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Confined Brownian motion
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We present microscopic observations of the diffusion in water of micrometer-sized spheres confined
between two walls. Deviations from the Stokes-Einstein law are observed, which for different bead di-

ameters and different separations between the walls depend on a single dimensionless parameter. %'e

compare numerical predictions with the experimental values.

PACS number(s): 51.20.+d, 05.40.+j, 66.10.Cb

I. INTRODUCTION

The diffusion coefficient Do of spherical particles of ra-
dius r in a Quid of viscosity go at temperature T is given

by the Stokes-Einstein formula [1]

D p
= ( ks T)I( 61T'&pe )

It is there assumed that the velocity field of the surround-
ing fluid goes to zero at the particle surface and infinitely
far from the particle.

Deviations from this law in normal liquids have al-
ready been observed, always due to a boundary at a finite
distance from the bead. It may be the glass ~alls of a cell
[2-4] or other beads [5,6]. A change in the material
properties of the fluid around the bead in glass-forming
liquids can also be treated as an efFective boundary [7].
In any case, the Stokes-Einstein formula can be general-
ized by defining an efFective viscosity (and hence an
effective difFusivity) function of the bead diameter, posi-
tion, and bead volume fraction.

We present in this paper a visualization using a micro-
scope of a Brownian particle diffusing between two glass
plates. Previous works used light correlation techniques.
The diffusion coeScient is measured in our experiment
from the observation of a single bead. From the horizon-
tal projection of the Brownian trajectories, digitized and
stored in real time, we extract the diffusion coefBcient D
for motions parallel to the glass plate. It deviates from
the bulk value Do by as much as one third. The devia-
tions are described by a continuous function of a dimen-
sionless position parameter. We then compare our exper-
imental results with analytic solutions [8]. As we do not
record the vertical excursions of the bread inside the sam-

ple, we must average the analytical expressions over the
vertical axis.

In Sec. II we describe the experimental setup and the
sample preparation. We discuss the averaging process
over many bead trajectories to extract the diffusion
coeScient. We introduce a dimensionless position pa-
rameter y. The deviation of the diffusivity from the bulk
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value is a function of y.
In Sec. III, we review the analytical form of the

diffusion coefficient for a bead close to a wall. We esti-
mate the effective difFusion coeScient by averaging along
the vertical axis. We finally discuss the generalization of
Fick s law when the diffusion coeScient is spatially vary-
ing.

II. DEVIATION FROM THE STOKES-EINSTEIN LAW

In this section, we describe the experimental setup and
present how we deduce the diffusion coefBcients from the
measurements. We then introduce a simple model ex-
plaining the deviation from the bulk value for diffusion.

A. Experimental setup

Samples were prepared as follows: Silica and latex
spheres [9] were diluted and sonicated in ultrapure water
[10]. The volume fraction was around 10 so that typi-
cally only a few beads were seen in the field of view
(50X50 pm ). We avoid any hydrodynamic interaction
between beads by using such a low volume fraction.
Several monodispersed suspensions of beads between 1

and 3 pm in diameter were used.
Fine wires [11]with diameters from 6 to 100 pm were

used as spacers between a microscope slide [12] and a
coverslip [13], previously cleaned using a Nitrogene gas
ionizing gun [14]. We used a coverslip because of the
short working distance of the microscope objective. In
order to avoid fluid flow, the cell was first partially sealed
using fast epoxy [15], then filled with the beads in solu-
tion and completely sealed with fast epoxy. Beads did
not stick to each other or to the glass plates for at least a
day, before pollution of the water by the fast epoxy oc-
curred. Typical experiments lasted 2 h.

The sample was then placed on the stage of an inverted
microscope [16] equipped with an oil immersed objective
[17]of magnification 100X, as shown in Fig. 1. The bead
was observed with a CCD camera [18]coupled to the mi-
croscope via coupling lenses [19] of additional
magnification of 2.5 X and 6.7 X. The video signal was
processed in real time by a computer [20]. The computer
recorded the Xand Fcoordinates of the center of mass of
the bead, the X and F axis being defined in Fig. 1. The
displacement of the bead in the vertical direction was not
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FIG. 1. The experimental setup: beads of diameter 2r are
suspended in water between a microscope slide (MS) and a cov-
er slip (CS), separated by wires of diameter t. The cell is sealed
with fast epoxy (FE). The objective (OBJ) is coupled to the sam-

ple by optically index matched immersion oil (IO). The CCD
camera digitizes the image which is transmitted to a MacII
computer.

B. Diftusion coef5cients

From the Xand Y coordinates of the bead as a function
of time, we recover the projection of the bead trajectory
onto the X-Y plane (see Fig. 2}. We then plot the square
of the distance from the bead's original position, R (t},as
a function of time (thin dotted line in Fig. 3). The
diffusion coefficient is proportional to the slope of the sta-
tistical average (i.e., over many beads) of this quantity.
To improve our statistics, we divide each trajectory into
shorter ones. As the Brownian motion is stochastic, the

recorded. Constant adjustment of the focus was needed
during the experiment for the lightest beads (1 pm diame-
ter in latex).

Let us now discuss briefly the sampling rate and the to-
tal recording time. As we processed the video signal in
real time, the larger the bead appears on the computer
screen, the longer the processing time required and the
slower the sampling rate. Depending upon the diameter
of the bead and the optical magnification, the sampling
rate ranged between 0.05 s and 0.2 s. This rate was, how-
ever, well adjusted for our experiment: the diffusion
coefficient being of the order of 1 pm /s, the bead moves
by only a fraction of its diameter ( =1 pm} between two
successive recordings. We recorded 2048 successive posi-
tions of the bead, which correspond to a time series of
about 3 min. This time was short enough so that the
bead would not escape outside the field of view. We re-
jected any experiment where more than one bead was
present within the field of view. Typically 12 time series
were used for each sample. This corresponds to half an
hour of recording for a given sample (given the separa-
tion between the plates, bead density, and bead diameter).
We checked that the number of time series was:large
enough to get a good measurement of the diffusion
coefBcient, using the following averaging procedure.

FIG. 2. The projection onto the X-Y plane of the trajectory
of a 1.5 pm diameter latex bead inside a 25 pm thick sample
(sample 17 in Table I). Recording time 70 s.

C. A simple model

We present here the effect of walls on the diffusion of a
bead and introduce a dimensionless position parameter y
such that all the measurements of D/Do fit on a smooth
curve as a function of y.

Let us consider a bead of radius r at a distance z from a
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FIG. 3. Thin dotted line: the square of the distance from the
bead original position (Xo, Yo) in pm as a function of time in s
for a 1.5 pm diameter latex bead in a 25 pm thick sample (sam-
ple 17 in Table I). Thick line: the result of the averaging pro-
cedure described in the text.

short trajectories are independent from each other. We
then average over all paths of the same duration in all the
fields corresponding to a given sample. The result (thick
dotted line in Fig. 3) shows the expected linear depen-
dence for short times. The statistics are evidently better
at short times, where more trajectories can be averaged
over. We define the diffusion coeScient D for motions
parallel to the glass plates, as the slope of the linear fit is
divided by four.

The ratio D/Do is calculated for all the samples (see
Table I). The bulk diffusion coefficient Do is computed
from Eq. (1). D/Do shows a severe deviation from the
Stokes-Einstein law (as much as —', ).
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&ABLE I. The different samples are sorted with increasing value of y. The Boltzmann length scale is computed froni Eq. {4). 'rhe
v«tical equilibrium displacement from the bottom plate h is computed using Eq. (6). The dimensionless parameter y is computed
from Eq. (2). D(expt) is the measured diffusivity. Do is the bulk value from Eq. (1). D {theor) is computed from Eq. {&4).

Sample
No.

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Bead
diameter

(pm)

2.5
2.5
2.5
2.5
3.5
3.5
3
2.5
2
1

1

1

2
1.5
1.5
1

1.5
1

1

1

Bead
density

2.1

2.1

2.1

2.1

1.05
1.05
1.05
1.05
1.05
2.1

2.1

2.1

1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05

I.
(pm)

0.05
0.05
0.05
0.05
0.37
0.37
0.60
1.03
2.02
0.73
0.73
0.73
2.02
4.8
4.8

16.1
4.78

16.1
16.1
16.1

Sample
thickness

(pm)

6
25

100
1000

12
50
12
12
6
6

25
100

12
6

12
6

25
12
25
50

1.3
1.3
1.3
1.3
2. 1

2.1

2. 1

2.3
2.4
1.2
1.2
1.2
2.9
2.6
4.2
2.8
5.3
5.2
9

12

0.04
0.04
0.04
0.04
0.2
0.2
0.4
0.8
1.4
1.4
1.4
1.4
1.9
2.5
4.6
4.6
6.1

9.4
17
23

D/Do
(expt)

0.32
0.36
0.36
0.36
0.4
0.41
0.35
0.38
0.45
0.41
0.42
0.56
0.61
0.52
0.78
0.71
0.81
0.87
0.82
0.89

0.31
0.32
0.32
0.32
0.36
0.38
0.39
0.42
0.48
0.36
0.36
0.54
0.56
0.54
0.67
0.58
0.76
0.82
0.85
0.92

h —ry= (2)

The average vertical position h is computed using the
usual Boltzmann density profile Pz(z) of beads of radius r
and density p in a Quid of density po and temperature T,

glass plate, moving parallel to the glass plate. The devia-
tion of the diffusion coefBcient from Do is a hydrodynam-
ic effect: the closer the bead is to a wall, where the veloci-
ty field has to go to zero, the bigger the drag force on a
particle moving parallel to this wall [8,19,21]. A simple
reason is that the closer boundary allows less space for
the surrounding fluid to be transported around the sphere
as this one moves [22]. In order to keep the usual formu-
lation of the drag force ( 6mgoru, w—here u is the bead ve-

locity), we replace i)0 by an effective viscosity i). The
efFective diffusivity is then D =Do(rtlrto) . It decreases
as the bead gets closer to the wall. Since the hydro-
dynamic equations for the velocity field in the low Rey-
nolds number limit do not contain any natural length
scale, D has to be a function of a dimensionless parame-
ter. In the case of a bead close to a wa11, the only dimen-
sionless parameter available is zlr. It is, however, more
convenient to use y=(z r)lr. The effectiv—e difFusivity
then increases up to its bulk value Do as y goes from zero
to infinity.

Since we do not keep track of the vertical Brownian ex-
cursions of the bead, the effective diffusivity D is aver-
aged over the Z axis. Thus, one can replace in the previ-
ous discussion z by h, the average vertical position of the
bead. The position parameter y is then

confined between the planes (z =0) and (z =t) in a gravi-
tational field of acceleration g:

1P (z)=B
e

—z/L

—r/L
&

( r —t)/I.

where L is the characteristic Boltzmann length scale

L =kti T/bmg

and where

(4)

bm= 43mr (p po) . — —

L is to be compared with the two length scales r and t. If
L is smaller than the radius r, the bead sediments to the
bottom plate. If L is larger than the sample thickness t,
the bead explores vertically the whole sample. The aver-
age vertical position h is thus

h =f zPtt(z)dz
T

(6)
e "~ [rL +L ]—e'" " [(t —r)L +L ]

L (e
—rlL e (r —t)/L)

Since two walls are present, one should consider
y=(h r)lr and y'=(t —h—+r)lr for the bottom and
top plates, respectively. However, since in our experi-
ment most of the beads tend to sediment close to the bot-
tom plate, it is a good approximation to consider only the
effect of the bottom plate, and to look at the dependence
of D/Do on y. Note that y still depends on the thickness
t via the equilibrium vertical position h. The table gives
the value of r, p, t, L, h, y, and D/Do for each sample.

If y is indeed the right parameter to describe the devia-
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plates, preventing it from rolling.
In conclusion, the experiment shows that one can

define a position parameter y such that D/Do is a con-
tinuous function of it. For values of y above 5, D is close
to the bulk value Do. As y decreases, D drops towards
Do/3. The transition between these two regimes is
characterized by the value of the Boltzmann length scale
L with respect to the sample thickness t and the bead ra-
dius r. When L is larger than t, D is essentially equal to
Do. When L is smaller than r, the bead sediments to the
bottom plate and D is equal to Do/3

III. NUMERICAL RESULTS

FIG. 4. The experimental ratio D/Do as a function of the po-
sition parameter y. The thick dotted line is the numerical pre-
diction for D/Do.

tions from the Stokes-Einstein law, one should find that
D/Do is a continuous function of y. We show in Fig. 4
that all the measurements lie indeed on a simple function
of y. For y) 5, only a small deviation is noted. D/Do
drops from 1 to —,

' when y decreases from S to 1. For
y ( 1, D/Do stays constant and equal to —,'.

Let us try to understand Fig. 4 on physical grounds.
Light beads are on average far from both walls, have a
large value of y, hnd the ratio D/Do tends to 1, as ex-
pected. As the bead approaches the bottom wall, y de-
creases. The effect on the diffusivity appears sharply for
values of y around 5, and the ratio D/Do drops abruptly
when y becomes smaller. Note that y =5 means that the
bead is on average three diameters away from the wa11:
this is when corrections to the Stokes law become notice-
able. When the bead is very close to the bottom wall

(y «1), D/D, saturates to a nonzero value, close to —,'.
It means that the efFective viscosity does not diverge as
the bead comes in contact with the wall: the bead may
indeed move parallel to the plate by simply rolling and
pushing the Quid around the contact point. We expect,
however, this argument to breakdown when the sample is
thin enough that the bead is almost in contract with both

In this section, we review the analytical expressions for
the difFusion coeScients D~~ and D~ for motions parallel
and perpendicular to the glass plates. Since we did not
record the vertical displacements of the bead, we average

D~~ over the vertical axis. We compare the numerical re-
sults with the experimental values. We then discuss the
generalization of Fick s law when the difFusivity is spa-
tially varying.

A. %all eSect on dition

The hydrodynamic interactions between a bead of ra-
dius r at a distance z from a wall can be expressed in
terms of a position-dependent friction tensor rl [8]. In
the referential frame defined in Fig. 1, the tensor g is di-
agonal and the drag force experienced by a particle of ve-
locity v is

F 0 0 vx

Fy 677r 0 gy 0 vy

F 0 0 g, v,

with

q„=g„=go[1—
,', (r/z)+ ,'(r /z—)—

and

n (n + 1) 2 sinh(2n + 1)a+(2n + 1)sinh2a
rt, =go—', sinha

, (2n —1)(2n +3) 4sinh~(n +1/2)a —(2n +1)zsinh a

where

a=cosh '(z/r) .

(9)

The expression for g, is exact [23—25] and the one for g„and g» is only approximate to order (r /z) .
For two walls distant by t, we assume that we can add the deviations of g to rto from each wall [2]. Denoting by the

superscripts b and t the bottom and top walls,

b z +9X~y& 2 9Xyyy Z 9Xyyy Zr
t —z

go (10)

where z is the distance between the bottom plate and the center of mass of the bead.
We define the diffusivity tensor as
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D=k&T/6nrrl=
k~ T/6m. g„r

ks T /6n gr r

0 k~ T/6m', r

%e now have two difFerent diffusion coefficients: one re-
lated to motions parallel to the glass plates
(Df=D„=DY)and the other to motions orthogonal to
the glass plates (Di =D, ).

B. Vertical average

I.et us first recall the experimental procedure used to
extract the difFusion coeScient D: we average over many
trajectories the square of the bead horizontal excursions
as a function of time. It is equivalent to the following: we
fix a time r, and choose a bead in the sample. The proba-
bility for the bead to be at the initial altitude z is PI, (z).
After a time ~, the square of the bead horizontal displace-
ment is measured. It is on average equal to R, a func-
tion of z and r Since. we do not select the initial vertical
position of the bead, the average horizontal displacement
that we measure is then

(R ) =f R (z)Ps(z)dz .

We then plot (R ) as a function of r (see Fig. 3) and the
difFusion coef6cient D is defined as the slope of the linear
fit divided by 4.

If the bead was confined in its initial horizontal plane
during time r, R would be equal to 4Dt~(z)r and the
difFusion coefficient would be equal to fQ~~~(z)Pa(z)dz
This expression does not agree with the experimental
values. However, the bead moves vertically as well as
horizontally, and during the time ~ explores vertical re-
gions of different horizontal difFusivities. R is thus given
by

I

cursions to the horizontal ones. In our experiment,
where the lower limit on v is such that the bead moves by
at least a fraction of its diameter, this dependence does
not show up when plotting (R ) as a function of time
(see Fig. 3). We also checked numerically that the varia-
tion in D when varying v in our experimental range did
not exceed 10%. The values of D/Do (theor) reported in
the table are computed from Eq. (14) by taking, for each
sample a time r during which the bead would move along
any axis by a radius r in the absence of walls
[r=(r /2DO)]. These values are shown in Fig. 4 by the
thick dotted line.

C. J= —grad(DP) or J= —DlradP

Because the difFusion coefficient D is spatially varying,
one might ask what is the generalization of Fick's law:
J= grad(D—P) or J= DgradP —[26—29]? J is the
diffusion current and P is the probability distribution.
Note that choosing for P the usual Boltzmann distribu-
tion Pa(z) in Eq. (13) and Eg. (14) implies that the
diffusion current is written as J= —Dgradp. Choosing
J= grad(D—P) leads to a different density profile equal to
(A/Di)Ps, where A is a normalization factor. The
values of the diff'usion coefficient estimated by taking this
density profile in Eq. (13) and Eq. (14) do not agree with
the experimental values. Also, the physical mechanism
underlying the spatial dependence of the difFusivity is, in
our case, a hydrodynamic kinetic efFect, and cannot
change the Boltzmann equilibrium distribution [26,30].
Only a real potential can affect the equilibrium distribu-
tion. The correct generalization of Fick's law in our case
is J= —D gradP.

R'(z, r)=4f D~~(g)Pas(g)dg (13) IV. CONCLUSION

where 5=
—,
' +2Di (z)r, and where Pa ( g) is the

Boltzmann distribution normalized to 1 on a vertical in-
terval of width 25. In other words, the bead explores on
average during the time r a vertical slice of thickness 25.
The measured horizontal displacement is then the verti-
cal average from (z —5) to (z+5) of 4D~~(z)r, weighted
by the Boltzmann distribution normalized to 1 on this in-
terval. Putting back R from Eq. (13) in Eq. (12) gives
for the efFective diffusion coefBcient D

From microscopic tracking of spherical particles
confined between two glass walls, the difFusivity parallel
to the glass plates is obtained. Deviations of the
diffusivity D from the bulk value Do given by the Stokes-
Einstein law are characterized by a dimensionless posi-
tion parameter y. The heavier the bead and the smaller
the distance between the two glass plates, the bigger the
deviation. Values of the ratio D/Do as small as —,

' are ob-
served. Comparisons with numerical estimates show that
the correct generalization of Fick s law is, in our case,
J= —DgradP.

D= f P~(z) f Di(g)Ps(g)dg dz . (14)
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