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Reaction-diffusion systems in open-flow heterogeneous reactors are known to yield different instabili-
ties and exhibit complex spatiotemporal dynamics. A particular mechanism leading to such behaviors is
suggested here. Differential convection and differential diffusion can simultaneously induce instabilities
at separate bands of wave numbers in an extended system where an activator-inhibitor reaction is taking
place. The nonlinear interaction of these modes is shown to generate complex patterns with two
different characteristic wavelengths and irregular temporal behavior in a distributed reactor for condi-
tions at which a well-mixed reactor would exhibit no instability. The regions in the parameter space for
two model kinetics where such patterns should exist are predicted a priori by normal form analysis of the
relevant amplitude equations and validated with numerical simulations of the full partial differential
equations. This mechanism for complex spatiotemporal behavior in open-flow reactors is expected to ex-
ist for many chemical reactions, including nonisothermal ones.

PACS number(s): 47.20.Ky, 47.54.+r, 82.40.Bj, 82.40.Ck

I. INTRODUCTION

Spatially inhomogeneous patterns and irregular chemi-
cal oscillations are examples of complex spatiotemporal
behavior exhibited by reaction-diffusion systems. The
homogeneous steady state of a class of reactions, the
activator-inhibitor systems, is known to exhibit more
than one mode of instability. In addition to spatially
homogeneous oscillations due to kinetic instability, spa-
tially inhomogeneous patterns can be excited in such sys-
tems when the two species are not free to “move” with
the same velocity along the reacting medium. Turing [1]
was the first to show how a difference in the diffusivities
of activator and inhibitor can destabilize the homogene-
ous steady state, resulting in a spatially inhomogeneous
steady pattern. Almost four decades passed before a suc-
cessful experimental confirmation of Turing’s prediction
was achieved [2]. This has spurred new interest in this
nonequilibrium phenomenon induced by a coupling be-
tween diffusion and kinetics. Recently, Rovinsky and
Menzinger [3] showed how such homogeneous steady
states of activator-inhibitor systems can also be destabi-
lized by a difference Av in the convective velocities of the
two species. The resulting “convective” instability pro-
duces a traveling wave, which was soon obtained experi-
mentally using a cation exchanger that immobilizes one
of the two species [4]. While the Turing instability can
take place only if the activator diffuses slower than the
inhibitor, the convective instability can arise whenever
there is a difference in the convective velocities, thus
making the differential-convection-induced instability
easier to observe than the Turing one.

In general, if the reaction is placed in an open-flow
heterogeneous reactor, the different affinity of the species
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for the phases results in different effective convective ve-
locities, an effect which is used for separation purposes in
chromatographs. In fact, the possibility of inciting insta-
bility by differential transport in an open-flow reactor has
important implications for a far larger class of reaction
systems than those that exhibit isothermal chemical in-
stability. For example, activator-inhibitor kinetics are
encountered in nonisothermal reaction systems, where an
exothermic reaction with sensitive Arrhenius type tem-
perature dependence can cause the temperature to act as
the activator, while a reactant may act as the inhibitor.
(Increasing the temperature increases the temperature
“production rate,” while increasing the reactant concen-
tration increases the reactant consumption rate.) Due to
the difference in effective thermal and mass transport
properties in an open-flow heterogeneous reactor, the
same linear instabilities found in isothermal activator-
inhibitor systems are expected to be common also in non-
isothermal systems with simple kinetics. Indeed, thermal
traveling waves and regular patterns have been reported
in numerous studies, for example, in the latest experi-
ments by Lane and Luss [S], who clearly demonstrated
the existence of periodic thermal traveling waves, which
could be due to a differential-transport-induced instabili-
ty.

More complex spatiotemporal patterns are often ob-
served in heterogeneous chemical reactors [6,7], but they
cannot be understood with simple linear stability theory.
A route to complexity commonly encountered in hydro-
dynamical systems involves the nonlinear interaction of
modes with different wave numbers. The existence of
multiple instabilities, such as the convective and Turing
instabilities, immediately suggests the possibility of also
generating complex spatiotemporal patterns due to this
mechanism in chemical systems. A reasonable approach
is to seek small-amplitude waves generated by weakly
nonlinear interaction between two nearly neutral modes.
Guckenheimer [8] investigated the interaction of a steady
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Turing mode and a traveling wave whose wave number is
determined by the system size and suggested the ex-
istence of a heteroclinic orbit for the Brusselator model
and hence the possibility of chaotic behavior. Different
results were obtained recently by Rovinsky and Menz-
inger [9] who studied the interaction of a homogeneous
oscillatory kinetic instability, allowed by their no-flux
boundary conditions, and the Turing mode. They con-
cluded that a stable mixed mode (and the complex dy-
namics expected from its destabilization) does not exist in
a one-dimensional reactor for a few model kinetics, in-
cluding the Brusselator model. A mixed mode generated
by such Hopf-Turing interaction would have only one
characteristic wavelength, the one corresponding to the
Turing instability.

In this paper we demonstrate that in the presence of
differential convection and differential diffusion, the in-
teraction between a short-wave modified Turing mode
and a convective long-wave mode can generate mixed-
mode waves with two distinct characteristic length scales
and even irregular waves with chaotic temporal patterns.
The possibility of this more complex spatiotemporal
behavior occurs at low differential convective velocity Av
for which we show that differential diffusion and
differential convection can act separately at different
characteristic length scales to destabilize the system. A
codimension-2 singularity exists when a modified Turing
mode at wave number kz ~k, where k is the Turing
wave number, and a convective mode at small wave num-
ber k,~O(Av/V'K/D,), where Av is the differential
convective velocity between the activator and the inhibi-
tor, K is a characteristic rate constant for their reaction,
and D, is the diffusivity of the inhibitor, become neutral-
ly stable for the same kinetic parameters. With a small
but finite Av, both instabilities are of the Hopf variety
which gives rise to traveling waves. Interestingly, the in-
teraction of these waves in a distributed system generates
very complex behavior for conditions in which a well-
mixed reactor does not exhibit oscillations, viz., the
homogeneous kinetics is linearly stable. As Av ap-
proaches zero, k , vanishes and the convective mode ap-
proaches the homogeneous oscillatory kinetic mode,
while the short-wave mode becomes the Turing static in-
stability. We show that the complex wave dynamics still
survives in this limit although the convective length
scale, and with it some of the spatial complexity, is lost
from the pattern. This limiting result, which is in con-
trast with that of Rovinsky and Menzinger [9], is
confirmed with numerical integration. Different from the
finite differential convection case, linear oscillatory insta-
bility of the well-mixed system is necessary in this limit in
order to observe the complex behavior in the distributed
system. At large Av the characteristic wavelengths of the
two instabilities at the singularity become indistinguish-
able, resulting in a single traveling wave which is qualita-
tively identical to the one studied both theoretically and
experimentally by Rovinsky and Menzinger [3,4] in the
presence of the convective instability only. Consequent-
ly, the complex wave patterns due to our short-long wave
interaction mechanism only occur for small but finite
differential velocities, a condition that is generally
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satisfied in a chromatograph or a heterogeneous reactor if
the reactants have approximately the same affinity for the
solid phase. We study this interesting region by deriving
leading order estimates for the wave numbers of the two
instabilities and locating the singular loci in the parame-
ter space where both modes are neutrally stable. These
loci correspond to a double-Hopf singularity for finite Av
and approach a pitchfork-Hopf singularity for vanishing
Av. High codimension bifurcation theory is then applied
to derive the relevant amplitude equations valid in the
neighborhood of the loci and to investigate, through nor-
mal form analysis, the existence of stable mixed modes
and heteroclinic orbits. We finally validate the resulting
a priori predictions of the loci of secondary bifurcations
to such complex wave patterns for some model inhibitor-
activator kinetics with a numerical analysis of the full
equations.

II. THE EXISTENCE OF TWO COMPETING MODES

Consider the mass balance equations for a two-species
reaction-diffusion system:

dc, 5
‘Bt—'+V1‘VC1:fl(cl,Cz;r)+D1V Ci

(1)
dc, 5
—a_t_+V2'VC2=f2(C1,C2;r)+D2V Cy

where f; and f, contain the reaction kinetics which de-
pend on the kinetic vector parameter r. The transport
parameters are the effective diffusivities D; and D, and
the effective velocities v, and v,. The pseudohomogene-
ous model of (1) may be obtained, for example, by averag-
ing a complex heterogeneous system in which the chemi-
cal reactions take place in one of the phases and are ab-
sent or at equilibrium in the other phase. Hence the
transport properties are effective in the sense that they
may correspond not to the molecular values in a single
phase, but to the proper average over the different phases
in the heterogeneous reactor. For example, v, and v, can
be effective convective velocities in a chromatograph,
which can vary depending on the affinity of the two com-
ponents for the substrate. In our analysis, we will restrict
ourselves to one unbounded spatial dimension. In this
case, we can always rescale the equation and carry out a
moving coordinate transformation, corresponding to a
Lagrangian frame moving at velocity v,, to reduce the
number of parameters, yielding

ac ¥ ac
—=f(c)+D— -—, 2
3t (c) Dag2 +V Y, )
where

(1 fi _ 5§ 0
c_cz’f—fz’D_()l’

v 0 Dl
=lo o) 8=-D—2, V=v, g .

In (2), scaling by the characteristic length /D, /K and
time scale 1/K has been carried out so that the normal-
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ized diffusivity of the second species is unity exactly. The
reaction rates f; and the components of the velocities in
the & direction v; also correspond to the original ones
scaled by K and v/ KD,, respectively.

The linear stability of the homogeneous steady state ¢,
which satisfies f(c,)=0, will depend on the eigenvalue
problem obtained by linearizing (2) around c,. For an
unbounded system the problem is translationally invari-
ant which allows a normal mode expansion of the vector
of deviation variables ¢’ =c —c, of the type

c'=xexp(—ik&+At) .

The relevant eigenvalue problem will then be Jx=Ax and
the Jacobian J will have the form

J=A—kD—ikV, 3)
where
any ap
A= aj an

represents the linearized kinetics governing the stability
to homogeneous perturbations. We shall show here that
two linear instabilities can coexist for small v such that
the growth rate associated with the real part of the more
unstable eigenvalue of J,

_ay +1122—(8+1)k2+[%(q2+p2)1/2+%q]'/2

R~ 2 ’

(4)
where
g=[aj —ayn—(8—Dk*P+4da,a, —k%?
and
p=2wk[a;;—ay,—(6—1)k?],

can exhibit two maxima as a function of the wave number
k. This will happen both in the Turing-Hopf case, where
there is no difference in the convective velocities (i.e.,
v =0), in which case the two critical modes are spatially
homogeneous oscillation and a steady (in the moving
frame of reference) Turing mode, and when there is a
difference in convective velocities which leads to two
traveling wave instabilities (see Fig. 1).

The region where the differential convection is small
can be conveniently studied with a perturbative formula-
tion of the eigenvalue problem. The Jacobian is written
J=J,+vJ,, where J;= A—k?D and

—ik 0O

J=1o0 o

and letting A=4,+vA,+0 (v?), x=x,+vx,+0(v?), we
can sequentially solve for the successive corrections to
the eigenvalues A; and eigenvectors x; by using the
Fredholm alternative technique for spectral perturbation.

At zeroth order, i.e., in the absence of differential con-
vection, the eigenvalue problem is J;xo=A¢x,. We recov-
er in this case the previously studied [9] Hopf-Turing
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singularity. The singularity exists if there is an intersec-
tion in the parameter space between the loci Hy and T
at which an oscillatory (Hopf) homogeneous mode and an
inhomogeneous Turing mode with wave number k;, re-
spectively, become critical. These loci and the critical
wave number k; have the following expressions:

(Ho): tr( A)=all +022=0 ) (Sa)
(@, +ayd)?
(To): a“azz_alzaZI_—%=o ’ (Sb)
,_antand
= 5
kT 28 ’ (5¢)

from which it can be seen that for the Turing mode to
coexist at criticality with an oscillatory homogeneous
neutral mode, we need to have a,; and a,, of opposite
sign, i.e., an activator-inhibitor system, and the diffusivity
of the activator smaller than that of the inhibitor. In the
remainder of the paper, we will assume these conditions
to be satisfied. In particular, we will stipulate a,; >0 and

Re(A) ke

Re(A) Ky Ke K
\/

X O<vev,,

(b)

Re(A\) K

FIG. 1. Growth rate vs wave number at the codimension-2
singularity for different values of the differential velocity v.
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a,, <0, viz., ¢, is the concentration of the activator and
¢, that of the inhibitor, and accordingly 6 < 1. At the in-
tersection locus we will have a (0,tiw,) singularity at
which the eigenvalues of J, will be purely imaginary with
frequency w, at kK =0, complex conjugate at low k, and
branching into two real modes at higher wave numbers,
the more unstable of which will lead to the Turing criti-
cal mode, as shown in Fig. 1(a).

At first order in v, we can obtain the effect of the pres-
ence of a small differential velocity on the locus and type
of the singularity. We are primarily interested in the
correction A, to the eigenvalues. Its general expression is

_ <11X0,io>

1 (6)

(Xo,io>

where X, is the adjoint eigenvector for the zeroth order
eigenvalue problem and ( , ) is the Euclidean inner prod-
uct for complex vectors. For parameters close to the
ones yielding the Hopf-Turing singularity and for small
enough k, x, and X, are complex, so that (6) yields in gen-
eral a complex A; with nonzero real part. When v70,
the two eigenvalues for small k have therefore different
real parts for k70, and the most unstable of the two
growth rates can exhibit a maximum at a wave number
having an order v deviation from zero. We can conse-
quently use, for small v, a long wavelength expansion of
the growth rate (4):

A _ﬁ_i(an"'azz)+ (ay;—ay)l X
. 2 2["(‘111_‘122)2—4012‘121]1/2
—§32“—1k2+0(k3) )

to obtain the following first order estimates for the
modified locus H,; and the critical wave number k , of
this bifurcation to a long-wave convective mode:

(H,): (ay,+az)+k3(6+1)=0, (8)
(a;,—ay)vl

4 2[—(ay —ay)—4aay 1 H8+1)

Equation (8a) implies that in the presence of a nonzero
differential velocity, the homogeneous kinetics are stable
at criticality, while the critical wave number is shown
from (8b) to be a linearly increasing function of the
differential velocity to leading order. As v tends to zero,
the critical wave number k 4 vanishes and the locus H,
tends to H,. The critical frequency is @ , =wy+ O (v), so
that in general we will have for small v a long traveling
wave mode due to the interaction between differential
convection and kinetics.

For k ~k; at the short-wave Turing mode, the eigen-
vector X, and the adjoint eigenvector X, are real. Since J;
is purely imaginary, (6) implies that A, will be so also.
Therefore, there will be no O (v) correction to the growth
rate Re(A,) of the short-wave mode, yielding to this order
the same locus T, of the Turing bifurcation. However,
the critical eigenvalue will now have a nonzero [O (v)]
imaginary part, so that T, will now be a bifurcation locus
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for a traveling wave with O (v) phase speed. In general, it
will still be possible to find an intersection between T,
and H, so that both the long and short traveling waves
will be neutrally stable, with a resulting growth rate de-
picted in Fig. 1(b). It is clear from the above O (v)
asymptotic analysis that the steady-Hopf (0, tiw,) singu-
larity of the kinetic and Turing instabilities at v =0 is
transformed into a Hopf-Hopf (+iw ,, Tiwy) singularity
of the convective and Turing instabilities at finite
differential velocity. The introduction of an additional
parameter v into the reaction-diffusion system essentially
enlarges the possibility of encountering a codimension-2
singularity. Alternatively, differential flow in an open-
flow system promotes the potential appearance of com-
plex wave patterns that will be shown to exist near these
singularities.

The leading order effect of finite v on the growth rate
of the modified Turing mode can be found by solving the
order (v?) problem. When k> 1, this critical mode can
be captured by the simpler short wave expansion of (4),
which can be rewritten as

1

2
Re(k)=Re(ko)+%—+0 x;

For parameters close to the ones yielding the Turing-
Hopf singularity,

— 2__
(@1 —ay) —12a,a,,

4(1-8)°

is positive, implying that the leading order effect of a
small but finite v on the short-wave growth rate is a quad-
ratic decrease from k; of the maximum-growing wave
number with increasing v. This result, together with (8b),
suggests that at increasing differential velocity the critical
wave numbers at the singularity will move towards each
other, as shown schematically in Fig. 1. At a limiting
value of differential velocity v, the critical wave num-
bers will meet, as shown in Fig. 1(c), and the
codimension-2 singularity will disappear. It can in fact
be shown that when v is sufficiently large, the growth rate
exhibits only one maximum for positive wave numbers.
The exact location of the critical velocity can be found
tracing the singularity numerically, using (4) and solving
the equations

AR(6,8,0k )= 2R (1 8.1,k ) =0

R r,o,v, Al 8k r,o,v, A’ Y, (9)
OAg

}»R(r,S,v,kB)=~87(r,8,v,k3)=0

for 0=k, <kg. Above the limiting differential velocity
v, at which k , =k, only one critical traveling wave
mode will be possible, with resulting behavior similar to
the one described by Rovinsky and Menzinger [3]. Com-
plex spatiotemporal dynamics can be expected before this
limit, when a (tiw 4, tiwyg) singularity exists, as shown
in Fig. 1(b). We shall hence focus our effort to this in-
teresting region where Av2/D,K is small.
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III. NORMAL FORM ANALYSIS CLOSE
TO THE CODIMENSION-2 SINGULARITY

To study the nonlinear behavior for small values of v
near the codimension-2 singularity characterized by the
double-hump growth rate of Figs. 1(a) and 1(b), we ex-
pand the solution in terms of the eigenfunctions at the
singularity. Assuming that the neutral modes have am-
plitude of O(| 4]), and that all the other (stable) modes
have amplitudes at least of O (| 4|?) in this near-critical
weakly nonlinear analysis, we only need to retain the
discrete harmonics of the two neutral modes k 4, and kg
(or 0 and ky) and their sum and difference modes
(mk ,tnkg, where m and n are integers including zero).
This assumption is only an approximation for an un-
bounded system characterized by a continuous spatial
spectrum. It omits the possibility of interaction among
neighboring “sideband” modes with arbitrarily close
wave numbers and growth rates [10]. The possibility of
complex behavior (e.g., phase turbulence) in reaction-
diffusion systems due to such interaction is well known
[11] and will not be tackled here. Another mechanism
known to produce interesting dynamics but also omitted
here is the subharmonic instability [12]. Hence, our in-
terest in this paper is to study the possibility of complex
behavior arising from interaction of nearly neutral modes
close to a codimension-2 singularity. Near the singulari-
ty, this mechanism is expected to dominate the sideband
and subharmonic instabilities but beyond it, the latter
two may contribute to the complexity of the spatiotem-
poral behavior. With this in mind, we expand (2) in trun-
cated Taylor series, retaining terms up to cubic order,
and substitute for the deviation variables ¢’ a discrete ex-
pansion in the selected linear eigenmodes. We then take
an appropriate inner product with the adjoint eigen-
modes to derive generic coupled amplitude equations.
Center manifold theory is used to project the dynamics of
the resulting system of ordinary differential equations
(ODE’s) on the two modes which are neutrally stable at
the singularity. A nonlinear near-identity transformation
can finally be used to eliminate all nonresonant quadratic
and cubic terms in the amplitude equations. The details
of this standard procedure, which are different for the
double-Hopf and the steady-Hopf cases, are omitted here
for the sake of brevity and can be found in the thesis of
one of the authors [13]. In the absence of convection the
procedure yields a pitchfork-Hopf normal form for the
(0, +iw,) singularity—a result of the Z, symmetry of the
reaction-diffusion system to translation and reflection.

Therefore, for both v =0 and v+0, with the exception
of the few discrete values of v yielding resonance condi-
tions, the local behavior close to the singularity is de-
scribed by the unfolded normal form

F=pir ot o,
. 5 5 (10)
Fa=Hary tpsry tparory
governing the evolution in time of the real amplitudes r,
and r, of the critical modes, which are to leading order

decoupled from the relative phases. The unfolding pa-
rameters p, and p, are small deviations from zero of the
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real part of the eigenvalues of the critical modes resulting
from a perturbation from the singularity in the parameter
space.

The analysis of the planar system (10) for different pos-
sible combinations of u; and p; has been reported [14],
and in the following only some of the results will be dis-
cussed in detail. In addition to the origin, up to three ad-
ditional fixed points are possible, as shown in Fig. 2(a).
The two critical modes can independently evolve into two
finite-amplitude saturated pure-mode steady states (F,
and F,) corresponding to either homogeneous oscilla-
tions, periodic traveling waves, or a steady periodic pat-
tern for the full system (1). Nonlinear interaction of the
modes can give rise to more interesting behavior. The
two pure-mode steady states can lose their stability
through pitchfork bifurcations and a “mixed mode,” a
finite-amplitude steady-state combination of both modes
[F; in Fig. 2(a)], can then appear. This fixed point, in
turn, can lose its stability through a Hopf bifurcation and
give rise to slow oscillations of the amplitudes. These
periodic attractors can exist only when specific conditions
on the normal form coefficients are satisfied, reducing the
cases where the more complex dynamic behavior can
occur to only two of the possible ones reported by Guck-
enheimer and Holmes [14]. One is their case VIIa, in
which both modes have the same kind of bifurcation (soft
or hard) at the singularity, and the other is case VIa, in

(@)

(b)

ol

FIG. 2. (a) Possible fixed points for the planar system (10).
(b) Partial bifurcation set and phase portraits for the unfolding
of case VIa in Ref. [14].
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which one of the neutral modes is subcritical and the oth-
er supercritical at the singularity. A possible combina-
tion of coefficients yielding the latter case is when p; and
p, are positive, p; and p, are negative, and A=p,p;—p,p,
is positive. In Fig. 2(b) the unfolding scenarios for this
case, on which we will focus in the rest of the paper, are
reproduced. The family of limit cycles resulting from the
instability of the mixed mode can disappear in this case
through an heteroclinic cycle connecting the three other
steady states. The periodic and heteroclinic orbits appear
together at line Q under third order resolution of (10),
and their relative location and stability cannot be ascer-
tained without including higher order terms in the nor-
mal form.

These attractors for the planar system (10) correspond
to complex wave patterns for the original system (1). The
mixed mode, which is stable between P, and Q in the un-
folding of Fig. 2(b), corresponds to wave-packet-like non-
stationary traveling waves with two wavelengths and two
frequencies for the case with differential convection.
Without convection, it corresponds to a nonhomogene-
ous pattern where all points oscillate in time with the
same phase. The periodic orbits of the planar system ap-
pearing at line Q correspond to patterns for the original
system with one spatial characteristic length when v =0
and two when v50, oscillating in time with two charac-
teristic frequencies if v; =v, =0, and three frequencies in
presence of nonzero convection velocities. The hetero-
clinic orbit can yield a strange attractor near Q due to a
well-known entanglement mechanism [14]. Even in the
absence of the strange attractor, chaotic transients are ex-
pected in such systems [15]. The pattern is expected to
exhibit intermittent excitation of the two pure modes and
the homogeneous steady state in time. In the fast transi-
tion period from one pure mode to the other, waves of
two different wavelengths should appear on the medium.
This is the richest wave pattern one expects from the in-
teraction of the Turing and convective instabilities.

It should be noted that these patterns exist for condi-
tions at which the origin fixed point (the homogeneous
state) is stable to one instability but unstable to another.
This has an important implication. It suggests that a sys-
tem that is stable to the Turing instability can still pro-
duce complex wave patterns with the short Turing
characteristic wavelength if it is unstable to the long-
wave instability, i.e., the homogeneous oscillations result-
ing from unstable kinetics or the traveling wave resulting
by the coupling of kinetics and differential convection,
and if the nonlinear mechanism allows interaction be-
tween the supercritical long-wave mode and the subcriti-
cal Turing mode. This may allow the formation of Tur-
ing patterns in systems in which the linear instability is
not possible because, for example, of the restrictions on
the value of the diffusivities ratio (these include most ex-
othermic systems, in which the diffusivity of the activa-
tor, i.e., the thermal diffusivity, is usually larger than the
characteristic mass diffusivity). The convection hence
enhances the possibility that the Turing structures may
be observed.

The values of the normal form coefficients p; will de-
pend, in general, on the kinetic parameters r, the
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diffusivity ratio §, and the difference in convective veloci-
ties v. Given a kinetic model, the task will be to com-
pute, along the locus of the singularities, the coefficients
in (10) and check for the possibility of interesting
behavior. The location of the different bifurcations that
lead to complex wave patterns in the parameter space can
then be obtained by computing the leading order (i.e.,
linear) relationships between p,,u, and the original pa-
rameters. This will allow tracing of bifurcation loci such
as P, P,, and Q in the original parameter space. Being
singularities of codimension 2, two unfolding parameters
will be needed. We hence have some freedom in choosing
the two unfolding parameters while keeping the rest con-
stant.

IV. NORMAL FORM ANALYSIS
AND SIMULATIONS IN THE BRUSSELATOR
AND OREGONATOR MODELS

We will first illustrate the possibility of the nonlinear
interactions described in Sec. III with a simple model
known as the Brusselator [16], for which

filep,ea)=a—(b+1)c,+c3c, ,
(11)
faley,ep)=bc, —clc, .

There are hence two kinetic parameters a and b and two
transport parameters v and 8. The simplicity of this ficti-
tious model allows some analytical results, such as an ex-
plicit expression of the locus of the Turing-Hopf singular-
ity in the parameter space [11]. The linearization of (11)
around the homogeneous steady state c,=[a,b/a]T
yields a;;=—1+b, a;;=a? a,;=—b, and a,,=—a?,
and Egs. (5a) and (5b), giving the loci H, and T, respec-
tively, in the parameter space, become

1+a? (H,)

b= 11+vBEar (1y).

(12)

The Turing-Hopf singularity, the intersection of T, and
H,, is a line T in the three-dimensional (a,b,d) parameter
space, whose projection on the a-8 plane is defined by
a=2[V'8/(1—8)]. Along I', we will have purely imagi-
nary pairs of eigenvalues tia at k =0 and a zero eigen-
value at k;=Vv2/(1—8). Kuramoto [11] also showed
that the oscillating homogeneous patterns bifurcating
from I are phase stable, viz., stable to the Eckhaus side-
band instability, so that chaotic patterns due to the in-
teraction of neighboring modes should not be observed
and their omission in the present analysis is justifiable.
The normal form coefficients p; in (10) have been com-
puted along the singular line I'. The Hopf bifurcation is
found to be always supercritical, in agreement with
Kuramoto’s results for the whole locus H,y. The other
coefficients change sign along I" and the results are sum-
marized in Fig. 3, where different symbols correspond to
different unfolding scenarios depicted in Guckenheimer
and Holmes [14]. The results show that complex
behavior is possible for some values of the parameters.
(A full picture can be obtained from our Fig. 3 and their
unfoldings, in which their r; and r, correspond to the
amplitude of our Turing mode and homogeneous oscilla-
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FIG. 3. The Turing-Hopf singularity line I in the Brussela-
tor model. Different symbols correspond to different unfolding
scenarios cases. See Ref. [14] for unfoldings of cases other than
VIa.

tions, respectively.) In particular, there exists a range of
parameters for which the system exhibits case VIa, whose
unfolding scenario, including a stable mixed mode and
the periodic-heteroclinic orbits, is shown in Fig. 2(b) and
was discussed in Sec. III. The unfolding in the kinetic
parameter space (a,b) for one of the points of this case,
the singularity at §=0.5776, is demonstrated in Fig. 4 in
which lines P, P,, and Q correspond to lines with the
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a

FIG. 4. The predicted unfolding in the kinetic parameters
a, b of the Brusselator model from the normal form analysis per-
formed around the Hopf-Turing singularity with §=0.5776.
The inset shows the points for which simulations are shown in
Figs. 5 and 6.
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same name in Fig. 2(b). We are now ready to predict the
dynamics of (1) near the singularity for the case in which
there is no differential convection. The line p,=0,
tangent to the curve in which the trace of the homogene-
ous Jacobian A vanishes, is the linear stability limit
above which small perturbations of the homogeneous
steady state will grow as homogeneous oscillations and
saturate. The line P, separates finite-amplitude homo-
geneous oscillations from a mixed mode given by the su-
perposition of homogeneous oscillations and either a
steady inhomogeneous pattern (in the absence of convec-
tion velocities) or a traveling wave (if the two species are
convected with the same velocity through the medium).
The line Q represents the loss of stability of this mixed
mode to give rise to two- or three-tori depending again on
the value of v,=v,, and a heteroclinic orbit around
which complex spatiotemporal behavior is expected. Nu-
merical simulations of the full partial differential equa-
tion (PDE) (1) with v,=v,=0, D; =8, and D,=1, in a
finite domain large enough to contain four wavelengths of
the critical Turing mode, are carried out to verify the
predictions of the analysis which are different from the
previous results of Rovinsky and Menzinger [9]. We
adopt their no-flux boundary conditions, for which, in the
absence of convection, the results of the normal form
analysis are the same as those for an unbounded domain.
The method of lines is used in the simulations, with
fourth order finite differencing (second order at the boun-
daries) in space and a fourth order Runge-Kutta algo-
rithm in time. Small random deviations from the homo-
geneous steady state were adopted as initial conditions.
As is evident from the space-time patterns resulting after
transient and reproduced in Figs. 5(a) and 5(b) for param-
eters corresponding, respectively, to points A and B in
Fig. 4, the prediction of the bifurcation from the pure
mode (homogeneous oscillations) to the mixed mode (sa-
turated oscillating pattern with one characteristic wave-
length) is found to be accurate. In Fig. 6 a time series of
the concentration of the activator at the left boundary of
the domain for parameters corresponding to point C in
Fig. 4 shows the predicted transition to a pattern with
two characteristic frequencies corresponding to a limit
cycle of the planar system (10). The intermittent excita-
tion of the oscillating mode alternating with periods of
roughly steady behavior predicted to exist close to line Q
is evident.

With the introduction of differential convection, i.e.,
when v,5v,, the codimension-2 singularity is traced nu-
merically using (9) and (4). We have the additional pa-
rameter v, so that the singularity will be now in general a
surface in the four-dimensional parameter space
(a,b,8,v). The surface can be traced, for example, with
lines on which § is constant. Projections of a few of these
curves on the a-8§ plane are shown as solid lines in Fig. 7.
The lines extend from the Turing-Hopf line I" (dotted
line) up to a point where the singularity ceases to exist.
This is due to the scenario sketched in Fig. 1, when the
two critical wave numbers converge as v increases until
they meet at a point in which the growth rate becomes
“single peaked.” Figure 8 shows the critical wave num-
bers k 4 and kjp as a function of differential velocity along
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FIG. 5. Activator concentration c,(£,t) resulting from nu-
merical simulations for the Brusselator model. The values of
the parameters correspond to point A (a =3.59, b=13.89,
6=0.5776, v =0) and B (@ =3.59, b =13.897, 6=0.5776, v =0)
in Fig. 4 for (a) and (b), respectively. In the grey scale patterns,
darker scales correspond to higher activator concentration.
The system tends to homogeneous oscillations for point A and
to a mixed mode for point B.

a few of these singular lines with constant 8. The
behavior is evidently consistent with our asymptotic
analysis in Sec. II predicting for small v a linear increase
and a quadratic decrease, respectively, for the long and
short critical wave numbers k , and ky with increasing
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FIG. 6. Activator concentration at the left boundary (§=0)
of the reactor as a function of time from numerical simulation
for the Brusselator model with parameters corresponding to
point C in Fig. 4 (a =3.59, b =13.8981, §=0.5776, v =0). A
two-torus corresponding to a periodic orbit for the planar sys-
tem (10) is approached (the fast oscillations cannot be dis-
tinguished in the resolution of the graph).
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FIG. 7. Lines with constant 8 spanning the surface locus of
codimension-2 singularities for v70 extend from the Hopf-
Turing line T to a point at which the two critical wave numbers
k 4 and kg merge. In the inset, points on the lines in which case
VIa is the predicted unfolding are shown as solid circles.

differential velocity.

For the points on the lines spanning the singular sur-
face, the normal form coefficients have been computed
and the region in which case VIa is the predicted unfold-
ing is extended, as shown by circles in the inset in Fig. 7.
In Fig. 9 the unfolding around a particular point of this
region is shown. Unlike the previous case, the transport
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FIG. 8. The critical wave numbers k , (dotted lines) and kp
(solid lines) along the singular lines for fixed § converge towards
each other as v increases. The linear increase of k, and quadra-
tic decrease of kp with small differential velocity predicted by
the asymptotic analysis are evident.
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FIG. 9. The unfolding of the double-Hopf singularity with
6=0.612, v =0.25, a =3.815 394, and b =15.410747 in the §,v
plane. The points denoted with circles are the ones for which
numerical simulation results are shown in Figs. 10-12.
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FIG. 10. Activator concentration c;(£,?) from numerical
simulations for the Brusselator model with parameters corre-
sponding to point D in Fig. 9 (a =3.815394, b =15.410747,
6=0.612, v =0.26). (a) Space-time pattern in which darker
scales correspond to higher activator concentration, (b) a
snapshot, and (c) its spatial Fourier spectrum G, compared to
the linear growth rate. The system approaches a finite-
amplitude traveling wave arising from the convective mode.
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parameters 8 and v have been used here as unfolding pa-
rameters. The following scenario is hence predicted by
the analysis in this case in which differential convection is
present. Line u,=0 represents the linear stability bound-
ary above which a long traveling wave due to the convec-
tive instability appears. Line P, represents the transition
from a finite-amplitude long traveling wave to a mixed
mode with two characteristic frequencies obtained by su-
perposition of two different traveling waves, a long one
due to the convective instability and a short one due to
the Turing instability. The line Q in this case represents
transition to a family of three-tori and the correspondent
of the heteroclinic orbit for the planar system (10),
around which we expect more complex spatiotemporal
behavior. Again, simulations show good agreement with
such predictions. In this case the simulations of (1) are
carried out with v,=v, v,=0, and periodic boundary
conditions to allow traveling waves on a domain which is
large enough to contain a few wavelengths of the long-
wave critical mode. The transition from pure mode to
mixed mode can be seen in Figs. 10 and 11 where results
of simulations for parameters corresponding to points D
and E in Fig. 9, respectively, are reproduced. A spatial

0B=19.90

FIG. 11. Same as Fig. 10, but with parameters corresponding
to point E in Fig. 9 (@ =3.815394, b =15.410747, 6=0.612,
v =0.28). The system approaches a mixed mode with two
characteristic wavelengths.
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Fourier transform of a snapshot shows the dominant con-
tribution of the modes kept in the discrete-mode model
and is compared with the linear growth rate in Figs. 10(c)
and 11(c). The “subcritical” transition to a pattern dom-
inated by a single mode (the modified Turing one) which
is linearly stable is evident in Fig. 11. Harmonics and the
subharmonic of the Turing mode are also present. But
the most interesting dynamic behavior is the one ob-
served close to line Q, where complex transients exhibit
coexisting patches of different monochromatic waves.
Simulations in a larger domain for these conditions show
how the presence of long-wave modulations in the con-
vective traveling wave mode causes the local amplitude to
exceed the average value at certain localized positions,
triggering the dramatic ‘“‘subcritical” transition to the
mixed mode in spatially localized fashion (Fig. 12).

As an additional example, we examined the possibility
of interactions of multiple instabilities in a more realistic
kinetic model. The Belousov-Zhabotinskii reaction is one
of the most studied reactions giving rise to exotic
behavior [17]. Chemical oscillations, Turing structures,
chaotic patterns [18], and differential-flow-induced travel-
ing waves [4] have been separately observed or predicted
to exist in the system. A few low-dimensional simplified
kinetic models have been proposed over the years and
shown to reproduce qualitatively most of the behavior
observed experimentally. We report partial results of our
analysis performed on one of these models, the two-
variable Oregonator [19], for which
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FIG. 12. Numerical simulation results for the Brusselator
model with parameters corresponding to point F in Fig. 9
(@ =3.815394, b =15.410747, §=0.612, v =0.31). The three
snapshots, separated by At =15, show how long-wave modula-
tion of the convective mode yields a transition to the short-wave
mode which is localized in space.
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FIG. 13. Lines with constant 8 spanning the Hopf-Turing
singularity surface for the Oregonator model (13). The open cir-
cles denote points in which the normal form analysis predicts
unfolding scenarios of case VIa.
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In the absence of differential velocity, the locus of
(0,*tiwy) points is a surface in the three-dimensional
kinetic parameter space (r=[f,q,€]) which was located
numerically. Lines with constant ratio of diffusivities &
spanning this surface are shown in Fig. 13. Along these
lines, the normal form coefficients were computed. The
results indicate that there is also the possibility of in-
teresting spatiotemporal behavior in this more realistic
model. Points in the parameter space in which case VIa
is the predicted unfolding are outlined as circles in Fig.
13. Even for all these points, the analysis predicts in-
teraction between supercritical homogenous kinetic oscil-
lations and a subcritical Turing mode, so that the predict-
ed behavior for the full system(1) is qualitatively the same
as the one depicted in Figs. 5 and 6 for the Brusselator.
With the introduction of a small differential convective
velocity, the complex behavior of Figs. 10-12 is also ex-
pected to appear for this model.

V. DISCUSSION

A difference Av is convection velocities for an
activator-inhibitor pair can trigger a traveling wave mode
whose characteristic wave number scales as the
differential velocity for small Av. In fact, as Rovinsky
and Menzinger have shown, differential convection can
be exploited to induce inhomogeneous patterns in sys-
tems in which the formation of Turing patterns is not
possible. For large enough differential velocities, the
effect of the two destabilizing differential-transport mech-
anisms is undistinguishable, yielding only a maximum in
the growth rate. However, we have shown here that for
low differential convection Av?>/KD, <<1, the long-wave
convective mode is distinct from the short-wave Turing
mode arising from differential diffusion as the growth rate
exhibits the distinctive double humps. The nonlinear in-
teraction of the instabilities was shown to produce exotic
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nonlinear dynamics in an open-flow reactor, not unlike
the long-short wave interactions found in hydrodynami-
cal systems. This is quite exciting since a two-species
homogeneous kinetics cannot exhibit temporal chaos be-
cause a two-dimensional dynamical system cannot con-

tain a chaotic attractor. Allowing for spatial gradients,

diffusion can induce complex behavior through the phase
turbulence mechanism [11]. With activator-inhibitor
kinetics, additional routes to complexity are possible.
For example, the previously studied [9] Hopf-Turing in-
teraction, a limiting case of our analysis, can also give
rise to interesting spatiotemporal dynamics such as the
mixed mode shown in Fig. 5. However, in both the phase
turbulence and the Hopf-Turing scenarios, the homo-
geneous linear instability, which occurs in a well-mixed
reactor, plays a major role and was indeed found to be
necessary for Turing-Hopf interaction in the two kinetic
models we studied. This is not the case for the complex
behavior due to the long-short wave interaction proposed
here between modes induced by differential convection
and differential diffusion. The spatiotemporal dynamics
of the distributed system in this case can be very complex
and is independent from the existence of oscillations in
the well-mixed system.

The less restrictive conditions for its existence [3] and
the immediate success [4] in obtaining its experimental
confirmation suggest that the instability due to
differential convection is more commonly encountered
than the classical Turing one. Even if the latter mode is
stable, our analysis shows that complex patterns can still
be triggered by interaction between the unstable convec-
tive instability and the stable Turing mode. The
differences in transport coefficients necessary in order for
these modes to be excited are ubiquitous in multiphase
systems. One hence expects complex spatiotemporal pat-
terns to be quite common in heterogeneous open-flow
reactors. This is consistent with the large amount of data
in the literature on irregular thermal patterns exhibited
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by highly exothermic oxidation reactions. In such sys-
tems, the autocatalytic activator variable is the tempera-
ture and the inhibitor a reactant. These systems are
known to exhibit homogeneous oscillations, and one sim-
ply needs a difference in the effective mass and thermal
convection or an appropriate Lewis number to obtain the
nonhomogeneous patterns.

The patterns due to the long-short wave interaction
uncovered here can be rendered even more complex if the
Kuramoto phase turbulence due to streamwise sideband
instabilities and the subharmonic instability can also be
triggered under conditions further from criticality.
When the differential velocity is zero, the Turing mode at
kr is a static one and the classical Eckhaus bound stipu-
lates that the critical mode is stable to sideband distur-
bances. However, the homogeneous kinetic mode at
k =0, the convective mode at k 4, and the modified Tur-
ing mode at kj are all oscillatory modes. The phase in-
stability criterion [11] for these dispersive modes can
easily be satisfied and phase turbulence can occur. The
subharmonic instability can also occur sufficiently far
from criticality [12], leading to more complex dynamics,
and we see some evidence of it within our numerical
simulations. The long-short wave instability studied
here, the sideband instability, and the subharmonic insta-
bility are expected to be the dominant instabilities in a
one-dimensional open-flow reactor whose cross-stream
dimensions are small relative to the reactor length. They
represent how extra degrees of freedom due to the spatial
variation induced by finite convection and diffusion rates
in a large domain can introduce rich spatiotemporal dy-
namics to rather simple chemical reactions.
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FIG. 10. Activator concentration c¢,(£,t) from numerical
simulations for the Brusselator model with parameters corre-
sponding to point D in Fig. 9 (a =3.815394, b =15.410747,
8§=0.612, v =0.26). (a) Space-time pattern in which darker
scales correspond to higher activator concentration, (b) a
snapshot, and (c) its spatial Fourier spectrum G compared to
the linear growth rate. The system approaches a finite-
amplitude traveling wave arising from the convective mode.
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FIG. 11. Same as Fig. 10, but with parameters corresponding
to point E in Fig. 9 (¢ =3.815394, b =15.410747, 6=0.612,
v =0.28). The system approaches a mixed mode with two
characteristic wavelengths.
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FIG. 5. Activator concentration c¢,(£,¢) resulting from nu-
merical simulations for the Brusselator model. The values of
the parameters correspond to point A (¢ =3.59, b=13.89,
8=0.5776, v =0) and B (a =3.59, b =13.897, §=0.5776, v =0)
in Fig. 4 for (a) and (b), respectively. In the grey scale patterns,
darker scales correspond to higher activator concentration.
The system tends to homogeneous oscillations for point A and
to a mixed mode for point B.
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