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An anisotropic turbulence model for the local interaction part of the Reynolds stresses is developed
using the recursion renormalization group theory (»-RNG)—an interaction contribution that has been
omitted in all previous Reynolds stress RNG calculations. The local interactions arise from the nonzero
wave number range, 0 <k <k, where k. is the wave number separating the subgrid from resolvable
scales while the nonlocal interactions arise in the k —0 limit. From e-RNG, which can only treat nonlo-
cal interactions, it has been shown that the nonlocal contributions to the Reynolds stress give rise to
terms that are quadratic in the mean strain rate. Based on comparisons of nonlocal contributions to the
eddy viscosity and Prandtl number from »-RNG and €-RNG theories (€ is a small parameter), it is as-
sumed that the nonlocal contribution to the Reynolds stress will also be very similar. It is shown here,
by -RNG, that the local interaction effects give rise to significant higher-order dispersive effects. The
importance of these new terms for separated flows is investigated by considering turbulent flow past a
backward facing step. On incorporating this »~-RNG model for the Reynolds stress into the conventional
transport models for turbulent kinetic energy and dissipation, it is found that very good predictions for
the turbulent separated flow past a backward facing step are obtained. The »-RNG model performance
is also compared with that of the standard K-e model (X is the kinetic energy of the turbulence and ¢ is
the turbulence dissipation), the e-RNG model, and other two-equation models for this back step problem
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to demonstrate the importance of the local interactions.
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I. INTRODUCTION

Turbulent flows of scientific and engineering impor-
tance are characterized by a broad spectrum of length
and time scales. While the physical aspects of turbulent
flows are best described by the equations of motion, limi-
tations in computer capacity and speed preclude their
direct solution for complex flows of relevance to technical
applications. The current practice for high Reynolds
number flows of practical interest therefore involves some
type of modeling for Reynolds stresses. The commonly
used turbulence models are based on the calculation of
one-point first and second moments such as the mean ve-
locity, mean pressure, and turbulent Kkinetic energy.
Among these, the two-equation turbulence models that
involve the use of transport equations for the turbulent
field parameters that involve the length and the time
scales are probably the most widely used. They involve
the simplest level of Reynolds stress closure that do not
depend specifically on the flow geometry. (For an excel-
lent review of recent trends in analytical methods for
Reynolds stress closure, the reader is referred to Speziale
[11)

In its standard form the two-equation Reynolds stress
turbulence models involve the turbulence kinetic energy
and dissipation based on a Boussinesq-type approxima-
tion [2] of the form
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wherein U is the mean velocity based on the Reynolds
average, K is the turbulence kinetic energy, and v is the
eddy viscosity which is isotropic. Such a representation
of turbulence is often not effective from both theoretical
and phenomenological points of view, and the shortcom-
ings associated with it are fully discussed by Speziale [1].
To over come some of these, models that are nonlinear
(i.e., quadratic) in the mean strain rate were proposed in
the form of a constitutive relation [3,4]. Speziale [3] em-
ployed tensor and dimensional analyses, together with in-
variance constraints, to derive his model. Yoshizawa’s
model [4] was obtained by appealing to a two-scale
direct-interaction approximation. The application of
these models depend on the empirical evaluation of the
model constants. Apart from the specific values of the
constants, these two models have quite similar structure,
and both were able to predict anisotropy in Reynolds
stresses in a noncircular duct problem.

The present study addresses the need for a more
effective approach in the development of two-equation
turbulence models, and in this context the
renormalization-group (RNG)-theory-based models are
examined for further development. While the application
of renormalization-group theory to turbulence has at-

5195 ©1994 The American Physical Society



5196

tracted much attention [5—18], it is important to realize
that these calculations fall into two distinct categories: (a)
€-RNG [5-9], pioneered by Forster, Nelson, and Stephen
[14], and (b) recursion RNG [10-13] (denoted from now
on as -RNG) pioneered by Rose [15]. These techniques
have been critiqued [6,16—18] and compared [12]. Here
we wish to point out that in the e-RNG, a small parame-
ter € is introduced into the exponent of the forcing corre-
lation function (with the forcing function being intro-
duced into the momentum equation). The theory is then
developed for € << 1, and all constants generated are eval-
uated in this limit € << 1. However, at the same time, all
exponents that are € dependent are evaluated at e=4
[17]. In fact, €=4 is required in the e-RNG to recover
the Kolmogorov energy spectrum in the inertial range
[17]. This not only plays some havoc with the evaluation
of constants, it also leads to a closure problem: RNG-
induced interactions that can be shown to be irrelevant in
the limit € <<1 can in no way now be shown to be ir-
relevant in the limit e—4. Yet in e-RNG theories (which
require €—4) these higher-order nonlinearities are as-
sumed to be unimportant [6,12,16]. Moreover, e-RNG
theory can only take into account nonlocal interactions
[6,10,16]. However, the procedure is quite amenable and
Rubinstein and Barton [7] have derived a Reynolds stress
model using e-RNG methods that is qualitatively similar
to that of Speziale [3] and Yoshizawa [4].

On the other hand, »-RNG does not rely on an € ex-
pansion, and treats explicitly the cubic nonlinearities in-
duced into the renormalized momentum equation. More-
over, -RNG can handle both local and nonlocal interac-
tions. Effects such as the cusp behavior in the transport
coefficients as k —k_ are recovered in these theories (here
k. is the cutoff wave number separating the large scale
from the local resolvable scales) [13,19-24]. These
effects are the consequences of local interactions and the
cubic nonlinearities introduced by the RNG procedure.
However, one of the major difficulties to the application
of -RNG for turbulent flows governed by the Navier-
Stokes equation was that the eddy viscosity was deter-
mined as a fixed point of a very complicated
integrodifference equation. This drawback has now been
removed by extending the theory to handle the iterative
removal of infinitesimal wave-number bands [25]. Now,
as in €-RNG, the eddy viscosity is readily determined
from the solution of a relatively simple differential equa-
tion. Unlike e-RNG, however, the transport coefficients
are determined over the whole resolvable scales and not
just in the wave-number limit kK —0.

In the present work, the »-RNG procedures are used to
evaluate the local interaction contributions to the Rey-
nolds stresses in a formal manner. We have compared
the predictions of the long-wavelength, nonlocal interac-
tion limit of e-RNG with the corresponding nonlocal in-
teraction limit of »-RNG for several transport coefficients
[the eddy viscosity and the Prandtl number]. In this non-
local limit, the results from e-RNG and r-RNG were
nearly identical. We thus expect this similarity to hold in
the nonlocal interaction contribution to the Reynolds
stresses, and here concentrate on determining the »-RNG
local interaction contribution to 7,;. It is shown that the
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r-RNG-based model introduces two additional terms
arising from the local interaction effects that are of
higher order than those obtained using the e-RNG
method by considering only the long-wave length, nonlo-
cal interaction limit. The first of these two terms as well
as those from the conventional turbulence models are
shown to be a part of the integrity basis used in the repre-
sentation of the anisotropic part of the Reynolds stress
tensor [26-28]. The second term, which arises from
pressure-strain coupling, is a higher-order dispersive
term, and cannot be represented within this integrity
basis.

This Reynolds stress model is then applied for tur-
bulent flow past a backward-facing step which has played
a central role in benchmarking the performance of tur-
bulence models for separated flows. During the past
decade—beginning with Ref. [29]—various two-
equation turbulence models have been tested and com-
pared with the experimental data of Kim, Kline, and
Johnston [30] and Eaton and Johnston [31] for the back-
step problem. Initial results [29] indicated that the stan-
dard K-e¢ model, with wall functions, underpredicted the
reattachment point by a substantial amount on the order
of 20-25 %. Several independent studies have been sub-
sequently published using alternative forms of the K-¢
model wherein a variety of conflicting results have been
reported. Considering the need to predict accurately
separated turbulent flows—which can have a wealth of
important scientific and engineering applications—the
proposed model is applied to the backstep problem. The
computations based on a sufficiently resolved finite-
volume algorithm show that the proposed model based
on the recursive application of the renormalization-group
theory (developed independently without any ad hoc em-
piricism) can yield a prediction for the reattachment
point that is within a few percent of the experimental re-
sult. The -RNG model performance is also compared
with that of the standard two-equation K-e model and the
€-RNG model for this backstep problem. The physical
implications of these results will be also discussed in de-
tail in the sections to follow.

II. FORMULATION OF THE PHYSICAL PROBLEM

The turbulent motion of viscous, incompressible fluids
are governed by the Navier-Stokes equations, which may
be analyzed using classical single-point closure based on
Reynolds decomposition of all physical variables. The re-
sulting averaged equations of motions are of the form

ay; 3U; 3P 3*U; 07}
—+U = yy— ,
ar | %ox,  ox,  Oox,ox, ox, M
e =0 )
ax,

where U, is the mean velocity, P is the mean pressure, v,
is the kinematic viscosity of the fluid, and Tij is the Rey-
nolds stress tensor. While the physical aspects of tur-
bulent flows are best described by the above equations,
limitations in computer capacity and speed preclude their
direct solution for complex flows of engineering impor-
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tance. The current practice for high Reynolds number
flows of engineering interest therefore involves some type
of modeling for Reynolds stresses. The commonly used
turbulence models are based on the calculation of one-
point first and second moments such as the mean veloci-
ty, mean pressure, and turbulent kinetic energy.

In the present work we consider the development of
Reynolds stress model by the »-RNG formulation and its
application. In this context it is convenient to express the
equations of motion using the Fourier representation:

9 2
3t +‘V0k u,—(k,t)
=M,-a3(k)fd3p u,(p,t)uglk—p,t), @)
ko uy(k,t)=0. 4)

It is important to note here that no random forcing is in-
troduced, unlike in the e-RNG theories where it plays a
critical role in introducing the small parameter €. The
nonlinear coupling coefficient

M,-aﬁ(k)=2—1,‘\[kBD,~a(k)+kaD,~B(k)] , (5)
1

9 2
EY +wvok

d
3;+V0k2

It should be noted that in the e-RNG approach one is
forced into taking the large-scale infrared limit k —0. In
essence, this forces a spectral gap between the resolvable
part of the flow field and the small unresolved scales. If
this spectral gap were somehow present initially, it would
be quickly populated in just a few eddy turnover times.
Thus retaining only the distant interactions may not be
appropriate. In fact, it has been shown [13] that the
energy-transfer function that corresponds to local in-
teractions accounts for most of the energy flow out of the
resolvable scales. It thus seems important to retain both
local and nonlocal interactions in the modeling of the
Reynolds stress, and this can be readily achieved by r-
RNG. In particular, it is apparent that the Reynolds
stress 7;;=7;; +7;; < has two components. The ;" part
arises from the infrared limit of Kk —0 and is due to the
u;”-u;” distant interaction limit, while the 7; < part
arises from the 0 < k <k_ spectrum and is due to the u,” -
u;~ local interaction limit. Thus in the e-RNG model of
Rubinstein and Barton [7], the Reynolds stress 7;; =7
and is obtained purely from the u;”-u;” interaction in the
small unresolved scale momentum equation (8).

We now consider the contribution to the Reynolds
stress that arises from the local interaction:

;== [d’plu (k—plu; (p)+u (k—p)u (p)] .
(10)
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where 7=V'—1, and D, is the projection operator
defined by

kkg
k2

A scale factor A is now introduced to partition the wave-
number space to N bands, such that

k.=ky=h"k, ,
ky_=hV kg, ..

k0=0(kd) 5

. k,=hk, , @)

where k. is the cutoff wave number that separates the
large scale from the small scale, and &, is of the order of
the Kolmogorov dissipation wave number. The velocity
field is then decomposed in the Fourier space such that
u;=u;” 0k —k,)+u;~0(k, —k) [wherein 6 is the Heavi-
side unit step function, k,(h =1,N) is the local cutoff
wave number, the superscript < represents large resolv-
able scale quantities, and > represents small unresolved
scales with respect to the local cutoff wave number]. The
evolution of these components can be directly obtained
from (3) as

u,~>(k,t)=M,~aB(k)fd3p[u;(p,t)uE(k—p,t)+2u;(p,t)uﬁf(k—p,t)-i-u;(p,t)ug (k—p,2t)], (8)

u,-<(k,t)=M,-aB(k)fd3p[u;(p,t)uE(k—p,t)+2uj(p,t)u,;(k—p,t)-ﬁ-u;(p,t)ug(k—p,t)] .9

Herein u<(k—p) corresponds to the Fourier-transformed
velocity field in the resolvable large scales, |k—p| <k,
while u”(p) corresponds to the small-scale field with
|p| >k, and k, is the wave number which separates the
resolvable from the small unresolved scales.

Some care is needed in the evaluation of local interac-
tion 77 <. In particular, it is important to preserve cer-

ij
tain properties that 7;; < must satisfy (a) 7;; <—0 as the
7 < is Galilean

turbulent kinetic enerjgy K —0, and (b) 7;;
invariant. Constraint (a) arises from Eq. (10): in the limit
of turbulent kinetic energy K —0, the subgrid scale ve-
locity field u” —0, hence 7;; <—0. Constraint (b), while
being physically obvious, has been shown to be rigorously
satisfied by »-RNG in that the cubic nonlinearities, which
are an essential element of the renormalized Navier-
Stokes equation, do not destroy the Galilean invariance
[25]. Now if one follows blindly the usual »-RNG pro-
cedures [10-13], then in the elimination of the first
subgrid shell one would substitute the subgrid velocity
field of solution of Eq. (9):

Miosp)
u,.>(p)=Tf’ffd3ju;(j)u;(j—p>+ (1)

into Eq. (10), where - - - refers to terms that will not con-

tribute to 7;; <. Implicit in the substitution of (11) is the

assumption that the turbulent kinetic energy K is
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nonzero. However, in the limit of K —0, this substitu-
tion is inappropriate since the right-hand side of (11) is
nonzero while u” —0. To overcome this problem and
the somewhat more subtle loss of Galilean invariance, we
introduce the factor (p —k),(p —s),/k? into the in-
tegrand on the right-hand side of (10), and integrate over
s for 7;7 <. This factor ensures that constraints (a) and (b)
are indeed enforced, since k, =0(e/K3*?)— w0 as K —0.
Indeed, following Yakhot and Orszag [5], this cutoff
wave number k. can be related to the turbulent kinetic
energy K by

2/3

K= f E(p)dp=131Cyx <+~ (12)

k2/3

on using the Kolmogorov inertial range spectrum for
E(p), and where Cy is the Kolmogorov constant. Thus,
the cutoff wave number k, which separates the resolvable
scales by the subgrid scales is given by

=3 (13)

Hence after the elimination of the first spectral subgrid
band, Eq. (10) becomes

fd3 d3s (pa—ka)(Pa—Sa)
p v0p2

T><(k)‘1_‘—~

)

XM, s(plu, (shug (p—s)

Xu;~(k —p)+(i<j) (14)
where p is in the subgrid region, while the arguments of
all the velocity fields are in the resolvable scales. The
second term in (14) is obtained by i<«>j interchange in the

first term. After the removal of the second subgrid shell,

7 <(K)y=75 <, — [ dp[u;“(k—plu; (p)
+u;~(k—plu;” (p)], (15)
where k <k,. For k, <k <k, the subgrid velocity field

is obtained by standard RNG procedures, with molecular
1
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p

ug (s)uy (p—shu;~(k —p)

viscosity v, replaced by the renormalized eddy viscosity
'VIZ

lll( .
u”(p)=—"- op) fdju<(1) s(G—p)+ - .
vi(p)p

(16)

Hence the local interaction Reynolds stress, after the el-
imination of the first two subgrid shells, is given by

(pa_ka )(pa—sa)
S 2
vi(pp

M, s(plu (shug (p —s)

(17)

Xu;~(k —p)+(i<sj)

After the elimination of the Nth subgrid spectral band,
the local interaction Reynolds stress becomes

(pa—ky)py—s,)
vi(p)p?

XM, s(puy (shug (p—s)

2 =—-L 3
K2

¢ h=1

fdpds

Xu;<(k —p)+(i<j) (18)

In (18) summation is over all the spectral bands eliminat-
ed, and v, (p) is the renormalized eddy viscosity [10—13].
We now proceed to the differential limit of infinitesimal
spectral shells, so that [15]

: nr 4/3
(19)
250 k) | &
for the Kolmogorov k ~3/3 inertial range energy spec-
trum. With
1 P iPyPs
Myys(p)= 2 8,5+ 850 ’p’ , (20)

(18), in the differential limit for infinitesimal spectral
subgrid shells, becomes

Yug (p—shu;“(k —p)+pgug (s)u;~(p —s)u;~(k —p)

2n

+(i<>j) l .

On taking the inverse Fourier transforms of (21), we obtain the contribution from local interactions in physical space to

the Reynolds stress:
aU; (x)

1
> <(e)—
T kK107

+g,(x—x')—

3U;(x') dU4(x)

fd x’lgl(x x’)

dxg ox,,

AU, (x') d*Ugy(x’)
S Rt AR LS e 22
X Oxz  Ox,0x),
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In (22) we have identified the reasonable velocity field in
the physical space with the mean velocity U;, and the
nonlocal kernels g,(x—x’) and g,(x—x') are defined by

(3
f_e_XP_'P_d b, 2, (,,_f_e_xi_sg_)ds

2/3

(23)

The structure of these nonlocal kernels is dependent on
the cutoff wave number k.. Indeed,

2%,
gl(r)=477rfk p'3sin(pr)dp

=3 1273 [7p1Bsinlkop'r)dp’ (24)

gz(r)=4T1ch'2/3 o5 sintk p'ridp (25)

where the integration limits are obtained from the partial
average [15] over the nearest unresolved band. These in-
tegral kernels will reduce the local expressions in the lim-
it of k, >>1. Noting that sin(k . x)/x —7d(x) as k,— o,
we see that, for k, >>1,

g.(r)/4m~3.58k2}38(r) ,

g,(r)/4m=1.74k2/38(r) . (26)
Hence, using this local approximation of the kernels
(strictly valid only in the limit of k,>>1), the -RNG
evaluation of ‘r,-? <(x) in (22) reduces to the simple alge-
braic form

> <(x)=C oU; aU; 8U3+
Ty X ER 53 ox, axﬁ ox, o)
aU; aU, U
+Cp X S o L
e | ox, ax,. dx, Ox,0xg
+ (i) (27)
where use has been made of Kraichnan’s [32] result
vk k}3=0.19C2e!? . (28)

Now for most turbulent flows of interest, the cutoff wave
number k, in (13) will vary considerably throughout the
flow domain. In order to have a tractable model for

ik, + av; y; | k3 oU; au; |*
T .S s
vr a ax; e | ™ |ax, ax,

te 3V, 3U; 3Up e U, 3

k1 83 B, Oxy Ox, | TCRTS 55 ax, dx;
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<(x), we wish to enforce the local approximation for
the kernels g, and g, so as to obtain an algebraic form
for the Reynolds stress 7 J <(x), while still treating flows
with finite k.. Clearly, the coefficients Cz; and Cp, will
be complicated functions of the flow quantities. In par-
ticular, Cy; and Cg, may be expressed as

Cr1=Cry(&,K,1,§) and Cg,=Cp,(e,K,7,8), (29)
where the strain rate =(S,5S.)'"%  with
S.p=+[(dU,/3x5)+(3Upz/3x,)], and the rotation

rate  $=(W, W)
—(dUg/0x,)].

The nonlocal contribution to the Reynolds stress,
;7 (x), is the somewhat standard [3,4,7]. From a RNG
perspective and based on earlier comparisons [12,13,25]
between the nonlocal e-RNG and the k—0 of the r-
RNG results, it seems appropriate here to use Rubinstein
and Barton’s [7] e-RNG evaluation of the (nonlocal) Rey-
nolds stress:

with W, z=1[(0U,/dxp)

aU; ai
axj ox;
3U; 3y; *
ox, 0x,
aUu; aU, 9aU; avy,

dx, 0x; Ox, Ox;

U, dU,

dx; Ox;

T>>__ 2K8 +'VT

ij
K3
82

+ C‘r2

+ CT3 ’ (30)

as a negligible difference is expected from the kK —0 of the
r-RNG analysis. We thus will use the coefficients as de-
rived by Rubinstein and Barton [7] C,=0.034,
C,=0.104, and C_;=—0.014, and ( )* denotes the devi-
atory part of the expression within the parentheses. The
first two terms correspond to the linear model, with the
isotropic eddy viscosity vy =C, K 2 /¢, where ¢ is the tur-
bulence dissipation. Canonically, the value of C,~0.09
is based on empirical data from equilibrium boundary
layer flows. The third term in (30) is the main result of
Rubinstein and Barton [7], is quadratic in mean strain
rate, and includes the effect of convection and diffusion.
It has the same structure as other second-order models
but with somewhat different coefficients [3,4].

Hence our final model for the Reynolds stress, includ-
ing both the nonlocal and local interactions, is obtained
by combining Egs. (27)-(30):

aU; dU, = dU; 3U, U, au, |*

dx, Ox; Ox, Ox; | ax; ax;
80U, 90, +(ioj) 31)
dx, Ox,0xg =)
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The last two terms are those that we have calculated
from -RNG. It is of some interest to recast the above
expression for the Reynolds stress obtained from the r-
RNG model into an integrity basis representation, such
as is commonly employed for the anisotropic part of the
Reynolds stress tensor b;; =(7;; —%K§,;)/2K, in the fol-
lowing form-invariant manner [26-28]:

b,.j:g (CAY Y (32)

where T,‘f‘ is the integrity basis for functions of sym-
metric and antisymmetric tensors, and the coefficients
G™ are scalar functions of the irreducible invariants of
the strain rate tensor S;; and the rotation rate tensor W;

[26-28]:

(D=
Tij _—SU ’

TP =8;Waj— WS

aj

(3) — 1
Tij _SiaSaj Fsaaaij ’

Ti(j4)= VVia Waj Waa6

ij r
(5) —
Tij —VViaSaﬁsﬂj_SiaSaBWBj ’

TP =W, W o5Sp+SiaWosWp; (33)
— S ogWp, Woa)80p »

Ty =WiaSasWo, Wy = WiaWapSp Wy

(8) — —_
T =SiaWapSpySyj ~SiaSapWeySyj »

(9) —
Tij = WiaWaﬂSBYSVJ +85; Saﬁ WB‘V Wyj

l_]’

Ti(le)z VViaSaBSBy W'ye Wej —Wia WaBSBySyE W,

Recently, Gatski and Speziale [28] have applied this in-
tegrity basis to determine an explicit algebraic stress
model for three-dimensional turbulent flows based on a
systematic derivation from a hierarchy of second-order
closure models. In their applications, they have restrict-
ed themselves to a model [28] which involves just the ten-
sors T", T{?, and T{?. It can readlly be shown that the
k =0 part of the Reynolds stress, 7., specified in (30),
involves the tensors T}, T\?, T, and T} from the in-
tegrity basis given by (33). The T> > part of the Reynolds
stress is common to both e-RNG and r-RNG. However,
unlike e-RNG, there is now a finite-k spectral contribu-
tion 7;; < to the Reynolds stress in »-RNG. It can be
shown that the first term in (27) involves the tensors T}
and T of the integrity basis (33). The second term in
(27), on the other hand, cannot be expressed in this
second-order basis because of the intrinsic higher-order
derivatives involved. This term is a direct consequence of
the -RNG formulation, and contributes to the dispersive
effects of the Reynolds stress.
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III. TURBULENT FLOW
PAST A BACKWARD-FACING STEP —A CASE STUDY

The problem to be considered is the fully developed
turbulent flow of an incompressible viscous fluid past a
backward-facing step (a schematic is provided in Fig. 1).
Calculations will be. conducted for an expansion ratio
(outlet channel height: inlet channel height) E of 3:2 and
the Reynolds number Re=132000 based on the inlet
centerline mean velocity and outlet channel height (which
corresponds to that of Kim, Kline, and Johnston [30] and
Eaton and Johnston [31]).

The governing equations used to describe the separated
flow past the backward-facing step consists of the time-
averaged equations of motion (1) and (2), along with the
Reynolds stress specified by (31). Closure is achieved by
specifying turbulent kinetic energy K and dissipation
e—aquantities that are directly related to the length and
time scales—through the development of transport equa-
tions. In this work, we do not attempt to derive these
equations from r-RNG (this is a very major undertaking,
and beyond the scope of this paper) but rather utilize the
standard two-equation turbulence model of the following
form that is considered widely in the literature [1]:

B, Boper L | 2| 11 Lo
e, O
ot 7 0x;
“K(P CazK a—a_ Vo+£’ ’(%:I' -r,
(35)
where v=v,+ v is the total viscosity,
= % (36)
J
is the turbulence production, and
R=2vS;; | = au ou; (37
ax

is the turbulent strain rate correlation term. The quanti-
ties C,;, C,, ak, and a, are dimensionless and treated as
constants that are model dependent. A major problem
with this type of closure is the treatment of the strain rate
correlation 7. No theory exists, at present, that can

Hy

1

V.
T
///////////

[_i
-
x
K

x

FIG. 1. Physical configuration and coordinate system.



49 DEVELOPMENT OF A TURBULENCE MODEL BASED ON . ..

treat this term from first principles. A somewhat success-
ful modeling of this term has been achieved by Yakhot
et al. [9] for shear flows, but various ad hoc procedures
had to be invoked—procedures totally independent of e-
RNG procedures. In attempting to assess the impor-
tance of the local interaction contribution to the Rey-
nolds stress 7;; < on separated flows, it was felt that one
should avoid encumbering the results with these ad hoc
procedures. Hence, as is customary in the standard K-¢
model, we have also neglected this strain rate correlation
term . To maintain some form of consistency, the stan-
dard K-e model values for the constants

C,.=14, C,=192, ag=1.0, a,=1.3, (38)
rather than those values determined by the other
theories, are used. The above equations are solved sub-
ject to the following boundary conditions [33].

(a) Inlet profiles for U, K, and ¢ are specified five step
heights upstream of the step corner (U is taken from the
experimental data [30,31], and the corresponding profiles
for K and € are computed from the model formulated for
channel flow).

(b) The law of the wall is used at the upper and the
lower walls.

(c) Conservative extrapolated outflow conditions are
applied 30 step heights downstream of the step corner.
These conditions involve the following: (i) the ¥V com-
ponent of the velocity for the cells at the outflow bound-
ary are obtained by extrapolation; (ii) the U component of
the velocity is then computed by the application of a
mass balance; and (iii) the scalar quantities such as pres-
sure, turbulent kinetic energy, and turbulent dissipation
are all obtained by extrapolation. It was found that a
downstream channel length of about 30 step heights was
needed to ensure that the local error for all the quantities
was of the same order as the interior values.
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A finite volume method which relies on solving the
discretized equations by a line relaxation method with the
repeated application of the tridiagonal matrix solution al-
gorithm is modified and applied for the present case to
obtain the steady state solution [33,34]. The computed
solution was assumed to have converged to its steady
state when the root-mean-square of the average difference
between successive iterations was less than 10™* for the
mass source [34]. Approximately 2000 iterations were
needed for the convergence of the standard K-& model;
this corresponds to approximately 20 min of CPU time in
a partially vectorized mode on the Cray-YMP supercom-
puter using 64-bit precision. The »~-RNG-based K-¢ mod-
el requires approximately 33% more CPU time due to
the fact that the additional terms in the RNG-based K-¢
model have to be evaluated during each iteration. These
correction terms are dispersive—an additional feature
that slows convergence.

The issue of resolution is crucial for the backstep prob-
lem, and calculations indicate that a 200X 100 mesh
yields a fully grid-independent solution [33]. All the
computations conducted in this study were performed us-
ing this 200X 100 nonuniform mesh. As indicated ear-
lier, the inlet conditions were specified five step heights
upstream of the step corner, and the outlet boundary con-
ditions were specified 30 step heights downstream of the
step corner. It is crucial that a sufficient distance down-
stream of the reattachment period be allowed before the
outflow conditions are imposed. Many earlier computa-
tions of the backstep problem were in significant error
due to the imposition of fully developed outflow condi-
tions too close to the reattachment point. Furthermore,
it is crucial that a fine mesh be used near the step corner
for computational accuracy. It should also be noted that
the law of the wall does not formally apply to separated
turbulent boundary layers. However, since the separa-
tion point is fixed at the corner of the backstep—and the

[

T T
-1 0 5

X/H

X/H : 1.33 2.67 5.33 8.00
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FIG. 2. Computed flow field with the stan-
dard K-¢ model (E=3:2; Re=132000;
200X100 mesh; C,=0.09; C,=1.44;

C,=1.92; 0x=1.0; 0.=1.3; and k=0.41).

1o.67 (a) Contours of mean streamlines. (b) Mean

(b) ¢

velocity profiles at selected locations ( ,
computed solutions; O, experiments of Kim,
Kline, and Johnston [30] and Eaton and
Johnston [31]).
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FIG. 3. Computer turbulence stresses with
the standard K-e model (E =3:2; Re=132000;
200X100 mesh; C,=0.09; C,=1.44;
C,=1.92; 0x=1.0; 0.=1.3; k=0.41; ,
computed solutions; and O, experiments of
Kim, Kline, and Johnston [30] and Eaton and

Johnson [31]). (a) Turbulence intensity
profiles. (b) Turbulence shear stress profiles.
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flowfield is solved iteratively so that the friction velocity
u, can be updated until it converges—major errors do
not appear to result from its use [33].

First, results will be presented for the standard K-e
model. For this case—as well as the other results to
follow—computed results for the mean velocity stream-
lines, the streamwise mean velocity profiles, the stream-
wise turbulence intensity profiles, and the turbulence
shear stress profiles are compared with the Kim, Kline,
and Johnson [30] experimental data as updated by Eaton
and Johnston [31]. In Fig. 2(a) the computed streamlines
are shown, indicating reattachment at X, /H ~6.1—a re-
sult which is approximately 15% underprediction of the
experimental reattachment point of X,/H=7.1. In this
context, it is noted that due to the very nature of the flow
field—turbulent separated flow characterized by a mas-
sive recirculation region straddled by a sharp shear
layer —unsteadiness of both temporal and spatial kinds
have been observed and documented [30,31]. The spatial
uncertainties are known to include variations in the reat-

X/H :

1.00 5.00 8.00

15.00

=<

LT

o]

0.0 10 20 10 10 20 10 20 10 20

k H

tachment point along the spanwise and the axial direc-
tions [31,35]. Thus a conservative estimate of 7.1+0.5
for this geometry, where the value of 7.1 represents the
time-averaged mean value along the midspan of the chan-
nel, is generally accepted. The experimental data for the
mean velocity field and the turbulence quantities utilized
in this text for comparison with the computational results
corresponds to the time-averaged mean along the
midspan of the channel.

In Fig. 2(b), the streamwise mean velocity profiles pre-
dicted by the standard K-e model are compared with the
experimental data. Except in the vicinity of the reattach-
ment point, the comparisons are fairly good. More seri-
ous discrepancies between the model predictions and the
experimental data occur in the initial part of the recovery
zone for the streamwise turbulence intensity profiles, as
shown in Fig. 3(a). However, the model predictions for
the turbulence shear stress profiles are reasonably good,
as can be seen from Fig. 3(b).

Next we consider computations based on the aniso-

FIG. 4. Variation of cutoff wave number
k.H at several locations downstream of the
step for the recursion RNG K-e¢ model
(E =3:2; Re=132000; 200X 100 mesh; s
computations; O, experiments of Kim, Kline,
and Johnston, 1980 [30] and Eaton and
Johnston, 1981 [31)).
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-1 0 s 10
X/H FIG. 5. Computed flow field with the recur-
sion RNG K-g model based on a finite cutoff
wave number [E =3:2; Re=132000; 200X 100
mesh; C,=0.09; C,=144; C,=1.92;
X/H : 1.33 6.22 8.00 10.67 O-K=10; 0'521.3; K=041; CR]=—250

X 1073; and Cr,=—0.0352X1073]. (a) Con-
tours of mean streamlines. (b) Mean velocity
profiles at selected locations ( , computed
solutions; O, experiments of Kim, Kline, and
Johnston [30] and Eaton and Johnston [31]).

tropic Reynolds stress formulation of the »-RNG model.
For computational efficiency, the radial parts of the non-
local kernels g, and g, are approximated by one-
dimensional § functions. This is a good approximation if
k.>>1. In Fig. 4, the variation of k., (normalized by the
step height and expressed as k. H) with y /H is shown at
various locations downstream of the step, x /H. As can
be seen, the magnitude of &, is at least an order of magni-
tude larger than the grid size employed (k,H > 1 for the
200X 100 mesh used). Thus the local representation of g,
and g,, for the backstep problem, seems a good approxi-

mation. Unfortunately, the angular dependence of these
coefficients on the mean strain rate and the mean rota-
tional rate is not so easily approximated, with explicit
functional dependence on these rates leading to difficult
numerical computations. As a first attempt at assessing
the importance of local interaction effects on the Rey-
nolds stress, 1-5 <, the coefficients are approximated as
constants. Based on the recent success of Yakhot et al.
[9] in invoking functional Ansatze that certain coefficients
could have when the strain rate correlation & was
modeled, we expect that ignoring the functional forms of
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(Fz] cutoff wave number (E =3:2; Re=132000;
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Y i FIG. 7. Variation of the eddy viscosity
H vr /vy at several locations downstream of the
tr L step (— — —, standard K-¢ model; , Te-
) ) - ) cursion RNG K-¢ model ). E=3:2,
ok il ralf Re=132000, 200 X 100 mesh.
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Cr, and Cp, will underestimate the robustness and accu-
racy of the Reynolds stresses. Nevertheless, it is deemed
more appropriate here to apply the theory without add-
ing on these extraneous functional Ansatze. It is also evi-
dent that the angular dependences of g,(|x—x’|) are
much stronger than those for g,(|x—x'|); the second
term in (22) is much stronger than that of the first term in
(22). This is because of the higher-order derivatives
present. Moreover, these angular integrations are also
dependent on the spatial position due to the changing
flow characteristics. A simple mean-value-type approxi-
mation is applied to estimate these angular integrations,
and for the present analysis we find,

Cr1=0.025, Cg,=0.342X1073 . (39)

Now it will be demonstrated that use of the proposed
r-RNG-based Reynolds stress model can yield a more
significant improvement in the results. The computed
streamlines for the flow field shown in Fig. 5(a) have a
mean reattachment point X, /H =~6.72, a result which is
about 5% lower than the experimental value. The corre-
sponding mean velocity profiles shown in Fig. 5(b) indi-
cate very good agreement with the experimental results.
It should be noted that computations performed based on
the e-RNG-based model for the same flow conditions and
model constants yield a mean reattachment point
X,/H =~6.42 (not shown herein). The difference in the
size of the separated flow region can be clearly attributed
to the contributions from the Reynolds stress terms
representing the local interactions effects in the »-RNG
model. In particular, it is found that around 80% of this
improvement comes from the Cg, term.

Furthermore the overall agreement between the tur-
bulence intensity and the shear stresses with the experi-
mental data shown in Figs. 6(a) and 6(b) are also good.
The most notable difference between the predictions of
the RNG-based Reynolds stress models and the standard
K-e model lies in the streamwise turbulence [Fig. 6(a)].
The slight trough-shaped variation predicted in this re-
gion is consistent with more recent independent experi-
ments [35].

In addition, to illustrate the differences associated with
the modeling of the Reynolds stresses, the variation of
the turbulent eddy viscosity normalized with respect to
its molecular counterpart, vy /v, is shown at several lo-
cations downstream of the backward-facing step in Fig.
7. As can be seen in the recirculation region, the eddy

viscosity predicted by the standard K- model is generally
larger than that due to the »-RNG, leading to substantial
reduction in the size of the separated flow region [cf.
Figs. 2(a) and 5(a)].

The wall pressure coefficient is an important parameter
for engineering applications. In Figs. 8(a) and 8(b), the
pressure coefficients C, (=2[p —p,]/ U2, where p, and
U, are the reference pressure and velocity, which are tak-
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FIG. 8. Comparison of the predicted wall distributions with
experiments [— — —, standard K-e¢ model; , recursion
RNK K-¢£ model ] E =3:2; Re=132000. (a) Pressure coefficient
along the bottom wall (O, experiments of Eaton and Johnston
[31]). (b) Pressure coefficient along the top wall (O, experiments
of Eaton and Johnston [31]). (c) Skin friction coefficient along
the bottom wall (O, scaled experimental data of Driver and
Seegmiller [36]).
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en at the centerline of the inlet) obtained from the stan-
dard K-¢ model and the RNG-based Reynolds stress
model at the top and bottom walls are compared with the
experimental data of Eaton and Johnson [31]. As can be
seen, both the standard K-e¢ model and the RNG-based
Reynolds stress model perform comparably well in repro-
ducing the experimental trends. The skin friction
coefficients C;=2u? /U} obtained from the standard K-¢
model and the »-RNG Reynolds stress model are com-
pared with the scaled experimental data of Driver and
Seegmiller [36] for the bottom wall in Fig. 8(c). Here we
make use of the fact that the ratio C +/C faos when taken
as a function of the normalized distance (X —X,)/X,, is
independent of the expansion ratio (given that C, is the
fully developed skin friction coefficient and X, is the reat-
tachment point). As can be seen, the 7-RNG-based Rey-
nolds stress model performs better; however, both models
are probably within the uncertainty of the experimental
data.

Finally, in Table I a comparison of the reattachment
points for the two-equation turbulence models considered
herein is given. To illustrate the improvements due to
the inclusion of the higher-order terms arising from the
r-RNG formulation of the Reynolds stress, the results for
the standard two-equation model that is linear in strain
rate is shown first, and is followed by three different
quadratic models—a model that is derived by the
renormalization-group theory solely by considering the
nonlocal effects (Rubinstein and Barton [7]), a model
wherein the effects of turbulence are represented similar
to non-Newtonian fluids involving a quadratic and
frame-indifferent relation between stress and strain rate
(Speziale [3]), as well as a model that is derived by a gen-
eral perturbation method based on two-scale direct in-
teraction approximation [4,37,38]. As can be seen, the
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inclusion of the second-order terms in strain rate leads to
an improvement of about 6.5% (with the e-RNG model
[7] yielding about 5.2%, while the general perturbation
method based model [4,37,38] shows an improvement of
about 6.5%). However, it should be noted that, unlike
the e-RNG model, in the other quadratic models the
values of the coefficients (C,,, C,, and C,;) are empiri-
cally obtained by calibration (Speziale [3] uses channel
flow data, while the coefficients attributed to Yoshizawa’s
model [4] were obtained after calibration based on flows
in noncircular ducts [37,38]. In this context, it is in-
teresting to note that the reattachment point is rather in-
sensitive to the specific values of these coefficients. The
results from the »-RNG model are shown next, and, as
can be seen, the importance of local interaction effects in
the modeling of Reynolds stresses is quite evident—
about 5% improvement (over that of Rubinstein and
Barton [7], wherein only the nonlocal effects are con-
sidered) in the prediction of reattachment point and the
mean flow field in the separated flow region. While simi-
lar improvements are possible by other means, the
present improvements are effected by a systematic
analysis based on the renormalization-group theory ap-
proach, without the use of ad hoc empiricism.

IV. CONCLUSIONS

The recursion renormalization-group (»-RNG) theory
is utilized to develop a local interaction contribution to
the Reynolds stresses for the prediction of turbulent
separated flows. Unlike the small-parameter e-RNG
theories, which can only treat the interaction of the
long-wavelength modes, r-RNG theories incorporate
both local and nonlocal interactions of all relevant resolv-
able scales. A formal evaluation of the Reynolds stress

TABLE 1. Turbulent flow past a backward-facing step—reattachment length for different two-
equation models. All models utilize the standard form of the transport equations for the turbulence
kinetic energy, and dissipation with the following model coefficients: C,=0.09, C.; =1.44, C,=1.92,
a.=1.0, and a,=1.3. The strain rate correlation R is not included. Mean experimental reattachment

point X, /H~=7.1 [31].

Model X,/H Reynolds stress model
Standard K-e¢ model 6.10 Isotropic with f,.,.=—%K8,.,.+vT(a,U,-+a,- U;)
e-RNG model [7] 6.42 Anisotropic with quadratic effects ;=77
Nonlinear K-e model [3] 6.46 Anisotropic with quadratic effects in 7;;
TSDIA model [4] 6.49 Anisotropic with quadratic effects in 7;°
r-RNG model (present) 6.72 Anisotropic with cubic effects: 7,=7; +7;; <¢

*From Eq. (30) based on e-RNG model [7] (C,, =0.034, C,, =0.104, and C,;=—0.014).
®Based on the model proposed by Speziale [3], wherein effects of turbulence are represented similar to
non-Newtonian fluids using a quadratic relationship between stress and strain rates (C,, =0.041,

C,,=0.014, and C,; = —0.014).

“Based on the general perturbation model of Yoshizawa [4] using the two-scale direct interaction ap-
proximation (TSDIA) with the coefficients obtained by calibration with turbulent flow in square ducts

[37,38] (C,, =0.057, C, =

—0.167, and C,; = —0.0067).

9From Eq. (31). If other formulations such as those of Speziale or Yoshizawa are used for Ti; » the
coefficients C,,, C,,, and C; will be correspondingly altered, and minor improvements noticed in terms
of an increase in the reattachment length. For example, with the model proposed by Speziale® the reat-
tachment length X, /H =~6.77, when local effects arising from r-RNG are now included.
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by the »-RNG is presented. Of particular importance is
the appearance of two new terms in 'r,; < due to local in-
teractions. The nonlocal interaction term is expected to
be essentially the same as that derived by Rubinstein and
Barton [7] in their €-RNG treatment of 7; . This
correspondence between the e-RNG results and the non-
local (k —0 limit ) »-RNG results has already been noted
in earlier works [12,13,25].

The effects of these local interaction terms in 7;; is ex-
amined by considering turbulent flow past a backward-
facing step as a test case. For numerical convenience, the
functional dependence of the new r-RNG generated
coefficients Cp; and Cg, on the strain rate and rotation
rate—while expected to be of considerable importance
[9]—is not treated here. Instead, simple approximations
are utilized to reduce these coefficients to constants. Be-
cause of the simplification, the testing of our model here
can be seen as an underestimate of the robustness of this
formulation. The detailed numerical results presented
here demonstratc that the proposed »-RNG model can
yield very good predictions for the turbulent flow of an
incompressible viscous fluid over a backward-facing step.

It should be remembered that the deficiencies of two-
equation models as well established, particularly in tur-
bulent flows with body forces or Reynolds stress relaxa-
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tion effects [1]. Consequently, the findings of this study
should not be interpreted as an unequivocal endorsement
of two-equation RNG models. Nonetheless, this study
shows that properly calibrated two-equation turbulence
models, which account for the anisotropy of the tur-
bulent stresses, can be effective for the prediction of tur-
bulent separated flows. Future work will consider more
sophisticated evaluation of the functional forms of the
coefficients Cy, and Cy, as well as the development of 7-
RNG-based transport equations for the turbulent kinetic
energy and dissipation.
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