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Solution of the Percus-Yevick equation for pair-correlation functions of molecular fluids
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The Percus-Yevick (PY) integral equation has been solved for two model fluids: (i) a fluid of hard el-

lipsoids of a revolution represented by a Gaussian overlap model, and (ii) a fluid the molecules of which

interact via a Gay-Berne [J.Chem. Phys. 74, 3316 (1981}]model potential. The method used involves an
expansion of angle dependent functions appearing in the integral equation in terms of spherical harmon-

ics. The dependence of the accuracy of the results on the number of terms taken in the basis set is ex-

plored for both fluids at diferent densities, temperatures, and lengths to width ratios of the molecules.
We have compared our results with those of computer simulations wherever they are available. We find

that the PY theory gives reasonable values of the harmonic coefficients for both fluids at all fluid densi-

ties when all terms involving the index l up to six in the expansion are considered. For the Gay-Berne
fluid we have developed a perturbation expansion for a calculation of the structure and thermodynamic

properties of the isotropic phase.

PACS number(s): 61.20.Gy, 61.25.Em

I. INTRODUCTION

Molecular fluids have both translational and orienta-
tional structures and, in general, these two structures are
correlated. Pair correlation functions (PCF's) are the
lowest order microscopic quantities which contain this
information and have direct contact with underlying
inter- and intra-molecular interactions [1,2]. The PCF's
are found either by computer simulations or by semiana-
lytic approximate methods [3]. In the latter approach
one solves the Ornstein-Zernike (OZ) equation,

h (1,2)=c (1,2)+p& Ic (1,3)h (2, 3)dx3,

where i =x; indicates both the location r; of the center of
the ith molecule and its relative orientation 0;, described
by the Euler angles 8, P, and g, with suitable closure rela-
tions such as the Percus-Yevick (PY) integral equation,
hypernetted chain (HNC), mean spherical approximation
(MSA), etc. Approximations are introduced through
these closure relations. In Eq. (1.1), h(1,2)=g(1,2)—1

and c (1,2) are, respectively, the total and direct PCF's.
Once the PCF's as a function of inter-molecular sepa-

ration and orientations are known, the equilibrium prop-
erties are computed easily [3]. If we assume pairwise ad-
ditivity of the potential energy of the interactions, all
thermodynamic quantities of the system are expressed in
terms of the PCF's. In case of nonuniformity [4] or
departure from the assumption of pairwise additivity [5]
of the potential, one needs to know higher order correla-
tion functions.

Two rather different approaches for finding PCF's of
molecular fluids have emerged in recent years. In one of
the methods, the PCF's are expanded in a series of angle
dependent basic functions (spherical harmonics in the
case of linear molecules and generalized harmonics or
Wigner rotation matrices in the case of nonlinear mole-
cules). When such expansions of PCF's are substituted in
the OZ equation, it reduces to a set of algebraically cou-

pled equations relating the harmonic coeScients of the
direct and total correlation functions. These equations
involve only one variable (r or k) in place of five or more
variables in the original OZ equation.

In another approach one first constructs models in
which a molecule is represented by a set of discrete in-
teraction sites that are commonly, but not invariably, lo-
cated at the sites of the atomic nuclei [6]. The total po-
tential energy of two molecules is obtained as the sum of
the spherically symmetric interaction sites potential, the
latter one typically of the same form as the potential used
for atomic systems. When an interaction-site model is
used to represent the intermolecular potential, the natu-
ral way to describe the structure of the fluid is in terms of
site-site distribution functions g tt(r). In any real molec-
ular fluid the most important site-site distribution func-
tions are those that describe the distribution of atomic
sites. The correlation function g &(r) is given by the in-
tegral of correlation function g (1,2)=1+h (1,2) over all
coordinates subject to the constraint that the separation
of site a in one molecule and site P in another molecule is
equal to r.

Since in this paper we are concerned with systems con-
sisting of rigid molecules of well defined geometry, we use
the first method, i.e., the method which uses the angle
dependent basis set to expand PCF's and solve the result-
ing OZ equation. For this we use the PY closure relation
and solve the OZ equation for (i} a system of hard ellip-
soids of revolution (HER) and for (ii) a system, the mole-
cules of which interact via a Gay and Berne (hereafter re-
ferred to as GB}pair potential [7].

The motivation for studying these systems stems from
the fact that they capture some of the basic features of
the real ordered phases. For example, a system of HER
is found [8] to exhibit four distinct phases, viz. , isotropic
fluid, nematic fluid, plastic soli.d, and ordered solid. The
computer simulation results [9,10] show that the GB po-
tential is capable of forming nematic, smectic A, smectic
8, and an ordered solid in addition to the isotropic liquid.
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In the density functional theory of freezing the ordered
phase properties are expressed in terms of the direct PCF
(DPCF) of an isotropic fiuid [4]. The knowledge of the
PCF of the isotropic phase as a function of the tempera-

ture and density is therefore prerequisite to understand-
ing the transition and stability of the various ordered
phases and to calculating the freezing parameters.

The GB potential model is written as

u (1,2) =4@(r,2, Q„Q2)
Oo

&12
—0 (r12, Q„Q2)+0 p r, 2

—o (r,2, Q„Q2)+0'p
(1.2)

where r, 2 is a unit ~ector along r,2=F2 —r, . Here e(r, 2, Q, , Q2) and 0(r,2, Q, , Q2) are angle dependent strength and
range parameters, respectively, and are defined as

(r, 2 e, ) +(r,2.e2) —2y'(x, 2 e, )(r, 2 e2)
e(r12, Q1, Q2) =~p[i —y'(ei e, )']

1 —y' (e, e2)

o (r,2, Q„Q2)=op(r12, Q„Q2)

with

(1.4a)

g(r12, Q1,Q2) = 1 —y
(r12 el ) +(r12 e2) 2X(r12 el )(r12 e2)

1 —X'(e1 e2)'
(1.4b)

where e& and e2 are the unit vectors along the symmetry
axes of two interacting molecules. eo and oo are con-
stants and, in some ways, provide a measure of the attrac-
tive interactions and the size of the molecules. The an-
isotropy parameters y and y' are defined as

x 1
2
0

2+ l

and

k'"+ l

where xp( =20 l2b) is the length (major axis) to breadth
(minor axis) ratio of these molecules and k' is the ratio of
the potential well depths for the side-by-side and end-to-
end configurations. Note that the potential of Eq. (1.2)
reduces to the spherical Lennard-Jones (12-6) potential
with parameters cro and eo, when both xo and k' are
equal to unity.

The GB potential model was originally proposed as a
numerical fit to a four site-site Lennard-Jones (12-6) mod-
el and gives a reasonable account of both the anisotropic
repulsive and attractive forces. The relative simplicity of
the GB model compared with the site-site models makes
this model attractive from a computational point of view.
Recently, Miguel and co-workers [9] have generated data
for PCF's using molecular dynamics (MD) computer
simulations. These workers have also shown the subtle
role played by the soft repulsion and attraction part~ in
stabilizing the orientationally ordered phases at luw tem-
peratures and high densities.

In a previous paper [11]we solved the OZ equation us-

ing the PY closure relation for a system of hard ellipsoids
of revolution (HER) considering all harmonic coefficients
up to / indices (see Sec. II and Table I for a definition) 4.
In this paper we extend this calculation and include all
harmonics up to I indices 6. This amounts to considering
30 harmonic coeScients each for an h and c function as

u(1, 2)= '

o ««12 —D(r12, Q1, Q2),
(1.6)

where D (r,2, Q„Q2) is the distance of closest approach of
two molecules with orientations 0, and Q2 in a direction
given by r,2. For D(r, 2, Q, , Q2) we use the expression
given by the Gaussian overlap model of Berne and
Pechukas [12],i.e.,

TABLE I. The terms included in different basis sets in BF ex-
pansion.

Basis set

No. of
independent

terms Terms included'

I
(m ~4)

I
(m &6)

000, 200, 220, 221„222, 400,
420, 421, 422, 440, 441, 442,
443 A.A.A

600, 620, 621, 622, 640, 641,
642, 643, 644, 660, 661, 662,
663, 664, 66S, 666

'Only additional terms which occur in each basis set.

I

compared to 14 in our previous work [11]. It may be not-
ed that in any numerical solution of Eq. (1.1) the accura-
cy of the results depends on the number of spherical har-
monic coefficients for each orientation-dependent func-
tion. As the anisotropy in the shape of the molecule (or
in the interaction) and the value of fiuid density pf in-
crease, higher-order harmonic coefficients are needed to
get proper convergence. The comparison of the results of
these two calculations therefore enables us to comment
on the convergence of the expansion series as the anisot-
ropy in the shape of molecule and fiuid density is in-
creased.

The potential energy of the interaction of a pair of
HER is represented as

for r12 &D(r12, Q1, Q2)
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D (r12 Qi Q2)=dpg{r12 Qi Q2) (1.7) c (1,2)=b (1,2)g (1,2)=f (1,2)[g (1,2)—c (1,2)], (2.1)

where d0=2b, the minor axis of the ellipsoid, and the an-

gle dependent function g(r, 2, Q„Q2) is given by Eq.
(1.4b).

The paper is organized as follows. In Sec. II, we de-
scribe the procedure for solving the OZ equation using
the PY closure relation and a method in which the PCF's
are expanded in a series of spherical harmonics. Section
III is devoted to developing a thermodynamic perturba-
tion method for the calculation of structure and thermo-
dynamic properties of the GB fluid. Here we generalize
the approach of Weeks, Chandler, and Anderson [13] for
atomic Quid to molecular fluid to molecular fluid and
derive an expression for the DPCF of the isotropic fluid
consistent with the first order perturbation theory. In
Sec. IV we discuss the results for both fluids and com-
ment on the convergence of the expansion series of the
PCF's in terms of spherical harmonics. We also compare
our results with those of the computer simulations wher-
ever the latter are available. The paper ends with a brief
summary and the conclusions of our results given in Sec.
V.

II. PAIR CORRELATION FUNC;TIONS: PY THEORY

The PY closure relations are written in various
equivalent forms; the form which we adopt is [11]

where

and

b ( 1,2)= 1 —exp [Pu ( 1,2)],

f (1,2)= exp[ —Pu (1,2) ]—1 .

Here u(1,2) is a pair potential energy of interaction.
Since all the functions appearing in Eqs. (1.1} and (2.1}
are an invariant pairwise function, they can be expanded
in spherical harmonics either in a space fixed (SF) frame
or in a body fixed (BF) frame. For example, the expan-
sion of DPCF in an SF frame is written as

c(r12,Q1,Q2}= g g cl l l(r12}C (11121;mim2m)
ll l2l ml m2m

X
Yl 1m

i(Q1)Yl2m2(Q2) Ylm (r)

(2.2)

where C (1,121;m, m 2m ) are the Clebsch-Gordan
coefficients.

In the k space, the OZ equation has been found to have
a particularly simple form in terms of BF spherical har-
monic coefficients:

~l&l2m (k} el! l&m «}—A, i,m «}—( —1 ) & cl, l, m(k}[cl,l, m (k}+f1,i,m (k}],m~

'3

1

It Ilt (t Itt
1' 1 ' 2' 2

clil2m(r12)—

II tt

Cs(l il 1'll,'m'm "m)Cs(l zl z'12,'m'm "m )f1, 1, , (r12 ) [4m fippp' +y 1„1„„(r12 )],
t II 1 2
t

where the summation is over allowed values of 13. Similarly, from Eq. (2.1) we get in the BF frame

(21 i + 1)(212+1)(21i'+ 1)(212'+1)
Cs (1',1", 1„000)Cs (1212'12;000)

(2.3)

(2.4)

2l +1
&,1,2m(ri2}= y

I
2! l l(r12)Cg(11121;mmO),

or

4~
&1,l, i(r12) = g 2l +1

1/2

Al! m(r, 2}Cg(1,121;mmO) .

(2.5)

The general function A(1,2) may be either h(1, 2} or
c(1,2}.

The iterative numerical solution can be carried out in a

where m = —m, y(1,2)=h(1,2) —c(1,2), and the sum-
mation is over allowed values of 1'„1",, 12, 12', m', and
m". A similar expression can be written in the SF frame.
However, one finds it easier to numerically calculate BF
harmonic coefficients than SF harmonic coefficients. The
two harmonic coefficients are related through a linear
transformation,

1/2

I

manner described elsewhere [11]. An appropriate grid
width b,r =0.01 is chosen in configuration space and the
various functions are tabulated on M =1024 grid points,
the step size in Fourier space being hk=n. lMbr. All
one-dimensional integrals can be conveniently calculated
using the trapezoidal rule.

The iterative cycle is started by making initial guesses
for the coefficients c! l (r,2). The iteration proceeds as

1 2

follows:

I! ( 12) Yl l ( 12} I! ( 12}
(i) (new)

1 2 OZ 12 pg 12

where the superscript (i}denotes the ith iteration. After
both steps cl l m(r12)" and cl! m(r, 2}'"'"'are compared,

1 2 1 2

and if they agree with the desired accuracy (here we take
the maximum de'erence to be less than 10 }, the itera-
tion is terminated. If they do not satisfy this criterion
then the (i+1)th approximation is obtained by mixing
the "ith" and the "new" values according to the equation



5120 JOKHAN RAM, RAM CHANDRA SINGH, AND YASHWANT SINGH

I I (r}2) IXCI I (r}2) +(1 IX)cl, l (r}2) compare these results for both potential models and draw
conclusions on the convergence of the expansion.

where a is the mixing parameter adjusted in the range
0(a(1. The function of the mixing parameter is to
avoid large di8'erences between successive iterates and
hence prevent divergence.

In Table I we list the two sets of number of terms in-
cluded in rotational invariant expansion of the correla-
tion functions used in the calculation. In Sec. IV we

I

III. THERMODYNAMIC PERTURBATION
EXPANSION FOR THK GB SYSTEM

The perturbation method of %eeks, Chandler, and An-
derson (WCA) [13]of atomic Quids can be generalized to
calculate the structure and thermodynamics properties of
a GB fluid. For this, we divide the pair potential of Eq.
(1.2) into reference and perturbation parts as below:

u (r}z,Q},Qz)+e(r}z, Q}z) for r, z r (Q,z)

0 forr &r (Q )
(3.1)

—e(r}2,Q}2) for r 12 r (Q}2)
u~(r}z, Q},Q2)= '

u (r}2,Q„Q2) for r}2 & r (Q}2),

where r (Q,z)=2' oo+o(r, z, Q, , Q2) a'o is the sePara-
tion distance at the minimum.

In terms of these potentials the excess Helmholtz free
energy correct to first-order perturbation for a nonuni-
form system is found to be [14]

hA [p, u]=b, A [p, uHc]

f dx1p(1) fd" zp(2)[yHc(1 2)~N, Hc

I

and, therefore, is not attempted here.
Since the OZ DPCF is related to the second functional

derivative of 6A, i.e.,

563e(1,2)=-
5p(x})5p(xz)

we find from Eq. (3.3)

a 1 1 &(1 2)=&HC(1,2)+~/„HcyHC(1, 2) —pu (1,2)g„(1,2) .

where b A [p, u Hc ] is the reduced excess free energy of an

effective Quid of hard core interacting via a pair potential
uHc, which has a form given by Eq. (1.6), and g, (1,2) is
the PCF of the reference system. Other notations ap-
pearing in the above equation are as follows:

(3.6)

The first term of the above equation is the DPCF of the
fluid of hard core at packing fraction

'9HC —IrP xo(do )

and

—puH~(1, 2)
yH( ( 1 2)e gHC( 1

~N, Hc 0 NHc 0 = e"P[ Pu, (1,2)]

(3.4) where P' =Pfo o and vHc =(n./6)xodo is the volume ele-
ment of effective hard ellipsoids. The distance of closest
approach of two HER is reduced in terms of
cr(r}z,Q„Qz), i.e.,

NHc e"p[ 1 uHc(1 D (r}2,Q„Q2)/0 (r}2,Q„Q2)= do
00'0

(3.8)

g(1,2)=g„(1,2)=e ' '
yHC(1, 2), (3.5)

which may be considered as the zeroth-order approxirna-
tion for the PCF. The first-order correction arising due
to the u„(1,2) part of the potential involves the higher-
order correlation function of the reference system [3,15]

At this level of approximation the pair correlation
function of the fluid is written as

The value of do is determined from the condition

f dr}2f dQ, fdQ~„C(r}z,Qz, Qz)hp(r}2, Q},Q2)=0 .

(3.9)

Expanding the angle-dependent functions of Eq. (3.9) in a
BF frame and evaluating the integrals using the ortho-
normal properties of the spherical harmonics, we get

(21, +1)(212+1)C (1,1,0;000)C (12120;000)Cg(1,1,0;mmO)
Il 1~m

X C (12120;mm0) f yHc, I, I, (r}2)[e„I I (r}z ) —eHc, I, I, (r}2)]r}zdr}2=()
0

(3.10)
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where e& & ~(r,z) denotes [exp( —Pu)]& I ~. Using the
1 2 1 2

values of yHc I I (r,2) found from the PY theory for

HER, we solved Eq. (3.10) to determine the value of dz.
The result is given in Sec. IV.

The second and third terms in Eq. (3.6) arise due to
softness in the repulsive core and the attractive part of
the interaction, respectively. Since the structure of dense
Quids is primarily controlled by that part of the interac-
tion that gives rise to a repulsive force, the first-order
perturbation theory is expected to yield satisfactory re-
sults for dense fluids [2,3].

2-Q-

1.5- qI

1.0-
C%

0.5-

IV. RESULTS AND DISCUSSION

A. HER model O.C
LO 1.5 25

In Figs. 1 —3 we compare the values of
g(r}=1+Itomm(r) j4n of the BF frame of the two basis
sets for xo =2 and 3. In these figures we also plot molec-
ular dynamics (MD) simulation results of Talbot, Perera,
and Patey [16]. Their model for ellipsoids overlap, how-
ever, difFers from the Gaussian model of Eq. (1.6) used by
us. It is therefore reasonable to expect that the difference
in the values of these two results may partly be due to the
difference in the overlap model. The computer simula-
tion results for harmonics of PCF's for the Gaussian
model of HER overlap are, to the best of our knowledge,
not available at present.

Perera, Kusalik, and Patey [17] have solved the PY
and HNC equation for HER using the model for ellipsoid
overlap used in the MD simulation of Talbot, Perera, and
Patey [16]. Both the PY and HNC theories were found
to give results for PCF which are in reasonable agree-
ment with the MD results for prolate molecules. In the
figures plotted here we do not show the results of Perera,
Kusalik, and Patey [17]for the reason stated above.

It may be seen from these figures that for both x0=2

1-5—

FIG. 2. Pair correlation function of the center of mass g(r)
for xo =2, g=0.592 38. The curves are the same as in Fig. 1.

and 3 the basis sets I and II give almost identical results
for g(r}=1+hooo(r)I4n for all values of ride at low
densities (i.e., at t} 0.3702). However, for harmonics in-
volving an I index of 4 or higher our results show that the
two basis sets give results which differ from each other.
The difference becomes more pronounced at larger xo, in-
dicating that at large xo more terms in the basis set are
needed for the proper convergence of the series of PCF's
compared to smaller xo at the same density. Another
feature that appears from our result is that the two basis
sets at high densities (i.e., at r1=0.59238) give almost
identical values for harmonics of PCF's around the first
peak but differ at larger separation.

At r1=0.59238 for xo=2 the MD results (shown in
Fig. 2) exhibit a shoulder in the first peak of g(r). This
shoulder is not found in our PY solution. This qualita-
tive difference in the results found by the PY approxima-
tion and the MD simulation may be due to the difference
in the overlap model for HER taken in these two calcula-
tions.

1.5-

10— ~~wmmmma~

1-0—

0.5— L

05—

0-0
I

1.5
I

2-0
I

2-5 3-0
I I

3.5

FIG. 1. Pair correlation function of the center of mass g(r)
for x0=2, g=0.3702. The solid and dashed curves are PY re-
sults obtained with basis sets I and II, respectively. The circles
are MD results of Talbot, Perera, and Patey [16].

0.0
1.0

I

1.5
I

24
I

2.5
I

34
I

4.0

FIG. 3. Pair correlation function of the center of mass g(r)
for xo =3, g =0.3702. The curves are the same as in Fig. 1.
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F00 0 S.O
I

0 0— 5 0-"
g

-100.0
K

-200 0

-300 0

4.0 ",
I

O4

3-0 '
I

I
I

I

2.0

-400 0
0.0

I

20 60 80
I

50.0

1.0

kdo

FIG. 4. The SF spherical harmonic coefficient
2'000(k)/(4n. )' at x0=3. The solid and dashed curves are for
g=0.3702 obtained with basis sets I and II, respectively. The
dashed curve is indistinguishable from the solid on the scale
used in the Sgure. The solid curve with circles and solid curve
with triangles are for g=0.48 obtained with basis sets I and II,
respectively.

0-0'
1.0 2.0

do

I

30 lj.P

2.0—

FIG. 5. Pair correlation function g (r, Q&, Q&) for the parallel
orientation for xo =3, g =0.3702. The solid and dashed curves
are obtained by forming the sum of 14 and 30 BF harmonic
coefficients.

In Fig. 4 we plot the SF zero-angular-momentum c
harmonics for both basis sets in k space for x0=3 at
g=0.3702 and 0.48. From this figure and also from the
results of nonzero-angular-momentum harmonics we
conclude that while the two sets give almost identical re-
sults for all c harmonics at lower density, they differ con-
siderably at higher density. The difference becomes more
pronounced for harmonics with a higher l index value. It
seems that the basis set I overestimates the density depen-
dence of c harmonics.

Knowledge of the coeKcients of spherical harmonic ex-
pansion makes it possible to obtain detailed information
on the orientational structure of the Quid. Besides a direct
interpretation of the structure through the harmonic
coeScients, we may examine as well the full PCF at some
fixed variables. The typical specific orientations usually
used are as follows: (i) parallel (8,=8&=m'/2, $,2=0),
(ii) T shaped (8,=m /2, 8&=P,&

=0), (iii) crossed
(8&=8&=),z=n'/2), and (iv) end-to-end (8, =82=),z
=0) configurations. There are some computer simula-
tion results in the literature for a full PCF of sphero-
cylinders [18] for these orientations but not for HER to
the best of our knowledge.

The values of the pair distribution function obtained by
forming the sum of 14 and 30 BF harmonic coeScients
are shown in Figs. 5 —8 for xo=3 and g=0.3702. One
would expect these curves to exhibit a behavior similar to
that of the function g (r). At a separation less than xo the
results for the two basis sets di8er considerably from each
other. It seems that the results found from either basis set
do not satisfy all the required features of the PCF for
fixed orientations at small separations. This conclusion is
derived from the fact that for a given orientation, the
value of g (r) must be zero inside the hard core. For ex-
ample, for T-shape orientation, g (r) should be zero for

1.5—

n
g 1

I

r
I

CV

~ 10
L

05

00
1 75

l

2-25 2 75

&/do

I

3.25
l

3.75

$ 9
~ \

1

I

I

I
l

3-9 )
I

f
I
I

l
l2.9 i

CV I

I

I

1-9
(

0.9

—0-1
1-0 20

/do

I

30

FIG. 7. Same as in Fig. 5, but for the crossed orientation.

FIG. 6. Same as in Fig. 5, but for the T-shaped orientation.
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FIG. 14. Same as in Fig. 13, but for x0=3, k'=5, and

T*=0.95.
FIG. 12. The SF spherical harmonic coefBcient

cooo(k)/(4m)' ' for the GB fluid at x0=3, k'=5, T =1.25.
The solid and dashed curves are for g =0.44 obtained with basis
sets I and II, respectively. The solid curve with circles and solid
curve with triangles are for g=0.53407 obtained with basis sets
I and II, respectively.

can be made: (i) At high density, i.e., at r1=0.53407 the
basis set I gives values of g (r), which have more pro-
nounced second and higher peaks than the results of basis
set II and the MD values; (ii) the maxima of the first peak
for the basis set II is shifted slightly to the larger value of
rloo than the MD and the basis set I results; (iii) the
overall agreement between the simulation values and the
values of the basis set II is satisfactory; and (iv} at density
g=0.44 the results of both basis sets are in close agree-
ment, but appear to overestimate the first peak of g(r).
Since computer simulation results are not available for
other harmonics of PCF's we do not plot them here.

In Fig. 12 we compare the value of cooo(k) found from

O

the two basis sets at T*=1.25 and at two densities
g=0.44 and 0.53407. While the results of the two basis
sets are close for g=0.44, they differ considerably for
q =0.534 07. This trend is also observed for the
nonzero-angular-momentum c harmonics, As in the case
of the HER model, the basis set I appears to overestimate
the density dependence of c harmonics. The difference
between the results of the two basis sets is found to in-
crease for harmonics with a higher I index.

In Figs. 13 and 14 we compare the pressure versus den-
sity derived from the direct PCF compressibility sum rule
obtained from using basis set II to MD simulation results
[9] for x0=3, k'=5 at T' =1.25, and 0.95, respectively.
The PY theory appears to underestimate the pressure of
the fluid at a given density at both temperatures. This
feature has also been found in the case of the Lennard-
Jones (12-6) potential model. It seems that the PY theory
underestimates the value of cooo(0), which appears in the
compressibility equation.

In Fig. 10 we have plotted values of g (r) found from
Eq. (3.5) which, in the zeroth-order approximation, give
the PCF of the GB fluid. To get this results we have first
solved Eq. (3.10} to find the value of do as a function of
density and temperature. In Table II we give the values
of d0 at a few densities and temperatures. As expected,
the value of d is found to decrease as the temperature
and density are increased. Once d0 is known, the value
of PCF can be calculated in the said approximations us-

2

TABLE II. The distance of the minor axis of an e8'ective
hard ellipsoid {do ) at x0= 3 and k'=5 for the reference part of
ihe Gay-Berne potential.

T
0 OXS 0.&

I j

0% 0-2 (425 0.3 OM QA
1.25 0.3702

0.4400
0.4800

0.990 306
0.989997
0.989 774

FIG. 13. Pressure as a function of fluid density for the GB
fluid for xo=3, k'=5, and T =1.25. The solid curve is the
present PY result obtained using the compressibility equation.
The open circles are the MD result of Miguel and co-workers.

0.95 0.3702
0.4400
0.4800

0.997234
0.997037
0.996 889
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FIG. 15. The SF spherical harmonic coeScient
c(r)/(4~)' for the GB Suid at x0=3, k'=5, and T =1.25
obtained with basis set II. The solid curve and solid curve with
circles are the PY results for the full GB model at g=0.44 and
0.48, respectively. The dashed and solid curve with triangles are
the perturbation theory results at g=0.44 and 0.48, respective-
ly.

ing Eqs. (3.5) and (3.6). For this we have used results of
HER of basis set II. From Fig. 10 we find that the results
found for the center of mass PCF from Eq. (3.5) underes-
timates the flrst peak and oscillates out of phase with the
MD and PY results. In Fig. 15 we compare SF zero-
angular-momentum c harmonics found from the PY
equation and from Eq. (3.6) for xo=3 at T'=1.25 and
g=0.44 and 0.48. We see that the perturbation theory
gives values of c harmonics which qualitatively agree
with the PY results but are more negative at small r than
the PY results for all harmonics.

V. SUMMARY AND CONCLUSIONS

For Quids of axially symmetric nonspherical molecules
the angle-dependent PCF's are expanded in products of
spherical harmonics either in a BF or SF coordinate
frame. The expansion coeScients of these two frames are
related through a linear transformation [see Eq. (2.5)]. In
this paper we solved numerically the OZ equation using
the PY closure relation to obtain values of these expan-
sion coeflicients. We reported results for a model fluid of
HER and for a fluid the molecules of which interact via
the GB pair potential model. The reason for considering
these Quids is that the corresponding models of hard

spheres and the Lennard-Jones (12-6) of atomic systems
have played a very important role in understanding the
structure, thermodynamics, and freezing of systems of
spherically symmetric molecules. The computer simula-
tion results have already indicated that the two fluids
studied here capture some properties of real liquid crystal
systems [8—10].

In a numerical calculation, one has to truncate the ex-
pansion series and solve the OZ equation with only a
finite number of the harmonic coeScients. The conver-
gence of the series depends on the values of xo and pf.
For both systems we have examined the convergence of
the expansion series and found that for xo ~ 3 one gets
good results at all fluid densities if one considers all terms
of the basis set II given in Table I. Our results also show
that the values of h and c--harmonic coeflicients which
involve the l index close to the truncated value may be in
some error due to the truncation. Since most of the prop-
erties of interest of a given system are expressed in terms
of the harmonic coeScients having l index 0 or 2 we ex-
pect that the results found from the basis set II should be
satisfactory even for xo & 3.

From the results given above, it seems that the PY clo-
sure relation gives values of the harmonic coef5cients,
which are in good qualitative agreement with the com-
puter simulation results. The quantitative agreement is,
however, not very satisfactory particularly for the
higher-order harmonic coefBcients. For the GB potential
the pressure calculated through the compressibility
routes is found to be underestimated. We may recall that
the PY theory gives similar results for the Lennard-Jones
(12-6) fluid [19]. For fluids of HER it has, however, been
reported [17] that the PY viral and the HNC compressi-
bility equations give very similar and reasonably accurate
results for the equation of state. Further, the PY theory
is believed to underestimate the angle-dependent part of
the PCF's while the HNC theory overestimates them.
These theories are not thermodynamically consistent.
This motivated many workers to propose different clo-
sure relations, which are thermodynamically consistent
[20]. However, all such calculations are so far limited to
atomic systems. Their extension to molecular system is
desirable.
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