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A family of schemes is outlined for constructing stochastic fields that are close to turbulence. The
fields generated from the more sophisticated versions of these schemes differ little in terms of one-point
and two-point statistics from velocity fluctuations in high-Reynolds-number turbulence; we shall desig-
nate such fields as synthetic turbulence. All schemes, implemented here in one dimension, consist of the
following three ingredients, but differ in various details. First, a simple multiplicative procedure is uti-
lized for generating an intermittent signal which has the same properties as those of the turbulent energy
dissipation rate e. Second, the properties of the intermittent signal averaged over an interval of size r are
related to those of longitudinal velocity increments hu (r), evaluated over the same distance r, through a
stochastic variable V introduced in the spirit of Kolmogorov's refined similarity hypothesis. The third
and final step, which partially resembles a well-known procedure for constructing fractional Brownian
motion, consists of suitably combining velocity increments to construct an artificial velocity signal.
Various properties of the synthetic turbulence are obtained both analytically and numerically, and found
to be in good agreement with measurements made in the atmospheric surface layer. A brief review of
some previous models is provided.

PACS number(s}: 47.27.Eq, 47.27.Jv

I. INTRODUC. I1ON

It is now well understood that the inertial and dissipa-
tive ranges of scales of turbulent motion at high Reynolds
numbers are independent of the Bow configuration —at
least to a degree that is usefully accurate —and it follows
that these scales of motion depend only on a few gross
parameters. An important question, then, is as follows:
What is the smallest set of parameters which adequately
incorporate all the universal aspects of turbulent
motion —at least to some reasonable accuracy? In part,
this paper is devoted to answering the question. One can
construct, with relatively modest physical input, stochas-
tic signals that have most properties of a turbulence ve-
locity trace at high Reynolds numbers. For convenience,
artificial signals mimicking real turbulence well will be
designated as synthetic turbulence.

One of the relevant observations [1] in this regard is
that the longitudinal velocity increments in the inertial
range of scales share some of the properties of fractional
Brownian motion [2] with a Hurst exponent of about
0.35. However, this is only partially true because the in-
crements of fractional Brownian motion are symmetrical-
ly distributed, whereas the turbulent velocity increments
have a finite skewness [3]. Several other methods [4—7]
can produce signals possessing various properties of tur-
bulence but fall short in some ways. Except for Ref. [4],
the models in general do not successfully incorporate the
skewness and odd-order structure functions. Indeed, the
finite skewness of longitudinal velocity increments is an
important property related to energy transfer across
scales, and its incorporation into a simple scheme is a ma-
jor challenge. Another important consideration is the in-
corporation of small-scale intermittency in the dissipa-
tion field obtained from the velocity derivatives.

In this paper, we outline a family of schemes for gen-
erating turbulencelike signals that mimic real turbulence
to various degrees of detail; in the more refined schemes
used here, the signals generated do not differ significantly
from real turbulence in the sense of one-point and two-
point statistics. All schemes consist of three essential in-
gredients. First, an appropriate multiplicative procedure
is utilized for generating intermittent positive signals (or
measures) possessing many of the properties of turbulent
energy dissipation, e. The properties of the measure liv-
ing in a box of size r are then related to those of velocity
increments hu(r} over a separation distance r This i.s
done via a stochastic variable V introduced in the spirit of
Kolmogorov's refined similarity hypothesis. The third
and final step consists of constructing synthetic tur-
bulence by suitably combining the velocity increments.

Following a brief review of previous models in Sec. II,
we discuss in Sec. III the broad background needed for
constructing synthetic turbulence. In Sec. IV, we discuss
some preliminary models for generating artificial velocity
fields in order to highlight their drawbacks and motivate
the scheme employed for more sophisticated models de-
scribed in detail in Sec. V. Section VI relates the parame-
ters of the synthetic turbulence model to those of real tur-
bulence by making some analytical predictions from the
model. This section also includes an analytical prediction
of derivative skewness for synthetic turbulence. Section
VII contains a comparison of the properties of synthetic
turbulence with those of velocity fluctuations measured
in the atmospheric boundary layer a few meters above the
ground. The properties examined include power spectral
density, the fractal dimension, Kolmogorov's refined
similarity hypotheses, the scaling of odd- and even-order
structure functions up to the eighth order, and the mul-
tifractal scaling of e, constructed from synthetic tur-
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bulence. The agreement with measurements is found to
be very good. The results are summarized in Sec. VIII.

II. SOME PREVIOUS MODELS

We now present a brief review of some previous models
proposed in recent literature for constructing signals
which share some properties of turbulent velocity fluctua-
tions. While all of these models yield the correct form for
even-order structure function exponents, they fail (except
for Ref. [4]) to incorporate the skewness of velocity incre-
ments, and odd-order structure functions in general.
Further, some of them do not incorporate small-scale in-
termittency and do not satisfy the continuous scale sym-
metry imposed by the Navier-Stokes equations in the
inertial range, nor do they satisfy the continuous transla-
tional invariance necessary to model homogeneous tur-
bulence.

Eggers and Grassmann 14J. These authors propose a
one-dimensional model for the turbulent velocity field us-

ing a Fourier-Weierstrass basis. The model consists of a
superposition of successively smaller eddies forming a
Cayley-tree-like structure. The model is written as

u(x)= i A, x/L&
uI "(x)e '+c.c. ,

I= —N

( ) ~ ~J sin(cot)

n=n
(2)

Tl2 nilHere, co=b" where b is a constant ( —1), b ' and b "
are the largest and smallest frequencies in the series, and

and H. are scale independent constants with the con-
straint 0&H (1. They show that this representation
yields correct forms for energy and dissipation spectra for
fully developed turbulence in various flows.

Vicsek and Barabasi /6J. The authors propose a
multiaffine model to represent the turbulent velocity fluc-
tuations. The model makes use of a generator function
which takes the form of an asymmetrical z made of three
intervals. At each step of the iterative procedure, the in-
tervals obtained in the previous step are replaced with
properly rescaled version of the generator or its mirror
image. The authors find good agreement with experimen-

where I.o is a reference length scale, A, & 1 is real scaling
factor, u'"(x ) represents the amplitude of an eddy of lev-
el I at position x, and c.c. stands for the conjugated com-
plex. The randomness of eddy decay is modeled by a
multiplier distribution similar in spirit to that of the p
model (see below), which forms the u'" amplitudes. The
authors study the influence of physical assumptions of
the cascade (spatial coherence of eddies and a version of
viscous cutoff on the intermittency exponent which
determines the behavior of the scaling of structure func-
tions. Of the four papers summarized here, this is the
only one which addresses the issue of skewness.

Humphrey, Schuler, and Rubinsky I5J. These authors
propose a deterministic multifractal Weierstrass-
Mandelbrot function to represent dissipative as well as
inertial range scales of turbulence

tal data for velocity structure functions and generalized
dimensions for velocity derivatives.

Benzi et al. I'TJ. Using information about the scaling
exponents of structure functions, the authors propose a
generalization of the recursive scheme to generate, Uia

self-affine functions, a multiaffine field resembling velocity
fluctuations in turbulent flows. The authors also provide
an alternative interpretation of their scheme in terms of a
wavelet decomposition. In particular, the one-
dimensional velocity field is given by

@(x)= g g ct, kg, k(x), (3)
j=—oo k = —co

where P~k(x)=2~ f(2~x —k), g(x) being a basis func-
tion with zero mean, and a k are a set of coefficients
forming a dyadic structure. The authors point out that
the scheme can be generalized to three dimensions, and
study the probability distribution functions of the incre-
ments of the signal.

While each of these schemes is ingenious in its own
way and succeed to varying degrees, their salient feature
(except for Ref. [4]) is that they are based on mathemati-
cal constructs providing little insight into the underlying
physics. The significant difference of the schemes de-
scribed in this paper is that they are based more firmly in
turbulence physics, as revealed from both classical and
more recent work. The physical content of Ref. [4] is
somewhat similar to that used here, but our schemes for
constructing the velocity signal are conspicuously
different, mainly because we incorporate continuous scale
invariance in the inertial range as well as continuous
translational symmetry.

III. BACKGROUND

Bu@=15v
Bx

(5)

where u is the x component of the velocity. We shall fol-
low this practice designating e itself as the energy dissipa-
tion rate. The intermittent nature of e has been described
relatively successfully by means of a multifractal formal-
ism, e.g., Refs. [8] and [9]. The quantity of basic interest
in building up a multifractal measure is the so-called mul-
tiplier distribution [10]. [For our purposes, a measure is
any positive definite quantity which is additive in the

A. The p model for the energy dissipation

One of the central physical quantities in turbulence is
the energy dissipation rate. Its definition

Bu; BQJ.
(4)

Bxj clx;

involves the spatial derivatives of the three components
of the velocity. In Eq. (4), v is the kinematic viscosity of
the fluid, and uk (k =1,2, 3) represents the component of
the velocity vector in the direction xk. It is often con-
venient to deal with the one-dimensional surrogate of the
above equation, namely,

2
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sense that the quantity summed over two nonoverlapping
intervals equals the sum of that quantity over the two in-
tervals. Here, the total dissipation rate contained in the
segment [x,x+r] is equal to re„(x,t)= I"+"dxe(x) is
the appropriate measure for that interval. Note that the
meaning of e„(x ) is the local average of e in the segment

[x,x+ r ].] The multiplier distribution is the probability
density of the multiplier M, which is the ratio of the mea-
sure inherited by an offspring piece to that contained in
the parent piece. That is, if one divides an interval of size
r into two equal (nonoverlapping) pieces of size r/2, one
of the latter pieces contains a fraction M of the parent
measure, and the other piece contains the fraction 1 —M.
Now, M is a random variable for turbulence, possessing a
well-defined probability density function (PDF), which is
invariant in the inertial range [10]. From this scale-
invariance emerge all the multifractal scaling properties
of the energy dissipation, observed in a variety of fully
developed turbulent fiows [9].

It has been shown in Ref. [11] subsequently that a
variety of simple quasideterministic models can be con-
structed from the measured multiplier distribution. The
simplest among them is the so-called p model of Ref. [12].
In the one-dimensional version of the p model, an interval
of size r breaks down into two subintervals of equal size
r/2, and a fraction p of the measure contained in the
parent interval is inherited by one piece (either the left or
the right with equal probabilities} and a fraction 1 —p by
the other piece. This process is repeated with fixed p, un-
til one reaches scales of size rI, where rI=(v /(e})' is
known as the Kolmogorov scale. Using results from the
multifractal analysis of experimentally obtained dissipa-
tion data, it was found in Ref. [12] that a p model with
p=0.7 and 1 —p=0. 3 yields an intermittent measure
which exhibits the same statistical properties as the one-
dimensional surrogate of turbulent energy dissipation.
Figure 1 illustrates the procedure for constructing the
dissipation signal d(x ) on a unit interval (x G [0,1]) ac-
cording to the p model. The p model is equivalent to
prescribing the multiplier distribution as

P(M }=5(M —p )+5(M —[1—p ])
2

The p model is one of the ingredients we shall use to
construct the velocity signal. It should be emphasized,
however, that a number of different dynamical processes
can yield the same multifractal spectrum for dissipation,
and that the p model is representative of a class of models
which agree with experimental data. Its simplicity and
good agreement with experiments make it a useful model;
the real process is evidently far more complex.

B. The l model for the energy dissipation

Like the p model described earlier, the so-called l mod-
el [13] also employs a multiplicative procedure for gen-
erating an intermittent measure resembling the turbulent
energy dissipation. In the one-dimensional version of this
model, a scale of size r breaks up into two subscales of
sizes r

&
and r2, which are generally unequal and are such

that the measure contained in each offspring is equal to

X

FIG. 1. The p model for generating an intermittent measure

d(x ) on a unit interval (x G [0,1]) employs unequal multipliers

(p& =0.7 and p& =0.3) to refine an initially uniform measure ac-
cording to a binary scheme. The outcome of the first three steps
and that at the end of nine steps are shown.

half the measure contained in the parent scale. Just as
before, underlying the multiplicative process is a multi-
plier distribution for the lengths of the offspring pieces.
The PDF of the multipliers ( I!=r, /r and
l2 = I —I, =rz/r ) was computed from the experimentally
obtained turbulent energy dissipation. Its shape is essen-
t!ally independent of the scale r in the inertial range (Fig.
2). Note that the dissipation contained in any scale at
level n of the cascade is simply ( ,')"Leo and th—e size of
the eddy is equal to [g,",I;]L, where LFo is the dissipa-
tion contained in the largest eddy L and the l 's

(0 & I, & 1) represent the multipliers.
Following the procedure laid out in [11],similar to the

case of the p model, one can determine a quasideterminis-
tic approximation to the probabilistic process represented
by the multiplier distribution in Fig. 2. This model turns
out to have the following feature: Split an interval of size
r into two unequal intervals in the ratio of 0.7 and 0.3,
and assign to each of them half the measure contained in
the original interval. Unlike the p model, the scales at a
given level n are not all equal, but the average length
scale is equal to L2 ". Repeat this procedure until the
smallest average scale is equal to the Kolmogorov scale.
Figure 3 illustrates a few stages in the construction of the
I-model dissipation rate.
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C. Kolmogorov's re6ned similarity hypotheses

x x

0 + ~ + p

lo ol

The energy dissipation rate is an important physical
quantity, but of more direct interest in turbulence is the
velocity field itself. To relate the energy dissipation rate
to the velocity field, one can make use of Kolmogorov*s
refined similarity hypotheses [14]and convert the dissipa-
tion rate into a velocity increment. The hypotheses relate
the probability distribution function (PDF) of velocity in-
crement 6 u(r)= u( x+r) u—(x) to the dissipation rate
in the segment [x,x+r], namely re„(x,t). Defining a
velocity scale at (x, t) by U„=(re„)'~ and a local Rey-
nolds number Re„=r U„/v, the first refined similarity hy-
pothesis states that for r «L (L being the integral scale
of turbulence)

Au(r)= VasH(re, )'

0 „1 I

0 0.5

FIG. 2. The probability density function of length multipliers

l; obtained from atmospheric turbulence velocity data. Many
intervals of a certain size chosen in the inertial range are each
split into two parts such that the measure in each offspring piece
is equal to half that in the parent piece. The distribution of the
ratio of the offspring pieces to that of the parent piece is ob-
tained. Different symbols correspond to different initial lengths
in the inertial range: 6 at 32', 0 at 64', + at 128', and x at
256', g being the measured Kolmogorov scale.

lI~ I(

X
FIG. 3. The I model for generating an intermittent measure

d(x) on a unit interval (x & [0,1]}redistributes equal measure
on unequal length scales at each stage of the construction. Un-
equal multipliers {I,=0.7 and I, =0.3) are employed to deter-
mine the length scales at the next step of the cascade. {These
specific values of multipliers were chosen according to the
method proposed in Ref. [11]}.The outcome of the first three
steps and that at the end of nine steps are shown.

where VRsH is a stochastic variable whose PDF depends
only on Re„. The second refined similarity hypothesis
(RSH) states that, if Re„»1, the PDF of VRsH becomes
independent also of Re„, this being the spirit of universal-
ity.

For quite some time, the relation between the energy
dissipation rate and velocity increments has been treated
merely as a dimensional relation of the form
~b,u(r)~-(re„)' . Recently, however, various aspects of
the refined similarity hypotheses have been explored in
detail [15]. Using data from high-Reynolds-number tur-
bulence in the atmospheric boundary layer, Stolovitzky,
Kailasnath, and Sreenivasan [15] studied the properties
of the stochastic variable VasH =Du(r) /(re„)', condi-
tioned on re„. They found that for r in the inertial range,
the PDF of the stochastic variable VRsH is independent
of r and e„essentially confirming the universality embo-
died in the second refined similarity hypothesis. (The
refined similarity hypotheses as stated above have some
shortcomings in the dissipative range, but it is not central
to our immediate purposes. )

The refined hypotheses do not prescribe the precise
form of this universal distribution, but a few related
statements can be made. First, consistency with
Kolmogorov's —', th law [3] demands that ( VRsH )
= —0.8 in the inertial range. That is, the distribution of
VRsH is not symmetric. Second, by invoking the fact that
velocities separated by distances of the order I. are essen-
tially independent of each other, one can write
(b,u(L) ) =2(u ), where (u ) is the mean-square tur-
bulence velocity. Further, recalling the result [16] that
( e ) = A ( u ) ~ /L (with A —1 for high enough Rey-
nolds numbers [16]), it follows that the variance of VRsH
for r-I is approximately 2. Since the universality of
VRsH is supposed to extend over the entire range of scales
between L and q, the variance ( VRsH ) can be expected
to be 2 in the entire inertial range. (For the sake of sim-

plicity, we are stretching in this argument the validity of
the inertial range physics all the way up to L.) The skew-

ness of VRsH is thus of the order of —0.28, which is in

good agreement with experimental measurements. Fur-
ther, this finite (and relatively small) skewness is not con-
centrated in any particular part of the PDF but is spread
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over the entire range of VzsH. The PDF can be fitted
well by a distribution close to the Gaussian. One possible
form is VasH= V—( V), where V is distributed accord-
ing to

p( V )=N(a ) exp — 8 ( V, a )
20

with o-~=2,

B(V,a)= 1+a—V
CT

2 1/2

1+
0 2 (9)

and N(a) a normalization constant. This expression is
motivated by Ref. [17], where it appears in a different
context. The PDF of V —( V) is a good fit to the mea-
sured PDF of VRsH, and yields the right skewness when
a =0.3.

Finally, it is useful to note that when the largest scales
of the velocity of the order L are removed by high-pass
filtering, the velocity increments of the remainder are
essentially unskewed. It is therefore expected that the
variable VRsH computed from the high-pass-filtered ve-
locity is also symmetric, implying that the skewness of
VRsH is not an intrinsic property of turbulence in the
inertial and dissipative scales. As we shall see, this im-
portant factor will be invoked in subsequent work in con-
structing synthetic turbulence.

FBM has been shown [18,19] to be D =2 H- .
For the Kolmogorov turbulence, there exist certain

similarities in the scaling behavior of an FBM with H =
—,
'

and turbulent velocity (see Ref. [1]). An FBM can be
generated by combining increments with the required
variance at different scales using an additive process [19].
Figure 4 shows an FBM with H =

—,
' at different stages of

construction. The spectral density exponent P for this
signal can be verified easily to be about —', . However, the
increments for an FBM have a Gaussian distribution (as

opposed to turbulence, where the velocity increments
have stretched exponential distributions [20]) and are
nonskewed by construction. Further, no intermittency is
built into the construction because only one scaling ex-
ponent is employed. Consequently, high-order structure
functions of order m have scaling exponents rn/3 when
m is even and zero when m is odd. To incorporate skew-
ness and small-scale intermittency into a model for con-
structing synthetic turbulence, more sophisticated alter-
natives will be necessary. The next sections deal with
them.

IV. PRELIMINARY MODELS

The simplest technique for building an artificial veloci-
ty field on the basis of the ideas presented in the previous

D. Fractional Brownian motion

%e have so far described two main ingredients of syn-
thetic turbulence, namely, the construction of a measure
similar to energy dissipation rate and, from it, the veloci-
ty increments in the inertial range. The velocity incre-
ments so obtained have to be added together appropriate-
ly to produce the velocity signal. It should be em-
phasized that the increments b,u(r) at the smallest r can-
not be simply added sequentially because such a pro-
cedure yields the classical Brownian motion. Fractional
Brownian motion (FBM) is an extension of the Brownian
motion to correlated processes [2]. A fractional Browni-
an motion X(t ) is a single-valued function of the variable
t, such that its increments ~(r)=X(t2)—X(t, ),
~=t2 —t &, have a Gaussian distribution with variance

1.0

&[~( )]'&-+", (10)
0, 5

where the scaling exponent H is restricted to the range
0&H &1. The special case with H= —,

' is the classical
Brownian motion. It is interesting to note that if X is in-
terpreted as one component of turbulent velocity and t as
the space coordinate, Eq. (10) defines the second-order
structure function.

Fractional Brownian motion has the scaling property
[Eq. (10)] that whenever t is scaled by a factor a, X is
scaled by a . The trace is therefore self-aSne. The ener-

gy spectrum of a FBM exhibits a 1/f~ dependence.
From Eq. (10) and the Wiener-Khintchine relation it fol-
lows that the spectral density exponent is related to H
through P=2H+1 [18]. The fractal dimension D of the

0.0

—0.5

—1.0 0
I

2000
I

4000
t

I

6000
I

8000

FICx. 4. Construction of fractional Brownian motion using
the midpoint addition method. At each successive stage the in-
crement across a scale r,~(r) [see Eq. (10)] is represented by
the amplitude of the tent function T(t ), whose base is equal in
size to the scale ~. The FBM is formed by superimposing tent
functions of all scales (up to some level of refinement), illustrat-
ed for the first three steps in (a), (b), and (c); (d) shows the super-
imposed signal X(t ) after eight steps in the construction.
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section is as follows. We start by considering an interval
of size L on which a measure is uniform and assigned a
value of L (e), analogous to the zeroth step in p-model
construction. From it, one generates a velocity incre-
ment across the scale L in the spirit of Kolmogorov's
refined similarity hypotheses, namely, b, u (r )
= V(re„)', r=L. The variable V is picked from the
appropriate distribution (see below for more details). The
interval of size L is next divided into two equal segments
(each of length L/2) while the measure itself is divided
unequally in the ratio 0.7 and 0.3. The measures in these
two intervals are again converted to velocity increments
across the scales which are equal to half of the original
interval. This process is repeated for n number of steps
in the p model, at the end of which we have information
about velocity increments across various scales at
different locations. These scales and locations define the
construction at each step of the refinement process.

As in the midpoint addition method for generating
fractional Brownian motion (Fig. 4), the velocity incre-
ments computed for a given interval can now be inter-
preted as the amplitudes of symmetric tent functions
[Fig. 5(a)] placed on the appropriate intervals. The
artificial velocity field is then a straightforward superpo-
sition of the tent functions of all scales. We generated
signals using the above procedure for two different cases.
In one case, the stochastic variable V in Eq. (7) was
chosen from a Gaussian distribution; in the second, it was
chosen as V—( V), where V was picked from a skewed
distribution [Eqs. (8) and (9)]. The fields generated for
both cases are quite similar to turbulent velocity fields,
but suffer from two major drawbacks. First„ the power
spectrum of the signals exhibits spikes (although the
background has the right slope), indicating a lack of con-
tinuous scale symmetry. Second, the skewness and other
odd-order structure functions are zero even when the
variable Vis taken from the skewed distribution. In fact,
it can be shown analytically that no matter what distribu-
tion of V is chosen, a binary cascade model which ern-

ploys symmetric tents cannot yield skewness in the
artificial velocity field.

/'1.

The appearance of spectral spikes indicates a lack of
translational invariance, and is a defect of the mode1
chosen to construct the energy dissipation. In all models
of dissipation based on the p model or its several variants,
an interval is rigidly divided into two equa1 parts at each
step„which imposes an artificial dyadic grid on to the sig-
nal. As mentioned in Sec. III, the p model is only one of
the generic possibilities for modeling the energy dissipa-
tion. For example, the use of the l model for the dissipa-
tion automatically restores translational invariance be-
cause one introduces a range of scales at every step of the
construction. However, the lack of skewness persists. In
order to obtain nonzero skewness, we first note that it is a
structural feature that has to be incorporated into a con-
struction scheme explicitly. We turn our attention to a
model which employs skewed tents [Fig. 5(b)] instead of
symmetric ones. The parameter s in the tent is set at a
fixed value different from —,'. The other details of the con-
struction remain the same. If the stochastic variable V is
chosen from a Gaussian distribution, one does not obtain
any skewness in the resulting velocity signal, no matter
what value of s is chosen. On the other hand, when V is
chosen as V —( V), with V picked from the distribution
given by Eqs. (8) and (9), it is possible to select the param-
eter s such that the artificial velocity signal exhibits the
right skewness as well as correct scaling for all odd-order
structure functions. One way of computing the appropri-
ate value of s will be described in Sec. VI.

The model based on skewed tents and skewed V still
possesses two principal drawbacks. As noted already, the
use of the p model results in the lack of continuous scale
symmetry. Although this problem can be alleviated by
using the I model for the energy dissipation, the second
problem cannot be so resolved: By using a skewed tent
function whose shape remains constant irrespective of the
sign of V, one generates a signal which violates the space
reversal symmetry of the Navier-Stokes equations (i.e.,
x~a —x;u —~ —u for any a ). Hence, if this symmetry is
to be preserved, the shape of the tent function must de-
pend on the sign of stochastic Uariable V.

The scope of the remainder of this paper is, therefore,
set by the following two considerations. Ef we choose to
use the p model, we need to generate skewed tent func-
tions that are consistent with translational invariance as
well as space reversal symmetry. These conditions re-
quire that the scale and the location of the skewed tent
function be chosen randomly from appropriate continu-
ous distributions. Alternatively, if we choose to use the I

model for the energy dissipation, we need not explicitly
consider translational invariance (because it is inherent to
the i model), but should pay attention to the skewness.
The key to both these issues is the generation of a suitable
skewed tent function, which wi11 be described below.

V. SYNTHETIC TURBULKNCK MODELS

A. Skewed tents of random scales and locations
with underlying p model

FIG. 5. (a) Symmetric tent function. (b) Skewed tent func-

tion.
In this instance, the synthetic turbulence signal will be

generated on a unit interva1 by a superposition of a large
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+maxnumber of localized structures of scales r between 2
and 2 '". The unit interval has a resolution of 2 "(i.e.,
it contains 2" equispaced points). The parameters a;„
and a,„(0& a;„&a,„&n ) will be related in the next
section to the integral scale and Reynolds number of the
synthetic turbulence being generated. The structures,
denoted by T'+'(x) and T' '(x) (their shape being a
function of the sign of their amplitude), take the form of
skewed tent functions shown in Fig. 6. They provide the
necessary skewness in both the velocity derivative and ve-
locity increments distribution, as will be shown in Sec.
VI.

We begin by dividing the unit interval into 2 '" pieces,
and use p-model construction to generate an intermittent
measure in each of these pieces. The number of steps
used in the construction is n —a;„because the p-model
measure needs to be defined at the finest resolution (2"
points on the unit interval} in order to facilitate complete
choice in the selection of random scales and locations for
the tent functions, as we shall see later. However, as the

~maxsize of the smallest tent is 2 '", the effective number of
steps in the energy cascade is equal to a,„—a;„. This
number is fixed by the Reynolds number of the synthetic
turbulence signal being generated. We denote by d& the
value of the measure at the smallest interval located at P.
The total measure over the interval [P,P+2 ] will be
denoted by Dtt, that is, D&=gt+&~ d;. We use the nota-
tion d instead of e to emphasize that the measure generat-
ed here is not the actual dissipation but an auxiliary dissi-
pationlike quantity.

As remarked earlier, the synthetic velocity field is o su
perposition of skeIoed tent functions of diferent sizes and
amplitudes. Hence, we need to determine the scale, loca-
tion, and amplitude of each of these tents in order to
define the synthetic turbulence model completely. This is
done as follows.

The sizes of the tents r=2 are chosen randomly
from the following distribution:

P(a)=, a;„&a &a,„,ln(2)2
max 2 min

where a;„and u, „specify the largest and the smallest
tents, respectively. This distribution is analogous to the
hierarchy of scales present in a cascade process. A given
tent of scale r will be localized in the interval [P,P+r]
where the parameter P (which determines the location of
the tent) is chosen from the uniform distribution on unit
interval. The continuous distribution of scales as well as
their random location on the interval satisfy continuous
scale and translation symmetries required by Navier-
Stokes equations. It is important to note that because of
the continuity of the parameter P, the superposition of
different tents will produce a viscous crossover scale
which fluctuates spatially.

Finally, the amplitude of the tent is a measure of the
velocity increment across an interval of size r, which will
be determined in the spirit of Kolmogorov s refined simi-
larity hypothesis as the product of a stochastic variable V
and (Dp)' We .use a Gaussian distribution with zero
mean for the stochastic variable V. The amplitude of the
tent will be equal to UoV(gt'+&~ d;)'i = UoVDt'3 . For
random values of P and r =2 chosen from the distribu-
tions specified above, we need to know the value of d; at
the finest resolution in order to compute the quantity
gi'+&~ d;. This necessitates n a;„-steps in the p-model
construction as mentioned before. The quantity Uo pro-
vides the velocity units for the amplitude of the tent; it
will always appear in conjunction with V. Without loss
of generality, we can take ( V ) = 1, and keep Uo as a pa-
rameter. It will be shown later that Uo corresponds to
the root-mean-square (rms) velocity.

In order to preserve the space reversal symmetry of the
Navier-Stokes equations, a further consideration is neces-
sary. When the sign of the amplitude (given by the sign
of the stochastic variable V} is positive, the tents will be
of the form shown in Fig. 6(a) and will be denoted by
T'+'. When the amplitude is negative (i.e., negative V),
the tents will be of the form shown in Fig. 6(b) and denot-
ed by T' '. The expression for T' ' [the superscript ( V)
indicates the dependence of T on the sign of V] is

p/s if 0&p&s
T'+'(p)= ~ (1—p)/(1 —s) if s &du&1

0 otherwise

(12)
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I

FIG. 6. Basic tent functions T'+' and T' ' used in the syn-
thetic turbulence models. As T' ' will always appear in the
construction multiplied by a negative number, we have plotted

T(—)

and

p/(1 —s) if 0&1M &1—s
T' '(p)= (1—p)/s if 1 —s &@&1

0 otherwise .
(13)

Here s is the skew parameter, as before. In Sec. VI, it
will be shown that in order for the synthetic turbulence
signal to be consistent with Kolmogorov's 4 th law for the
third-order structure function [3], s=0.88. These tents
T'+' and T' ' supported in the interval [0,1] are scaled
and positioned with p=2 (x —P). A certain number X
of these tents are superposed to generate the artificial ve-



5186 JUNEJA, LATHROP, SREENIVASAN, AND STOLOVITZKY

locity field; the precise value of N will be discussed in Sec.
VI. Periodic boundary conditions are assumed for com-
putational convenience. To summarize, the composite
model for the velocity is given by

1/3
N

u(x)=UO g V,

p

d;
i =I3.

T ' (2 '(x —P, )) .( V. ) a.

(14)

As remarked earlier, a synthetic turbulence field can be
built up using a binary cascade if we employ an I model
for constructing the intermittent measure similar to tur-
bulent energy dissipation. The presence of a wide range
of scales in the l-model construction ensures the condi-
tion of continuous scale and translational symmetries
without the need for parameters a and P. By using
skewed tent functions to represent velocity increments,
whose shape depends on the sign of the increment itself,
one can also satisfy the space reversal symmetry of
Navier-Stokes equations. An artificial velocity field so
constructed exhibits all the desired statistical properties
of skewness and intermittency effects on scaling ex-
ponents. A brief description of this method of generating
synthetic turbulence is given below. As before, we begin
by considering a unit interval on which a measure (analo-
gous to energy dissipation) is assigned a value unity. The
unit interval is then divided into two unequal pieces using
the l-model multipliers (I, =0.7, 12=0.3), and the mea-
sure (which is representative of the quantity re„ in tur-
bulence) contained in each piece is equal to —, of the origi-
nal measure, Using Kolmogorov's refined similarity hy-
pothesis, the measure contained in each of the pieces is
converted into an appropriate velocity increment. The
stochastic variable V is chosen from a Gaussian distribu-
tion with zero mean and unit variance. These velocity in-
crements represent the amplitude of the skewed tent
function described by Eqs. (12) and (13). It was found by
numerical trials that the skew parameter s had to be 0.67
in order to obtain the needed skewness. The tents are
scaled and located to have the size and position of each of
the pieces in the I-model construction. The artificial ve-
locity field is then a simple superposition of all tent func-
tions formed at successive stages of the construction.
The number of steps in the construction can be varied ac-
cording to the Reynolds numbers.

VI. SOME EXACT RESULTS

In order to compare the synthetic turbulence signal
with the real turbulence, one has to be able to identify the

This expression for u (x ) has an alternative interpretation
as terms of a wavelet expansion whose coeScients are re-
lated to the velocity increments at different scales. How-
ever, both a and P~ are taken from a continuous distri-
bution unlike a dyadic hierarchy of elements in a wavelet
expansion. The distribution of scales [Eq. (11)] consti-
tutes a generalization to the continuous case of a
wavelet-basis description of the signal.

B. Skewed tents with underlying I model

where hu, =hu (r ) and the universal scaling exponents of
the velocity increments in the inertial range, g„, are given
by

&bu "&- (16)

In this section we show that a relation can be established
between a;„and I., Uo and u, „a,„, and v, s and the
skewness of velocity increments, p and the scaling ex-
ponent g„ for some single n, say n =2. The parameter y
can also be chosen in a sensible way, as we shall see
below. After demonstrating this match, some predictions
will be derived for the skewness of the derivative. The
detailed calculations are rather lengthy and a brief ac-
count is given in the Appendix. Consider the second-
order moment of the velocity increments, (b,u„). It is
usually written for the range g « r « I. as

(au„') =c(L.(~&)'" —' (17)

while for synthetic turbulence we find [from Eq. (A14) of
the Appendix] that

(b,u„) =yUoh(s)
mill

—
log2( M )

(18)

max minis valid for 2 '"«r «(1—s)2 '". A comparison
between Eqs. (17) and (18) shows that —log2(M ) =(2.
This is verified because the parameters of the p model
were chosen such that the experimental value of $2=0.7
yields p-0. 7 in the equation for distribution of M [Eq.
(6)]. It is further seen that 2 '", the size of the largest
tent, plays the role of integral scale 1.. This is consistent
with the fact that the velocity autocorrelation vanishes at

min2 '" in synthetic turbulence just as it happens at sepa-
ration distances of the order of I. in real turbulence.
Measuring lengths in units of the total interval where the

millconstruction takes place, allows us to write I.=2
and the total interval contains 2™nintegral scales. This

parameters in the construction of the former with the
physical quantities related to the latter. For this purpose,
it is helpful to obtain some exact analytical results.
While the I model requires less input, it does not unfor-
tunately lend itself to explicit analytical results. On the
other hand, the signal generated on the basis of the p
model allows a fairly complete theoretical analysis. This
is the topic of this section. The parameters of the model
are a;„,a,„,E, Uo, p [see Eq. (6)], and s. However, the
parameter X appears only in the combination
y=X/(2 '"—2 '"), so the relevant list of parameters
can be rewritten a;„,a,„, y, Uo, p, and s. The physica1
quantities governing real turbulence are the integral scale
I., the root mean square of velocity fiuctuations u, „the
kinematic viscosity v, along with some properties in-
herent to the turbulent state such as the skewness of the
velocity increments

(&i „'&/r = —-', &e&,
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&u') =
302 nlax

2
U0 . (19)

For 2 '" «2 '", we obtain

(u2) —y U2
3g

(20)

In order for Uo to represent u ~, (which is a desirable in-
terpretation), we take y=3(2-2. The choice y=2 has
another justification. If the tents are taken as the basis in
a dyadic waveletlike expansion from a minimum scale

+min +max2 '" to a maximum scale 2 '" over the unit interval,
then the number of tents used in the expansion

a (a —1) a a +1
would be g 2 max+ 2 max +. . . +2 min 2 max

—2 ". For 2™x»2 '", y -N/2 '"=2. Thus we
have

UO urms ' (21)

gives us the rule to choose a;„when we want to mimic a
real turbulence signal: If we want to have a number K of
integral scales represented in the construction then

mina

Consider now the variance of the velocity fluctuations.
In real turbulence we have ( u ) =u, . In synthetic tur-
bulence (see Appendix).

m1n

We solved the above equation numerically and found that
s =0.88. Substituting this value in Eq. (24), we find that

=4.27
U3

(27)

hu g' u
(28)

holds, where the left side of Eq. (28} is computed using
Eq. (17) (i.e., as an inertial range quantity) and the right-
hand side of Eq. (28) is clearly a dissipation range quanti-
ty. The scale g*, therefore, can be interpreted as the
upper bound of the dissipative range or the lower bound
of the inertial range. Recalling from theory of isotropic
turbulence [21] that

2

for the synthetic turbulence model. As already
remarked, for real turbulence the ratio ((e)L )lu, =—A

is close to unity for high enough values of the Reynolds
number. Hence the dissipation average for synthetic tur-
bulence will not in general be the same as that of real tur-
bulence. Denoting (e)sr as the average dissipation for
the synthetic turbulence, we have (e)sT=(4.27/A )(e).

In order to relate a,„to a suitable turbulence parame-
ter, let us first define a quantity g* as the scale at which
the equality

2

We now compute the value of s that provides the
necessary skewness. In homogeneous and isotropic tur-
bulence, the third-order moment of velocity increments
in the inertial range is given by

(22)

we find that

Lurms

15v

g2
—2

15C

(29)

(30)

For the synthetic turbulence model, this same quantity
can be shown to be [see Appendix, Eq. (A15}]

y U@(s)
27/ 2 mill

in the interval 2 '"«r &2 '", where g(s) is defined

in the Appendix. Using 2 '"=L and y=2 and match-
ing the prefactors in Eqs. (22) and (23), we obtain

)
3/2n. (e&L

(24)g S

In turbulent fiows the quantity L (e)lu, —=A is of the
order of unity [16] but is not a universal quantity. The
quantity can be explicitly computed for the synthetic tur-
bulence model. To do so, we equate the prefactors to
r IL in Eqs. (17) and (18) to find that

' 2/3

[h (s ) ]3/2— (25}
U3

Taking the value C=2 (approximately correct from ex-
perimental measurements) we find from Eqs. (24) and (25)
that s is given by

A (s) 10

g (s) v'2n.

(31)

As is the case in real turbulence, we wish that
2

(
au &~&sT

Bx 15v
(32)

where we take the synthetic turbulence kinematic viscosi-
ty equal to the kinematic viscosity of the fluid whose tur-
bulent flow we are trying to mimic. On inserting Eqs.
(32) and (27) in Eq. (31), we obtain the equivalent of Eq.
(30) for synthetic turbulence, namely,

LU0 =51.3 (33}
max

Equation (33) can readily be used to compute a,„. Its
similitude with Eq. (30) also provides a clear interpreta-

+maxtion of 2 '": it plays the same role as g* in real tur-

(Notice that the left-hand side of the above equation is
the Reynolds number. ) Approximating g2- —'„and taking
C =2 and A =1, we find that ri' =(30) / r1-132), where
21=(v /(e))'/ is the Kolmogorov scale. Returning to
the case of synthetic turbulence it follows from Eq. (A8}
in the Appendix that for 2 '"«2

Uo 2
'2 2 2 —

g

Bx L s(1—s )(2—(2) 2 x.
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bulence. It is easy to show that

max/2 min
1 5( e /L ) (34)

VII. COMPARISONS WITH KXPKRIMKNTAI. DATA

All the parameters in the model have now been related
to some measurable quantity in a turbulent signal. It
should be stressed that this matching between the model
and real turbulence is not unique. The matching at-
tempted here is, however, dictated by the physical inter-
pretation of each of the parameters in the model. We
now compute the derivative skewness defined as

'3

3/2
(35)

From Eq. (A6) in the Appendix, we obtain
3 3 2amax

Bu Uo 4 1 —2s 2

L &2m s (1—s)
(36)

From Eqs. (A7) and (36), given the inequality that
2 '"))2 '", we obtain

' (3g —2)/2
max

S= (2 kz) 1 —2s

v~ vg(1 —g) 2 min
(37)

In these equations it is clear that the skewness would be
zero if s were 1/2. Using the fact that

ir(2 —g, )
2 '"l2 '"~L/g'-Re ' (where Re=LUolv), we
are led to conclude that

2 ~ /'t 45-Re (38)

It is interesting to note that in the context of
Kolmogorov's 1941 theory, Eq. (38) predicts a skewness
coeScient independent of the Reynolds number; howev-
er, with intermittency corrections, this model predicts
that the skewness varies as some small power of the Rey-
nolds number, as appears to be true experimentally [22].
Before concluding this section, we should remark on a re-
lated technique to generate a velocity field. Let the dissi-
pation contained in an interval of size 2 be given by

,m; [where m s are a set of random multipliers
picked from a given distribution, e.g., Eq. (6)] irrespective
of the location of the interval (that is, without using a
hierarchical p-model construction). If this value of dissi-
pation is converted into an appropriate velocity incre-
ment, and these velocity increments are combined in a
manner similar to the synthetic turbulence technique, the
resulting artificial velocity signal sue'ers from a curious
drawback. It can be analytically shown that structure
functions of order four and higher exhibit mixed scaling
(e.g., (hu„}—Ar +Br ' where A and B are constants&4

and can be easily computed). It can be shown analytical-
ly that this does not occur for the synthetic turbulence
model described in Sec. V A. This observation em-
phasizes the need for correlated multipliers for generat-
ing an intermittent measure analogous to dissipation for
obtaining correct scaling for structure functions of all or-
ders.

We shall now compare the artificial stochastic field
generated using both the synthetic turbulence models
(continuous p model as well as the I model) with experi-
mental time series of velocity fluctuations obtained in the
atmospheric boundary layer. Note that the time series
data will be interpreted as a spatial cut through the tur-
bulent velocity field in the direction of the mean Aow.
This so-called Taylor's hypothesis has been extensively
used in the turbulence literature in spite of its inadequa-
cies which have been pointed out repeatedly. The experi-
mental data were acquired using a hot-wire probe 2 m
above the roof of a four-story building. We believe that
these measurements are sufficiently far away from solid
boundaries that they are not directly affected by the pres-
ence of the boundary —even though, of course, the
boundary is eventually responsible for the generation of
turbulence. The integral scale of the Aow was of the or-
der of the height of the measuring station above ground
level ( —18 m). The Reynolds number of the How based
on the integral scale was 7X10 . The Taylor microscale
was computed to be 5.3 cm, whereas the Kolmogorov mi-
croscale was 0.07 cm. The sampling frequency was 6000
Hz and the number of data points acquired was 127000.
Also the mean velocity of the How at hot-wire location
was 6 m/s and the root-mean-square velocity fluctuation
was 42 cm/s. Using the relations between parameters of
real turbulence and synthetic turbulence discussed in the
previous section, it was determined from the parameter
matching of Sec. VI that a model signal with 2' data
points and a;„=5 and n,„=14would be suitable for
the purpose of comparisons with experimental data.

In Fig, 7 we show an example of a spatial section from
the two synthetic turbulence models with above parame-
ters along with a representative experimental turbulent
time series. The model signals are qualitatively similar to
real turbulence signals. The real turbulent signal spans
approximately two integral scales. Figure 8 shows a plot
of the power spectrum of the synthetic turbulence signals
for the two cases. The three salient features that can be
observed in this figure are

(a) In the inertial range [intermediate wave numbers

corresponding to scales between 2 '" and

(1 —s )2 ™h],the spectrum exhibits a power-law
behavior -k ~. The power spectral exponent P deter-
mined from the figure is 1.71, which is in close agreement
with real turbulence.

(b) The dissipative range behavior (large wave numbers
+maxcorresponding to scales smaller than 2 '"): Given that

the (statistically) self-similar construction ends at scales

2 '", it is expected that k ~ scaling will no longer hold
for smaller scales. Actually, as the functions used in the
construction are smooth (essentially linear) at this resolu-
tion, we expect a relatively steep decay in the spectrum.
While this is qualitatively similar to the situation in tur-
bulence, the results at these scales will depend on the
form of tent functions and so we should not expect quan-
titative correspondence to real turbulence.

(c) The large-scale behavior (small wave numbers cor-
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FIG. 7.. 7. Examples of velocity sections from (a) atmospheric
turbulence, (b) synthetic turbulence based on the p model, (c)
synthetic turbulence based on the I model. The data cover ap-
proximately two integral scales.

signal at location x+r. Therefore, the correlation of ve-

locity vanishes at scales beyond 2 ™n
1 d fl, ea ing to a flat

region in the spectrum at large scales.
Another quantity of interest in characterizing the sta-

tistical features of turbulent fluctuatio th 1ua ions is t e velocity

structure function, (bu„")=([u(x+r) —u( x)]")-r ",
where n is the order of the structure function and g„ is
the corresponding structure function exponent. Figure
9(a) shows a comparison for the second-order structure
unction etween the one obtained experime t 11 dnayan

a corresponding to synthetic turbulence signals. As
with the power spectrum, the three regions correspond-
ing to dissipative scales ((hu„)-r ), inertial-range

scales ( ( hu „)-r '), and the large scales
((b,u„) -const), can be clearly identified. Similarly, Fig.
9(b) shows the comparison for the third-order structure
function. The experimental scatter in Fig. 9(b) at lar e
values of r ~I. iso r,~ is due to the poor convergence caused by

n ig. at arge

insufftcient data. (In general the odd-order structure
unctions take longer to converge. ) Even so, the models

capture these two essential properties of turbulent sig-
nals. The scaling exponents g„as a function of n are

6 rea
'

s own in Fig. 10. They were obtained by averaging over
realizations of the model signals to ens tensure statistica

convergence. The deviations from = /3
'„=n in icate the

effects of small-scale intermittency. The g„ for real tur-
bulence data are taken from Ref. [23].

The fractal dimension of the synthetic turbulence sig-
nals was computed using the e- Uariation method suggest-

responding to scales larger than 2 ™n)It is not readily
apparent that a model which emphasizes a self-similar
construction containing inertial-range physics should ex-

i it integral scale features. However in the
ion or r )l., the velocity u (x ) at location x is corn osed

of tents that are inindependent of the ones composing the
compose
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2 3 4 5 6 7 8 9

FIG. 10. Comparison of structure function exponents ob-
tained from experimental turbulence data (0), synthetic tur-
bulence based on the p model (6), and synthetic turbulence
based on the l model (+). Solid line denotes Kolmogorov's
1941 theory (K41), g„=n /3.

ed by Dubuc et al. [24], which gives robust results in
case of self-affine curves. The fractal dimension can be
inferred from the slope of the plot between {logto(1/r),
logto[1/r B(r,f ))), where B(r,f ) is the variation of the
self-affine function f in the r neighborhood. For details
see Ref. [24]. Figure 11 shows the relevant plots for the
synthetic turbulence signals implying the fractal dimen-

sion in both the cases is approximately 1.67, in very good
agreement with experimental measurements (D=1.65
+0.05 as shown in Ref. [1]).

Figure 12 shows a section of the energy dissipation
field obtained from the real turbulent velocity Quctua-
tions as well as the synthetic turbulence signals. It is
readily apparent that they exhibit similar features of
small-scale intermittency. This can also be quantified by
computing the intermittency exponent p for the dissipa-
tion from the synthetic turbulence signals. One way of
determining tM is from the slope of a plot of logto((re„) )
Uersus logtor [shown in Figs. 13(a) and 13(b)] for the syn-
thetic turbulence signals generated using p-model con-
struction and l-model construction, respectively]. Using
the relation (e„)-r " together with the slopes comput-
ed in Fig. 13, it was found that @=0.24 in the first case
and p=0. 28 in the second case, which is in good agree-
ment with the results in real turbulence (p, =0.25+0.05
from [25]) and also consistent with multifractal formal-
ism of energy dissipation [12].

%'e now verify whether Kolmogorov's refined similari-
ty hypotheses hold true in the case of synthetic tur-
bulence as well. The conditional probability distribution
function (PDF) of the stochastic variable VzsH
=Au(r)/(re„)' [see Eq. (7)] is computed for some re„
values and for two values of r/L, one in the dissipative
range and the other in the inertial range; the results are
shown in Fig. 14. Figures 14(a) and 14(b) are for experi-
mental turbulence while Figs. 14(c) and 14(d) are for syn-
thetic turbulence generated using the p-model construc-
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FIG. 11. Estimation of fractal dimension for artificial veloci-

ty signals from (a) synthetic turbulence based on the p model
(slope of the best linear 6t is —1.665), (b) synthetic turbulence
based on the l model (slope of the best linear fit is —1.667).

FIG. 12. Examples of dissipation fields constructed from ve-

locity signals for (a) atmospheric turbulence, (b) synthetic tur-
bulence based on the p model, (c) synthetic turbulence based on
the l mode1.
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good abstractions of the reality, and further that the sta-

tistical ordering in turbulence can be approximated rela-

tively simply for most practical purposes.
The schemes presented in this paper are aimed at

representing one-dimensional cuts of three-dimensional

velocity fields. The extension of these schemes to
represent the fu11 three-dimensional velocity field is rela-

tively easy and is in progress. That one can cheaply gen-

erate stochastic fields that are so close to turbulence,

away from the boundaries at any Reynolds number, sug-

gests that a practical utility of the present schemes (actu-

ally, their extensions to three dimensions) is that they can
provide realistic initial conditions for direct numerical
simulations of the Navier-Stokes equations. The bound-

ary effects can also be included, but this is a matter of fu-

ture research.

FIG. 13. Scaling of ((re, )~} for the dissipation field con-
structed from (a) synthetic turbulence based on the p model

(slope of the best linear fit is 1.76) (b) synthetic turbulence based

on the I model (slope of the best linear fit is 1.72).

tion, and Figs. 14(e}and 14(i}are for synthetic turbulence
based on the 1 model. The synthetic turbulence does not
duplicate the small-scale (dissipative range) features of
real turbulence very well, although the I model seems to
be quite close. However, for inertial-range scales, the
synthetic turbulence signal reproduces the PDF's ob-
tained in real turbulence, even though the /-model con-
struction yields a somewhat poorer collapse of the condi-
tional PDF's of V&sH in the inertial range. For the syn-
thetic turbulence based on the p model, these PDF's ap-
pear to be independent of re, as postulated by Kolmo-
gorov. This conclusion holds true for different values of r
in the inertial range (not shown here}.
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VIII. CONCLUSIONS 1O' . 10' .
-

Two simple schemes have been presented for generat-
ing a turbulencelike stochastic field (synthetic turbulence)
and are implemented in one dimension. The schemes are
based either on the p model and the I model for the ener-

gy dissipation. The implementation is quite straightfor-
ward and needs little by way of computer requirements,
and can be related to any desired flow Reynolds number.

The properties of the synthetic turbulence signals have
been compared with those of real turbulence. The com-
parisons include power spectral density, odd and even or-
der structure functions, fractal dimension, skewness of
velocity increments, PDF of universal stochastic variable

VRsH, and the multifracta1 scaling of the dissipation field.
In a11 these respects, the two schemes yield signals which
are very close to each other and to real turbulent veloci-
ty. The only difference between the two schemes con-
cerns the property of VRsH, but these differences are not
fundamental. The success of the schemes suggests that
the physical elements that go into their construction are

1O' .-
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r L/=O. 0 102

1-rmde 1
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GL 1P-3

10~ —5

V

FIG. 14. Conditional PDF's of VRsH =hu, ((re, )' ', given

re„ for two values of /i. (indicated in the figure) for atmospher-
ic boundary layer [(a) and (b)], synthetic turbulence based on p
model [(c) and (d)], and synthetic turbulence based on the I mod-
el [(e) and (f)]. In each plot, the several curves correspond to
different values of re, /L(e) ranging between 4.9X10 ' and
1.0X10 in (a), 1.6X10 and 3.1X10 in (b), 3.6X10 and
1.2X10 in (c), 3.7X10 and 4.4X10 in (d), 1.2X10 and
4.9X10 in (e), and 1.2X10 and 5.8X10 in (f). The
dashed curves in (b), (d), and (f) represent Gaussian PDF's with

the variance equal to 2.
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APPENDIX

(V. )

X&VJ V) T '(p, )

(V )

XT '(P,, ))~)q (A 1)

In this Appendix we derive some of the expressions
used in the text, and explicitly compute some of the quan-
tities of interest. We will denote with & )„the expecta-
tion with respect to the distribution of z. Periodic bound-
ary conditions are assumed.

(a) Computation of & u ). The calculations proceed by
computing averages over the random variables used in
the synthetic turbulence signal, namely, V, P, a, and the
multipliers M. On using Eq. (14) we have that

N N
&~2) —U2 y y & &D 1/3D1/3 )

jl =1 j2 =1

—a.
P+2 l a.

where D =g
& d, , and p =2 '(x —P }. The sums
j

D, ca.n be well approximated by D, = ff„', '"M„, where
the M„are the rnultipliers used to construct the dissipa-
tion field. Then, the M average of the dissipation term
raised to the power q is

P. +2j
(G,')~=( Z e;

i =p. ) =(

min
(A2)

where g3
= —log2&M»). Notice that the M averages of

D» turn out to be independent of (g.

The P average will then only affect the term
(V ) (V )

& VJ. VJ T '
(p,. )T ' (pj ))z& in Eq. (Al). This last

term is nonzero only when j, =j2. In effect, if j&Pjz, the

average over V can be factorized into two identical terms
of the form

( 'V~'Ttp))~p=(f dVG(V)VT' '(p)+ j dvG(v)VT'+'(y)

=0, (A3)

where G( V) stands for the probability density of V [a Gaussian with zero mean and variance & V ) ], and we have used

& T'+'(p) )s= &
T' '(p) )&. The terms with j,=j2 cannot be factorized, and we find that

&V'[T'"( )]') =I dvG(v)V'&[T' '( )]') + I dv6(v)v'&[T"'( )]')

=& v')2 /3 . (A4)

Here, we have used the result & [T' '(p)] ) =
& [T'+'(p)] ) =

—,'2 . The final result is that

Uo X
&

— (C,+»)
2

&~') =
mink 3

Uo

3/2

max

fll ill

(A5)

where we have used the distribution of Eq. (11) to make the a average and y =X/(2 "—2 '")

(b) Computation of & (Qu /Bx ) ). Taking the derivative in Eq. (14},and raising the result to the third power, we have

N N

G,' Z Z Z (((),'"(=),'"G,'"& (v, v, v, ,
Jl =1 j2=1j31

(V ) (& ) (I )

BT "(p, ) BT '(p, ) BT '(p/)
(A6)
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3
Bu 2 4(V ) 2 (1—2s)=DUO ,—.. ~ .„., )

Uo 2( V&)i~&

&2n.min

(1 2s) 2 mnx2a

Xy,
s (1—s) 2 min

(A7)

Here, we have used that the fact that M averages of the
DJ's are P independent. In performing the average with
respect to V and P, three possibilities can occur (i) The
three j"s are diferent: In this case the average factorizes
into three terms of the form ( VBT' (iM ) /Bx ) ) v p. Split-
ting this average into a positive and a negative
part as in (a) above, we obtain that the previous
average is equal to ( f 0"dVVG( V))[(BT'+'(}M)IBx)p—(BT' '(p)/Bx)p]. This is identically zero because
(BT' '(p)/Bx)p=(BT'+'(p) /Bx)p=0. (ii} Only two
of the three j's are equal. In this case, the
average with respect to V and P factorizes into
( V [BT' (p)/Bx] ) „p( VBT'"'(p)/Bx ) p which is

equal to zero because the second term vanishes as
shown in (i). (iii) The three j s coincide. This
is the only case in which the average with
respect to V and P yields a nonzero result. Explicitly,
& V'[BT(~)/Bx]'& „=(&~

V['&/2) I & [BT'+'(} )/Bx]'&,
—([BT' '(p)/Bx] )p . It is not difficult to see that
( ~ V~ ) =4( V ) l 2n and that ([BT'+'(p)/Bx] )p= —([BT' '(p)/Bx] )p=2 (1—2s)/s (1—s) . There-
fore, Eq. (A6) becomes

(V) (V) a. ( V. ) a.where ATl ' =T '(2 '(x+r 13 })——T '(2 '(x—P, )). Ifji+ji, we have

( V) ( V)

(V ) (V )

(Alo)

We then compute

&VENT''i&„p= f dvvG(v) (aT'+')p
J

+ f' dvvG(v) &aT'-'&p

=0 (Al 1)

because (hT'+')p=(KT' ')p=0. Only the case j,=jz
survives in Eq. (A9}. On using that ( /td T'+ ' )
=idTt ni in this case, we have i V dT'
=(V )(b,T~+') =(V )(bT' ') andobtain

N

(&u„').p. ,=U,' y (V'&,«D'"& &~T'(r)&p&. .

(d} Computation of the second-order structure function
(b,u, ). From Eq. (14), the second-order structure func-
tion can be written as

N N (V- )

(au'&= g g «D'"D'") &V ST "
(V )

(A9)

Uo

Inln

~2 max min

( v')y
s(1—s }(2—gz)

(A8)

(c) Computation of ((Bu /Bx) ). As in (b) above, it
can be shown that

(A12)

The average of b, T over P((b, T )p) will be independent
of x because the distribution of P is uniform and periodic
boundaries are assumed (to avoid x dependencies on
boundary effects). As B,Tis piecewise linear, the integrals
can be carried out explicitly. After lengthy integration,
one obtains

(r2a)2

s(1—s)

v

(r2 ) 1+s 2 —s
3 s (1—s)

if 0&r2 &(1—s)

2~ 21 (r2 ) 1+s
& 4T'(r) &p=2 X s 3 s'

(1—r2 ) 1 1

3 $3—+—if (1—s) &r2'&s

(A13)
2 (1—r2 ) 1

if $(r2 &1
3 3 s(1—s)

if 1(r2a .

aminUsing Eq. (A13) and the result that (D ~ ) =(2 /2 '") ', we can proceed with the a-average indicated in Eq. (A12).
The result can be partitioned into four subregions for r. We quote below the result for r in the inertial range
[2 '" r (1—s)2 '"].

(b,u'&

U,'( V')y

2
r —1

mi s( 1 s )(2 g2) min

3 max

+(s —1) +s 2

s (1—s) 3(3—g2} 3in2 2 min min
h(s),

(A14)
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where

h(s)= (1 —s)
s(1—s }(2—g, }

(1—s) '[(s —1) +s] s ' —(1—s)
3s (1—s) (3—gz) 2s (3—gz)

~2 ~2 ~2 ~2
—

0zs ' —(1—s) ' [s ' —(1—s) '](1—s) 1 —s

s(1 —g2) 3sgz 3s(1 —s )g2

2(1—s ') 1 —s 1 s
2 —g,

1 —s
3 —

g~ 2+ + +
3(z s(1 —s)(1—jz) s(l —s)(2 —

g2) 3s(1 —s)(3—gz) 3gz

(e) Computation of the third-order structure function (b,u„). Using a similar reasoning it can be shown that in the
max +mininertial range [2 '"(r ((1—s)2 '"], the third-order structure function is

( b,u '
&

U3 ( y2 )3/2~ &2n.
mtn

'3
1 —2s

2s (1—s)2 2+
min

4

2+s
S

3—$

(1—s)
+

12 min
g(s) (A15)

for 2 '"(r((1—s)2 '" and

1 —2sg(s)=
2$

2+s
$

3 —$

(1—s)
(1—s)

12

s —(1—s)
6s

+ 3(2s —1) ln[s/( I —s ) ] (1+s)(2s —1) 1 —2s
2

+
3

+
2$ s 4$ 4s (1—s)

(1—2s) ln(s) 3(l —2s) (1—2s)(1+s) (1—2s)(1 —s )

2 2 2 2s (1—s) 2s (1—s) 2s (1—s) 12s (1—s)
+
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