Since we have used response times ~& based on electri-
cal data to calculate P', we have efFectively linked the
rheological and current responses via a polarization mod-
el. We argued earlier in this section that further response
times related to initial particle movement and the visco-
elasticity should be combined with the polarization
response to give the final ER response. The comparison
between the observed pressure and theoretical rheological
response is so good that we are led to suggest that in this
case such contributions are minimal. This concurs with a
viscoelastic response time [11] of 0.015 ms obtained in
simulations for our valve geometry, and according to Eq.
(41) the presence of high shear rates (which may be up to
20000 s ' near the valve wall) in this system can lead to
very rapid rheological changes once electric forces are es-
tablished. Nevertheless, other slower structural processes

may be present that could modify the response on longer
time scales.

V. CONCLUSIONS

We have used an electrorheological model involving
the conductivity and a single polarization time associated
with the particle to account for the experimental current
and pressure responses in ER valve systems. We find that
the inclusion of a polarization term is necessary to ex-
plain the observed current response. The Maxwell-
Wagner model predicts response times rather longer than
those observed in an experimental ER valve system, and
it is unable to account for the low-frequency behavior of
the permittivity. We have applied the same model to ex-
amine the consequences for the rheological response.
The inclusion of a conductivity term increases the
theoretical maximum possible yield stress compared to
static dielectric models by a factor of at least 2, and also
introduces a frequency dependence. The magnitude of
the particle conductivity strongly influences the expected
response time in the fluid mechanical properties. The in-
clusion of a relaxation time for polarization further
modifies this response at high frequency and short times.
The analysis involves neglecting the slow (probably
structural) relaxation seen experimentally, but it shows in

principle the link between the electrical and mechanical
responses.

This model can form the basis for more comprehensive
simulations of ER fluids in the future, leading to a better
understanding of the relations between fluid materials
and ER response times. It requires validation with other
experimental results and other fluids, but further study of
this model may go some way toward explaining why the
correlation between ER fluid activity and simple dielec-
tric mismatch is rather poor [31].
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