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We show, by performing Monte Carlo simulations along a low temperature isotherm, that the
structural behavior of a system of dipolar hard spheres transforms from a chainlike association at low
density to a ferroelectric ordering at high density. The influence of the temperature variation and the

dependence on boundary conditions are investigated.

PACS number(s): 61.20.Ja, 61.25.Em, 75.50.Mm

I. INTRODUCTION

Recent computer simulations have provided new in-
sight into the structural and orientational behavior of
strongly interacting dipolar hard and soft spheres [1-7].
The main conclusions of these calculations can be sum-
marized as follows.

(1) At sufficiently low temperatures a dense system of
dipolar hard spheres (or soft spheres) can spontaneously
break its symmetry and order into a ferroelectric state
[1-4]. Polarized domains form in the presence of a depo-
larizing field [1,4].

(2) No evidence is obtained for the existence of a gas-
liquid transition in a broad density-temperature range in
contrast with general belief and a variety of theoretical
predictions [6,7].

(3) Instead the particles are found to associate into
chainlike structures with near contact of the hard spheres
and head-to-tail alignment of the dipole moments [5,7].

The purpose of the present paper is to present our pre-
liminary Monte Carlo (MC) results [5] on chain forma-
tion in dipolar hard spheres (DHS) in more detail, to ex-
tend the results over a wider range of densities, and to
reconsider the conclusions in the light of simulations with
improved statistics. In Sec. II we briefly recall some of
the details of the Monte Carlo calculations, in particular,
the choice of the boundary conditions. Section III
presents results for the structural behavior as a function
of density for one isotherm and discusses the influence of
boundary conditions and temperature variation. A sum-
mary and conclusions are given in Sec. IV.

II. MONTE CARLO SIMULATIONS

Most of the MC simulations were performed in the
canonical (NVT) ensemble for a system of N =500 parti-
cles in a cubic box repeated periodically in space. A few
additional runs using 128 particles allowed for more ex-
tended sampling of configuration space. The long range
dipolar interactions were accounted for by using the
Ewald method [8]. For an expression of the Hamiltonian
of the system and full technical details, we refer the
reader to Ref. [4]. Here we only briefly recall that
the Hamiltonian splits into two terms, one having
periodic symmetry and the other, of expression
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27M?/[(2€'+1)V] (M is the total dipole moment of the
simulation cell and ¥V is the volume), representing the
contribution of a dielectric continuum of dielectric con-
stant €' surrounding a large sphere of periodic replica of
the simulation cell.

Most of our calculations were performed for a periodic
system (€=, no surface boundary) but, to test the
influence of boundary conditions, a few additional calcu-
lations were carried out for € =1 (vacuum). An alterna-
tive is to use “‘spherical boundaries” for which a large
number of particles (N =2046) is confined to the inside
of a spherical volume, an infinitely repulsive interaction
between the sphere’s surface and the particles preventing
their escape. In this case the dipolar interactions extend
between all particles of the system.

Sampling of phase space was made in the standard
way, a Monte Carlo trial move consisting of displacement
of the hard sphere center and rotation of its dipole mo-
ment. At low density (and low temperature) the accep-
tance ratio of a move was 0.15-0.20, a value which is still
sufficient taking into account the average value of the at-
tempted displacement (~0. 1) for the spheres to diffuse
over a distance of the order of the length of the simula-
tion cell within a run of 10*~10° moves per particle.

III. RESULTS

Most of our simulation results are obtained along the
isotherm T*=1/u*?=0.0816 (u*=3.5) by varying the
density p* =pa> from 0.005 to 0.80 [u*=(u/kTao*)'% p
is the dipole moment, T the temperature, k the
Boltzmann constant, and o the hard sphere diameter].
This value of the reduced dipole moment is typical of
those encountered, for instance, in ferromagnetic colloids
at room temperature [9]. In addition, the influence on
the structural behavior of an increase of temperature
(from 0.0816 to 0.25) was investigated at the two densities
p*=0.1and 0.3. A distinctive feature of the present cal-
culations compared to those already presented in Ref. [5]
lies in the augmented statistics of the runs attaining typi-
cally (1-3)X 10° trial moves per particle for the 500 par-
ticle system and 2X 10° trial moves per particle for the
128 particle system. A summary of the thermodynamic
properties and order parameters of the various state
points considered is given in Table I. We can note that
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TABLE I. Thermodynamic properties of dipolar hard spheres as a function of density and temperature (results complementary to
those given in Table I of Ref. [5]). U,/NkT is the dipolar energy, Z the compressibility factor, S the order parameter, and P the po-
larization. (a) Initial condition with random distribution of the dipole moments and (b) initial condition with perfect alignment of the

dipole moments.

Trial moves

Boundary per
p* T* condition N particle U, /NkT A S P
0.005 0.0816 0 500 100000 —24.1 —0.10 0.06 0.09
0.01 0.0816 o 500 140000 —24.4 0.05 0.05 0.10
0.01 0.0816 o 128 2 600000 —25.6 —0.01 0.19 0.18
0.02 0.0816 © 500 130000 —24.7 0.10 0.05 0.05
0.05 0.0816 o 500 100 000 —25.7 —0.01 0.06 0.10
0.05 0.0816 © 128 2000000 —26.1 0.07 0.15 0.03
0.05 0.0816 Sphere 2046 70000 —253 0.10 0.04
0.1 0.0816 o 500 300000 —26.2 —0.05 0.10 0.40
0.1 0.0816 1 500 100 000 —25.7 —0.07 0.07 0.02
0.1 0.25 0 500 300000 —3.87 0.33 0.04 0.03
(a) 0.4 0.0816 © 500 110000 —26.8 —0.06 0.04 0.04
(b) 0.4 0.0816 © 500 110000 —27.0 0.33 0.35 0.70
0.5 0.0816 0 128 2 000000 —27.4 0.31 0.46 0.02
(a) 0.6 0.0816 © 500 110000 —27.4 0.22 0.39 0.25
(b) 0.6 0.0816 o 500 110000 —27.9 —0.33 0.60 0.84
0.8 0.0816 L 500 80000 —28.5 0.15 0.57 0.83

for all thermodynamic states considered, the compressi-
bility factor Z =p /pkT (p is the pressure) is nearly zero.

A. Isotherm T*=0.0816

Since the structural behavior of the DHS is found to be
qualitatively different on the low and high density sides of
the isotherm, it will be convenient, for presentation of the
results, to consider three separate density domains. It
should be clear, however, that by introducing this
division, we do not imply that they delimit thermo-
dynamically stable phases.

1 p*<0.2

In this density domain, association of the DHS into
long chainlike structures is most clearly apparent (cf.
Figs. 1-4 which show snapshots of configurations of the
system at densities p*=0.01, 0.05, 0.1, and 0.2). The as-
pect of these chains is very similar to that of partially
flexible polymers. In fact, such a structure has been pre-
dicted, by de Gennes and Pincus [9] using qualitative ar-
guments, to occur in ferromagnetic colloids.

To be able to make precise statements about the
characteristics of the chains, an operational definition is
required. Such a definition is clearly not unique and may
be based on. either a proximity or an energy criterion.
The latter serves our purpose best since, in addition to
proximity, it readily takes into account the fact that
neighboring particles have their dipole moments roughly
aligned with the direction of the vector joining the molec-
ular centers. Two spheres were considered to be bound if
their potential energy was less than a predetermined
value U, =—1.4u*? (i.e., 70% of the lowest energy of a
pair of DHS at contact).

This choice of U, was guided by the analysis of a num-

ber of instantaneous configurations of the system and a
record of the average values of the first, second, and third
lowest pair energies E;, E,, and E; of each particle.
When aggregation occurred, the values of E, and E,
were close but considerably lower than E;, indicating
chain formation rather than formation of more compact
clusters (in which case all three values of E would have

FIG. 1. Three-dimensional graph of an instantaneous
configuration of 500 dipolar hard spheres at p*=0.01 and
T*=0.0816 after 1.4X10° trial moves per particle. Hard
spheres belonging to chains of length larger than 20 are
represented in black, the others in gray. The direction of the di-
pole moment is indicated by a thin line. The box length is
L =36.840.
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FIG. 2. Same as Fig. 1 but for p*=0.05 (10° trial moves per
particle). The box length is L =21.540. Hard spheres belong-
ing to chains of length larger than 50 are represented in black,
the others in gray.

been close). For example, at p*=0.1, u*=3.5, one finds
E,=—22.16, E,=—19.17,and E;=—3.56.

Chains were then identified as follows: For each parti-
cle i, in a given configuration, denote by E) and E;?’ the
energies of the pairs (i,j) and (i,k) having the first and
second lowest energies. Choose a particle at random, say,
i, and assume that it does not yet belong to a chain. If
E{l’<U,, particle j will belong to the chain. Move to

FIG. 3. Same as Fig. 1 but for p*=0.1 (3X10° trial moves
per particle). Hard spheres belonging to chains of length larger
than 50 are represented in black, the others in gray. The box
lengthis 17.10.
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FIG. 4. Same as Fig. 1 but for p*=0.2 (4X10* trial moves
per particle). Hard spheres belonging to chains of length larger
than 30 are represented in black, the others in gray. The box
length is 13.570.

particle j. If Ej’ <U,, particle  is accepted as the next
member of the chain provided it does not yet belong to it
or to another chain. Otherwise, the energy criterion is
checked for E},ﬁ’ The process is continued until the
chain stops (the energy criterion not satisfied or the
neighbor belonging already to a chain). Then move back
to the initial particle i and check the energy criterion for
E{? (second lowest pair energy) in order to grow the
chain in the opposite direction. We note that the preced-
ing chain definition, based on consideration of only the
first two lowest pair energies, obviously does not allow
for branched chain configurations. In fact, in the density
region over which the chain concept seems meaningful,
such configurations would occur only very rarely.

We can now define a chain length as the number of
spheres belonging to a chain. Furthermore, it will be
convenient to introduce two average lengths, one being
the mean chain length in a given configuration defined as

l=2sns/2ns , (1)

where n; is the number of chains having length s, and the
second, denoted by an overbar, its average over
configuration space, i.e.,

=(1) . 2)

Alternative expressions, which weight more heavily the
longer chains, can also be used. These are defined as

Is=2s2ns/2sns (3)
and
L=(1) . @)

However, if not specified explicitly, we will refer to



5134

Egs. (1) and (2) for the chain length. The flexibility of the

chains will be characterized by an (instantaneous) mean

persistence length
l = L

7 o

s—2
deren/ 2 n 5)

all chains with s> 10 k=1 s>10

(1, is the mean value for all chains with length larger

than 10) and its average over configuration space
l,= ( I ). (6)

In Eq. (5), e;=r;,—1; is the vector connecting two suc-
cessive hard sphere centers.

We are now in a position to describe chain formation
and chain properties in a more quantitative way. The ini-
tial association of the dipolar spheres, starting from a
face-centered-cubic lattice configuration with random
orientations of the dipole moments, is generally quite
fast. For example, at p*=0.05, after generating of the
order of 5000 trial moves per particle, all particles were
involved in a chain structure (no free monomers) and
after 10000 trial moves per particle, the mean chain
length was already ~5. The evolution of the mean chain
length [ as a function of the number of Monte Carlo steps
is shown in Fig. 5 for a 500 particle system at p*=0.1. A
striking feature is its rapid fluctuation, indicating con-
tinuous breaking and recombination of the chains. In
this respect it is tempting to qualify the chains as living
polymers. The breakage-recombination process can
occur through different mechanisms, the most obvious
being combination of two chains when their ends meet to
form a longer chain or, in the reverse case, breaking of a
chain into two smaller chains. However, two other
mechanisms previously invoked to describe the dynamics
of living-polymer systems [10], end-interchange and
bond-interchange reactions, seem to be operating as well
and are possibly more efficient as lower energy barriers
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FIG. 5. Variation of the mean chain length / [Eq. (1)] as a
function of the number of Monte Carlo steps for a system of 500
particles at p* =0.1 and T*=0.0816 (solid line). The diamonds
and crosses represent, respectively, the average chain length [
[Eq. (2)] and the average persistence length I, /o [Eq. (6)] calcu-
lated by averaging over blocks of configurations of 2.5X 10* tri-
al moves per particle (the dotted line merely connects the
crosses).
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are involved. In the end-interchange reaction the end of
one chain interacts with a second chain at some random
position, causing the second chain to break into two sec-
tions at this point. The end of one of these sections then
combines with the end of the first chain, while the other
end remains free. A bond-interchange reaction can arise
when two chains come into close contact at some point
along their length. In this case two new chains can form
through combination of a section of the first chain with

FIG. 6. Evolution of a system of 500 dipolar hard spheres at
p*=0.1 and T*=0.0816 with the number of Monte Carlo
steps. From top to bottom: snapshots of configurations after
10°, 2 X 10%, and 3 X 10° trial moves per particle. The box length
isL =17.100.
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FIG. 7. Variation of the (instantaneous) mean chain length /
[Eq. (1)] as a function of the number of Monte Carlo steps for a
system of 128 dipolar hard spheres at p*=0.05 and T*=0.0816
(solid line). The dotted line represents the running average per-
sistence length 7, /o [Eq. (6)].

one or the other section of the second chain [10]. We did
not investigate these mechanisms in detail.

A second, less pleasing, feature that is apparent in Fig.
5 is the slow but continuous increase of the mean chain
length /, indicating the difficulty in obtaining equilibrium
values even with sampling periods of the order of 300 000
steps per particle. However, snapshots of configurations
of the system (p*=0.1, 500 particles) after 100000,
200 000, and 300 000 Monte Carlo steps per particle show
(cf. Fig. 6) that even if the average length of the chains is
slow to converge, the global structure of the system does
not change qualitatively over this time span. They also
show that on a local scale there is appreciable evolution
of the system, giving significant credit to the simple sam-
pling method used. The final configuration of the system
at p*=0.1 consists of four chains (taking into account
the periodic boundary conditions) of lengths 203, 167,
106, and 24, respectively. The average chain length cal-
culated over the block consisting of the last 100000 steps
per particle is 73 if Eq. (2) is used or 125 with Eq. (4).
. The persistence length averaged over the same block is
I,/0~13.

In order to check whether an equilibrium state could
be obtained by increasing the length of the simulation
runs, we performed additional calculations for a 128 par-
ticle system at densities p* =0.01 and 0.05. The smaller
particle number allowed us to follow the evolution of the
system over a time span of 2 million steps per particle.
Analysis of the variation of the chain length with ‘“time”
at p*=0.05 (Fig. 7) shows that after about 50 000 Monte
Carlo steps per particle, the chain length fluctuates
around an average value /~50. The persistence length
averaged over the last million steps is ~70. For the den-
sity p*=0.01, average chain lengths and persistence
lengths are I~45 and I, ~ 7o, respectively. Snapshots of
configurations spaced by an interval of the order of a mil-
lion Monte Carlo moves per particle are shown in Figs. 8
and 9 for p*=0.01 and 0.05, respectively. Together with
the 500 particle results, they allow for a number of con-
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clusions: As already observed for the 500 particle sys-
tem, there is considerable diffusion of the particles, giving
support for the reliability of the sampling scheme. There
is no evidence of the chains coiling, nor is there evidence
for a tendency of the chains to separate into subvolumes
of low and high densities; the spatial distribution of the
chains seems fairly homogeneous. Rings can form oc-
casionally, but are rare at the densities considered. The

FIG. 8. Snapshots of the configuration of a 128 particle sys-
tem at p*=0.01 and T*=0.0816 after (from top to bottom)
4X10% 1.4X10% and 2.4X10° trial moves per particle. The
box length is L =23.40.
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larger values of the chain lengths found for the 128 parti-
cle system, compared to those obtained for the 500 parti-
cle system at equal densities, indicate that a number of
Monte Carlo moves of the order of (1-3) X 10°> moves per
particle is not sufficient to guarantee a converged value of
the chain length.

2. p*>0.6

Previous simulation studies have already shown that in
this density region the system of dipolar hard spheres (as

FIG. 9. Snapshots of the configuration of a 128 particle sys-
tem at p*=0.05 and T*=0.0816 after (from top to bottom)
2X 104 10%, and 2 X 10° trial moves per particle. The box length
isL=13.70.
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well as the related system of dipolar soft spheres) can ex-
hibit, at sufficiently low temperatures, spontaneous orien-
tational ordering of the dipole moments which, more-
over, is ferroelectric [1,3]. We confirm this result for the
temperature T*=0.0816. A snapshot of a configuration
at p* =0.8 showing clear ferroelectric ordering is given in
Fig. 10. The polarization of this thermodynamic state is
P=0.84 (cf. Table I). The polarization P=(P,) is
defined as the average value of

|

|, (7

A

1Y
Ty 2 d

where d is a unit vector in the direction of the (instan-
taneous) eigenvector associated with the largest eigenval-
ue P, of the second-rank tensor

Q=4 34

z:I

(38,4, —1) (8)

and U, is a unit vector along the direction of the dipole
moment of particle i. The usual nematic order parameter
S is given by the average value of P,. At the lower densi-
ty p*=0.6, a polarization P =0.83 was obtained starting
from an initial perfectly polarized configuration (110 000
trial moves per particle). However, when the system was
started from an unpolarized state with random distribu-
tion of the dipole moments, the polarization was extreme-
ly slow to build up and did not converge within the
length of the run. The final value, after 110000 trial
moves per particle, was P =0.30.

3. 0.2<p*<0.6

In the intermediate density region an unambiguous
characterization of the fluid structure is less straightfor-

FIG. 10. Snapshot of a polarized configuration of 500 dipolar
hard spheres at p*=0.8, T*=0.0816 (8 X 10* trial moves per
particle). The direction of the dipole moments is indicated by a
thin line. The box length is L =8.550.
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ward than in the two previously discussed regions. This
is due, on the one hand, to increased angular correlations
between particles not just limited to the two next nearest
neighbors and the resulting failure of a chain as defined
above to be a useful concept and, on the other hand, to
metastability of the polarization.

Snapshots of a 500 particle configuration at p*=0.4
(after 110000 steps per particle) and a 128 particle
configuration at p* =0.5 (after 2X 10° steps per particle)
are shown in Figs. 11 and 12, respectively. In both cases
the initial distribution of the dipole moments was ran-
dom. No net polarization developed in the system. How-
ever, when the simulation run at p*=0.4 was started
from a perfectly polarized initial configuration, the polar-
ization was very slow to decay (P~0.7 after 110000
Monte Carlo steps per particle), indicating large metasta-
bility effects.

The snapshots give no visible evidence of chain struc-
tures similar to those observable at lower density. If,
nonetheless, we apply our chain criterion at density
p*=0.4, we identify “chains” with an average length of
~20. However, these “chains” are not stable entities in-
volving well-defined particles as in the low density case;
they merely reflect local orientational order in which di-
pole moments align with head-to-tail arrangement along
some path. At these densities, a more refined description
of orientational order, possibly based on order parame-
ters similar to those used by Gringras, Holdsworth, and
Bergersen [11] to identify local bond orientational order
in hexatic smectic liquid crystals, is clearly in order.

Finally, from the preceding observations it is likely
that the identification, in Ref. [5], of ferroelectric chains
at density p* =0.3 is an artifact of initial conditions (per-
fectly polarized configuration) and insufficient sampling
of configuration space (40 000 trial moves per particle).

FIG. 11. Snapshot of a configuration of 500 dipolar hard
spheres at p*=0.4, T*=0.0816 (1.1X 10° trial moves per parti-
cle). The box length is 10.80.
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FIG. 12. Snapshot of a configuration of 128 dipolar hard
spheres at p*=0.5, T*=0.0816 (2X 10° trial moves per parti-
cle). The box length is 6.35¢.

B. Influence of boundary conditions

It is a well known fact that the orientational correla-
tions in dipolar systems depend strongly on boundary
conditions as a consequence of the long-range nature of
the dipole-dipole interaction. A striking manifestation of
boundary conditions is, for instance, the formation, in the
ferroelectric phase, of domain structure when the system
is subject to the depolarization field [1,4]. The influence
on chain formation is less noticeable. The present simu-
lation results at p*=0.1 and 0.05, for a periodic system
in vacuum and an isolated sphere in vacuum, respectively
(cf. Sec. II), show that the effect is at best quantitative,
and manifests mainly in a three to four times smaller per-
sistence length and, probably, a somewhat smaller chain
length compared to the case when €= . This lower
value of /, is likely to result from an increased flexibility
of the chains due to a weakening, induced by the depolar-
izing field, of the alignment of neighboring dipoles. A
precise comparison seems not to be feasible due to possi-
ble lack of convergence of these quantities, but an order
of magnitude estimate of the difference can be made. For
example, at p*=0.1, we find [, ~3 and T~ 30 (I; ~60) for
the periodic system in vacuum (500 particles, 100000
moves per particle) compared to TI, ~12 and 7T~60
(I, ~100) for the periodic system without boundary (500
particles, 300000 moves per particle). Similarly, at
p*=0.05, the values for I, and 7 are 1.6 and 25, respec-
tively, for a sphere in vacuum (2046 particles, 70000
moves per particle) and 7 and 50 for the infinite periodic
system (128 particles, 2X10° moves per particle). The
snapshot of a configuration of the 2046-particle system is
shown in Fig. 13. One notes the preference of the chains
to order parallel to the surface near the spherical bound-
ary. This arrangement is in agreement with the earlier
observation, made at higher temperatures, that dipolar
hard spheres orient their dipole moment with high proba-
bility parallel to an inert hard wall [12].
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FIG. 13. Snapshot of a configuration of 2046 dipolar hard
spheres in a spherical volume in vacuum (see the text). All the
particles are projected on an equatorial plane. Hard spheres be-
longing to chains with length larger than 50 are represented in
black, the others in gray. The radius of the confining sphere is
21.40.

C. Variation with temperature

The structural changes entailed by a temperature in-
crease are best perceived by comparing snapshots of
configurations obtained at a series of different tempera-
tures. An example is given in Fig. 14 for the density
p*=0.1. Upon increase of temperature, the average
chain length progressively diminishes (cf. Table I of Ref.
[5]). A rapid increase in the number of free monomers

FIG. 14. Variation with temperature of the structure of a
system of 500 dipolar hard spheres at p*=0.1. From left to
right and top to bottom the temperatures are 7*=0.0816
(u*=3.5),0.111 (u*=3), 0.16 (u*=2.5), and 0.25 (u*=2), re-
spectively. The box length is 17.100.
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FIG. 15. Orientationally averaged structure factor of the di-
polar hard sphere system (500 particles) at p*=0.1, T*=0.25.
k is in units of o ~!. The low k values of S (k) are shown in the
inset with their estimated standard errors. The standard errors
were calculated by dividing the simulation run into 150 blocks,
corresponding to 2000 moves per particle, each. The reliability
of the estimates of the variance, 0%, obtained, for each k, from
the 150 S (k) values was checked by computing the relaxation
functions associated with the S(k) values. These functions
show that for ko > 2, values of S (k) are correlated over ~ 10*
moves per particle and, for ko =1, over 10° moves per particle.
From these results we infer a standard error of ~0.02-0.03 for
ko =2 where o, ~0.2, but for ko ~1 the standard error is of
the order of 0.

occurs near T*=0.25 (~200 monomers). However, at
this temperature half of the particles still partake in small
short-lived structures involving two to three particles
with nearly aligned dipole moments. Similar behavior
has been found to occur at p*=0.02 and 0.3 [5].

These structural changes are also apparent from the
angle averaged structure factors

N ik-(r.—r.)
ek(rl J)> )

S(k)=< s
=1
i#j

shown in Figs. 15 and 16 for p*=0.1 and the two tem-

Stk)

0 2 3 6 8 10 12 14 16 i8

FIG. 16. Orientationally averaged structure factor of the di-
polar hard sphere system (500 particles) at p*=0.1,

*=(.0816. k is in units of o ~!. The analysis of the error esti-
mate is similar to that given in Fig. 15.
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FIG. 17. Orientationally averaged structure factor of the di-
polar hard sphere system (500 particles) at p*=0.005,
T*=0.0816. k is in units of o~ . For this run of 10° trial
moves per particle, no reliable estimate of the error bars could
be obtained for ko <2 because of the slow decrease of the relax-
ation functions associated with the block estimates of the S (k)
values.

peratures T* =0.0816 and 0.25 (k is the reciprocal lattice
vector of the cubic simulation cell, kK =|k|).

Despite considerable statistical noise for ko <2, S(k),
at T*=0.25, is easily recognized to be a monotonically

increasing function at low k, typical of the behavior of a

homogeneous dipolar fluid, whereas at T*=0.0816, it
has a pronounced first peak at ko ~1. This peak is pri-
marily due to intermolecular scattering by the chains, but
its position and height may be modified by intramolecular
contributions [13]. The lower value of S(0) at
T*=0.0816, compared to the high temperature case, at-
tests to the lower compressibility of the system as a result
of association of the particles into chain structures. As
the density is lowered (at T7*=0.0816), the position of
the first peak is shifted to lower k values in accordance
with the larger intermolecular spacing of the chains (cf.
Fig. 17). Finally, we can remark that chain formation is
also reflected in the asymmetrical shape of the second
and third peaks of S (k).

IV. CONCLUSION

In spite of extensive Monte Carlo simulations, in which
configurations of the system evolve considerably, the con-
clusions of the present work concerning the nature of the
equilibrium states of low temperature dipolar hard
spheres remain qualitative and partly conjectural. The
results that appear most certain belong to the two density
domains 0.005<p* <0.2 and p*>0.6 up to the solid
phase transition. In the first domain, clearly, the molecu-
lar arrangement is characterized by association into
chainlike structures which are easily identifiable by sim-
ple visualization of the configurations. Furthermore, for
the finite systems considered in our simulations, the tran-
sition from the dilute homogeneous fluid state at high
temperature to the state of association into chains at low
temperature is progressive and continuous and occurs in
the temperature range T*=0.11-0.16. However, since a
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precise calculation of the thermodynamic properties has
not been obtained, the nature of this transition (continu-
ous, second order, etc.) remains uncertain.

The difficulty of sampling configuration space, when
the molecules have grouped into chains, arises from the
fact that chains can grow or break only through interac-
tion, in close encounters, between segments of different
chains (cf. Sec. III), or between segments of the same
chain which, on account of the rigidity of the assemblage,
are far apart. This difficulty is manifested quantitatively
in the value of the statistical error affecting S (k) at
ko = 1. Itis possible that a more efficient sampling of the
relative positions of the chains could be achieved by per-
forming a priori moves on an entire chain, the chain enti-
ty being defined by the algorithm described in Sec. III.
The efficiency of such a procedure has, however, not been
explored in the present work.

An important remark concerns the spatial distribution
of the chains: In none of our simulations has evidence
been obtained for a density inhomogeneity associated
with a concentration of chains in some subvolume of the
simulation volume, indicating possible coexistence be-
tween a density-rich and a density-poor chain arrange-
ment. In contrast, such inhomogeneities are easily ob-
served in systems having a liquid-gas transition such as,
for example, the continuum Heisenberg model [14]. The
uniform arrangement of the chains is evidently in agree-
ment with the results of Refs. [6,7] which point to the ab-
sence of a liquid-gas transition in the dipolar hard sphere
system.

For densities p* <<0.005 and T* £0.05, the exact na-
ture of the equilibrium states remains problematic; in
particular, the stability of the chain structures has not
been investigated in this range of thermodynamic states.

Thermodynamic states with density p*>0.6 and
T*~0.1 have been described in detail in Refs. [1,4]; they
present an order-disorder type transition towards an or-
dered phase characterized either by a net polarization of
the system or, in the presence of a depolarization field, by
the formation of domains polarized in different directions
such that the global polarization of the system vanishes.
In this density domain the chain definition given in Sec.
III is clearly unrealistic: Indeed, if it is still possible to
associate the molecules in a nearby linear way using the
two lowest energies of neighboring molecules, these ar-
rangements have a very reduced stability ( << 1000 moves
per particle). An analysis of the correlations between the
orientations of the dipole moments and the positions of
the molecules, similar to the one proposed in Ref. [11],
could possibly give a more adequate description of the
structural order of the system in this density domain.

For densities p* ~0.2-0.6 and T* <0. 1, our results do
not permit us, at present, to give a precise description of
the transformation of the low density chain states into
dense polarized fluid states. In particular, the location of
the line of Curie points of the order-disorder transition is
unknown. This is, partly, a consequence of considerable
metastability which impedes a precise evaluation of the
polarizability within acceptable computer times.

The simplest conjecture for the low temperature phase
diagram of DHS is that of a polarized fluid whose line of



5140

Curie points terminates at T*=0 and p* 20.4. In addi-
tion, the states with p* <0.4 and T* <0. 15 are character-
ized by the progressive appearance of an organization of
the molecules into chain structures, this organization be-
ing complete only for p* <0.2 and T*<0.1. However,
the existence of phase coexistence, in relation with a
first-order phase transition, seems to be ruled out by our
results.

A firm and unambiguous result in this region of the
phase diagram is the value of the internal energy per par-
ticle. For instance, at T*=0.0816, its value,
—25( =~ —2u*?) remains constant (within 10%) for a den-
sity variation of two orders of magnitude from 0.005 to
0.4. This value also indicates that correlations between
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three nearest neighbors associated linearly are dominant
and should be taken into account explicitly in a theoreti-
cal calculation of the equation of state of DHS at low
temperature. The difficulties of such an approach are
stressed, for instance, in Ref. [15].
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