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In a previous work [Phys. Rev. E 4S, 4263 (1993)]we have derived a nonlinear one-dimensional ki-
netic equation for the distribution function of particles obeying an exclusion principle. In the present
work, on the same grounds, we extend this kinetics to D-dimensional continuous or discrete space, in
order to study the distribution function of particles obeying a generalized exclusion-inclusion Pauli
principle (EIP). This exclusion or inclusion principle is introduced into the classical transition rates
by means of an inhibition or an enhancement factor, which contains a parameter e, whose values

range between —1 and +1 and can balance the efFect of the full or partial validity of EIP. After
deriving the kinetic equation we obtain a general expression of the stationary distribution function
depending on the value we give to the parameter ~. When we limit ourselves to Brownian particles,
we derive exactly for e = —1 the Fermi-Dirac (FD) distribution, for e = 0 the Maxwell-Boltzmann
distribution, and for e = 1 the Bose-Einstein (BE) distribution. When e assumes an intermediate
value, except zero, between the extreme values —1 and +1, we obtain statistical distributions dif-
ferent from the FD and BE ones. We attribute to the parameter tc the meaning of the degree of
indistinguishability of identical particles, the degree of antisymmetrization, or the symmetrization
of the wave function of the particle system.

PACS number(s): 02.50.Ga, 05.30.Fk, 05.40.+j, 05.20.Dd

I. INTRODUCTION

In quantum physics, if there is appreciable overlap-
ping of the wave functions of two identical particles in a
system, nonclassical effects arise &om the indistinguisha-
bility of identical particles. In this work we shall see how
quantum considerations, particularly indistinguishability
of identical particles, force significant changes in the clas-
sical procedures; particularly, we shall derive and solve
a nonlinear kinetic equation describing the evolution of
a system of indistinguishable particles; the quantum ef-
fects are contained in the transition probability rates and
therefore, as a consequence, in the kinetic equation.

It is well known that, at thermal equilibrium, the pres-
ence of one classical and distinguishable particle in some
particular energy state in no way inhibits or enhances the
chance that another identical and distinguishable parti-
cle will be in that state. On the other hand, the effect of
indistinguishability of quantum particles is that the pres-
ence of one in a particular quantum state very definitely
innuences the chance that another identical particle will
be in that state.

For quantum indistinguishable particles, bosons or
fermions, we can remark that the relations between the
quantum transition rates and the classical transition
rates are well known, at thermal equilibrium, where the
detailed balancing postulate is the starting point for de-
riving classical and quantum Fermi-Dirac (FD) and Bose-
Einstein (BE) distribution functions. If there are already
n bosons in a quantum state, the probability of one more
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joining them is larger by an enhancement factor of 1+n
than it would be if there were no quantum mechanical in-
distinguishability requirements. If the occupation num-
ber of a system of fermions in a quantum state is n, the
probability of one more fermion joining them is smaller
by an inhibition factor of 1 —n than it would be if there
were no quantum mechanical indistinguishability require-
ments. If n = 0 there is no inhibition of the probability
for the first fermion entering the state. But for n = 1
a second fermion is strictly inhibited &om entering the
same state.

Let us clarify the above arguments with this exam-
ple. If we consider only two quantum states 1 and 2 and
the two bosonic transition rates r&2, r2& between the two
states, we can obtain their values by simply multiply-
ing the classical rates r&2, rz~ by the enhancement factor
1+n. As n ranges &om zero to larger and larger val-
ues, the enhancement factor ranges &om 1 to ever larger
values (in agreement, let us say, with a principle that
we call the inclusion principle). The fermionic transition
rates Ty2 T2y can be expressed in terms of the rates for
classical particles by multiplying the classical rates by
the 1 —n inhibition factor; n ranges &om zero to 1 and
the in»bition factor ranges &om 1 to zero, in agreement
with the exclusion principle. The application of these re-
lations to the detailed balancing postulate allows us to
derive the classical Maxwell-Boltzmann (MB) distribu-
tion and the quantum FD and BE distributions in a very
simple way.

The usual, linear Fokker-Planck (FP) equation de-
scribes the time dependent, classical distribution func-
tion n(t, v) and the transition probability rates are at the
basis of the derivation of this equation. To our knowl-
edge, up to now, no inhibition or enhancement factor has
ever been set in the transition probability rates to obtain,
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directly from the analytical or numerical solution of the
FP equation, the distribution functions of fermions and
bosons at any time toward equilibrium. The research of
quantum statistical distributions and of their evolution
in time toward equilibrium from classical kinetic equa-
tions is a very stimulating task. These equations should
contain particular constraints on the transition proba-
bility rates Rom one occupancy site to another one. In
the case of fermions the problem has been treated by
some authors by inserting a repulsive potential into the
diffusion equations, in such a way that fermions do not
collapse to the lowest level [1]. By means of this method
one obtains distributions close to the FD one; however,
a full agreement is not reached at all. Our approach is

quite different.
In this work we follow and generalize the approach al-

ready explained by us in a previous paper, which was
limited to one-dimensional fermionic particles [2]. At
the basis of this work we consider 6rst of all the tran-
sition rates and, taking into account the quantum effects
deriving from the indistinguishability of identical parti-
cles, we give an expression for them by means of a factor
which contains, fully or partially, the inhibition or the
enhancement effect. The graduality of the inhibition or
the enhancement is assured by a parameter K whose val-

ues range between —1 and +1. Then, as a consequence,
we derive a nonlinear kinetic equation. In some cases,
as in the Brownian particle case, analytical solutions at
equilibrium, as time goes to infinity, can be deduced in a
simple way; in other cases one could derive numerical so-
lutions for the time dependent distribution functions. As
we shall see, we may also obtain statistical distributions
different from the FD and BE ones, when the parameter
K contained in the inhibition or enhancement factor has
values between —1 and +1, except the value zero.

In the last few years a great effort has been spent
in studying intermediate statistics interpolating between
FD and BE statistics. We wish to recall here the early
work related to this subject by Leinaas and Myrheim [3].
They have examined the classical con6guration space of
identical particles and shown that the classical descrip-
tion of a many-particle system is affected by indistin-
guishability of the particles. The con6guration space of
an N-particle system is not the Cartesian product of the
single-particle spaces, but rather an identification space.
This fact is used in the quantized theory and has, as a
consequence, that no symmetry constraints on the wave
function need to be postulated. In fact, since the indis-
tinguishability of the particles is taken into account in
the definition of the configuration space, no additional
restriction, corresponding to the symmetrization postu-
late, is put on the state functions. The restriction on
wave functions to be either symmetric or antisymmetric
then appears in a natural way from the formalism, with-
out having to be introduced as an additional constraint.
This is, however, only the case if the particles move in a
three- or higher-dimensional space. In one and two di-
mensions it is shown that intermediate cases between bo-
son and fermion systems are also possible. The nonlinear
kinetic equations we use are defined in an arbitrary di-
mensional space. In contrast to the above quantum case,

we can deduce, in addition to the FD and. the BE dis-
tributions, also a family of different distributions, whose
existence is also related to the research of small viola-
tions of FD and BE statistics, i.e. , of the exclusion Pauli
principle and of the inclusion principle.

The research of statistical distributions interpolating
between the FD and BE ones and allowing that
fermions, in place of one alone, occupy a single state,
started with the early work by Gentile in 1940 [4]. Very
recently the search for small violations of FD and BE
statistics has led to many studies on the intermediate
statistics, where creation and annihilation operators obey
commutation relations interpolating between bosons and
fermions [5—7]. Experimental high precision methods
have been developed to verify small deviations from the
Pauli principle. Implications of such deviations are re-
ported in atomic, nuclear, particle, and condensed matter
physics and in astrophysics and cosmology.

Indistinguishability is strictly related to antisym-
metrization and to symmetrization of wave functions.
I et us introduce the concept of d.egree of antisymmetriza-
tion or degree of symmetrization. In some physical sys-
tems of many identical fermions, trial wave functions are
used that are characterized by a partial antisymmetriza-
tion: only with this kind of wave function is it possible to
describe the physical properties of systems. One example
is the trial wave function studied by Brovetto and Bus-
setti [8] to analyze the hyperfine structure of free neutral
hydrocarbon aromatic radicals. In nuclear physics the in-
dependent boson model (IBM) describes the main prop-
erties (i.e., energy levels, electric quadrupole moments)
of heavy nuclei. However, the IBM contains fundamen-
tal problems such as, for instance, the bosonization of
fermions, the fact that we cannot antisymmetrize com-
pletely all the nucleons, and that particle-particle pairs
of nucleons can be coupled to angular momentum 2, al-
though we know that pairs of fermions are not completely
bosons, but only approximately so.

Complete antisymmetrization means complete indis-
tinguishability. %e shall introduce the inhibition or en-
hancement factor 1 + rn(t, v) into the transition proba-
bility rates. As a consequence the kinetic equation be-
comes nonlinear because the factor contains the distri-
bution function n(t, v). The value of the parameter r;

ranges between —1 and +1; therefore, as we shall see,
varying the value of K, we can consider both the BE case
v = +1 and the FD case K = —1, in addition to the clas-
sical MB case v = 0 and all intermediate cases when v,

assumes one of the intermediate values between —1 and
+1. The parameter K has the meaning of degree of indis-
tinguishability of fermions or of bosons, corresponding to
the degree of antisymmetrization or of symmetrization,
respectively. Depending on the value of v we may choose
the degree of indistinguishability or the degree of classi-
cality of the system of particles under consideration.

The result obtained in this paper holds promise that
it may be possible to develop interesting models for
atomic, nuclear, and particle quantum dynamics within
the framework of classical, nonlinear equations of mo-
tion containing quantum effects through inhibition or en-
hancement factors. We refer to Ref. [9] for a classical
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kinetic model of intermediate statistics.
In Sec. II, we introduce a general, nonlinear kinetic

equation in an arbitrary D-dimensional space that, in
the case of K = 0, becomes the well-known, linear Fokker-
Planck equation. In Sec. III, we limit ourselves to con-
sider nearest neighbor interactions and only first and sec-
ond order momentum of the transition rate difFerent &om
zero. A stationary distribution is derived whose expres-
sion is valid for any value of the parameter e between —1
and +1.

In Sec. IV, we develop the kinetics for Brownian par-
ticles: the drift coefficient is proportional to the particle
velocity and the difFusion coefficient is a constant. As the
time goes to in6nity we may derive the expression of the
distribution function which coincides, when K = kl, to
the BE and FD distributions and when r = 0 to the MB
one.

In Sec. V, the kinetics of the preceding section is stud-
ied on a lattice, i.e. , on a discrete velocity (or discrete
energy) space. We may deduce the quantum of energy
which is the interval between two close states. The dis-
tribution functions are also derived. Conclusions are re-
ported in Sec. VI.

the initial state v and on the variation v —u of the particle
state during the transition and rp and vP are functions of
the occupational number to be fully expressed. rp[n(t, v)]
is a function depending on the occupational distribution
at the initial state v while g[n(t, u)] depends on the oc-
cupational distribution of the arrival site u. These two
functions can inhibit or enhance, fully or partially, to a
certain degree, the transition rates &om site to site.

The evolution equation, taking into account the ex-
pression of the transition probability, assumes the form

Bn(t, v) D
Ot

=dr(n(t, v)) J r(tv+ u, ,u) t(n(t, v+u)) d n

—rr(n(t, v)) f r (t, v, u) tt(n(tv —u, )) tt n

In this paper we consider physical systems evolving
very slowly. This means that in the 6rst integral of
the right-hand side of Eq. (3) the quantity r(t, v +
u, u) p[n(t, v + u)] can be expanded in a Taylor series
as a function of v + u in an interval around v, when
u && v. We obtain

II. PARTICLE KINETICS IN THE PHASE SPACE

Let us consider the kinetics of particles in a continu-
ous space of arbitrary dimension D. We call n(t, v) the
occupational number; it is a scalar field which describes
unequivocally the particle distribution at any point of
the phase space. The particle kinetics is described by
the transition probability n(t, v ~ u) from the point v
to the point u in the phase space.

The evolution equation can be written in the form

Bn t, v
Bt

[m(t, u w v) —7r(t, v w u)] d u . (1)

The variation in time of n(t, v) is due exclusively to the
difference between the particles arriving in v &om any
point of the space and the particles leaving v and going
toward any point of the space.

Let us de6ne the transition probability of a particle
&om the state v to the state u in the following way:

vr(t, v ~ u) = r(t, v, v —u) p[n(t, v)] Q[n(t, u)], (2)

where r(t, v, v —u) is the transition rate, depending on
I

1 B (r(t, v, u) p[n(t, v)])
- m! Bv, Bv, . . .Bv

(4)

The function Q[n(t, v —u)] also, in the second integral of
Eq. (3), can be written as

g[( )] )-( 1) B ~[(tv)]
mf BV,BV, .Bv

X tC~I tC~~

After the introduction of the mth order momentum of
the transition rate

1
(t, v) = —, r(t, v, u)u, u, u d~u

mI

(6)

the integrodi8'erential Eq. (3) can be transformed into
the following in6nite order difFerential equation:

Bn(t, v) ) t B ((, , ... (t, v)rp[n(t, v)])

+ (—1) +'(, , ... (t, v)p[n(t, v)]
B Q[n(t, v)]

V~I V~g V~m

v(0) =o @(0) = 1

We observe that the functions p(n) and @(n) must obey
the two conditions, in the case the initial or arrival site
is empty,

The first condition means we do not have transitions
when the initial site is empty, while the second condition
requires that the transition probability does not depend
on the arrival site if, in it, particles are absent. If, on the
contrary, the arrival site is populated, we can impose the
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condition that its population sects the transition prob-
ability. In the more simple case where p(n) and Q(n) are
linear functions of n, we have

(p(n) = n g(n) = 1+~n

where e is a parameter which has the value —1 when the
particles are fermions and +1 when they are bosons. In
the first case, Q(n) must represent an inhibition factor:
if in the arrival site n = 1, the inhibition factor is zero

and transitions do not take place; on the other hand, if
n = 0, we have @(n) = 1 and transitions will take place.
In the case that the particles are bosons K is equal to
1 and the transition probability is ever larger as the oc-
cupational number n in the arrival site increases. The
relation p(n) = n means that, if the initial state con-
tains a high number of particles, the probability that one
of them leaves the state increases linearly with the occu-
pation number of the starting site. Taking into account
Eqs. (9), the evolution equation given by Eq. (7) becomes

On(t, v) ).O [(, , ... (t, v)n(t, v)]
Ot Bv,Ov, Bv

O [(, , .(.t v)n(t v)], , +. . . O n(t v)

m=O a1 ag CXm ~2 ~ni
(10)

III. NEAREST NEIGHBOR INTERACTION

In this section we consider Eq. (10) in the case that
only the first and the second order momenta of the tran-
sition rate are different from zero; we have

( (t, v) = r(t vu)u d u

( p(t, v) = — r(t, v, u)u up d u
2

which describes a nonlinear kinetics. We note that the
parameter v gives a quanti6cation of how much the par-
ticle kinetics is a8'ected by the particle population of the
arrival site. In the case v = 0 we obtain the well-known,
linear Fokker-Planck equation.

On(t, v)
Bt

+ Vj(t, v) =0 (15)

D

r(t, v, u) = ) b(up)
a=1Pga

x ([D (t, v) + -' J (t, v) Du]b(u —Av)

+[D (t, v) —
—,'J (t, v)Av]b(u + Av)}

(16)

which is the continuity equation and takes into account
the local balance in the phase space.

We demonstrate that the kinetics described. by Eq. (15)
takes into account only interactions among the nearest
neighbors. If we make the hypothesis that during a single
transition only one component of the position vector v
can change by a quantity Av, the transition rate assumes
the form

Equation (10) can be written as

On(t, v)
Ot

( (t, v)+ ' n(t, v)
O O( p(t, v)

OV~ Ovp

x [1 + rn(t, v)] + ( p (t, v)
' . (13)

On(t, v)

We define the particle current j (t, v) by means of the
relation

j (t, v) = — ( (t, v) + ' n(t, v)
O( p(t, v)

Ovp

x [1+~n(t, v)] —j p(t, v)
On(t, v)

t9Vp
(14)

The last term on the right-hand side of Eq. (14) is the
Pick current, while the erst term is a drift current de-
pending on (' (t, v), O( p(t, v)/Onp, and on the param-
eter e related to the exclusion-inclusion principle. After
introducing the particle current given by Eq. (14), Eq.
(13) has the expression

where D (t, v) and J (t, v) are the diffusion and the drift
coefficients. With this choice of the transition rate and
using Eq. (6), we have for Av —i 0 the following expres-
sions for the momenta:

( (t, v) = J (t, v)

( p(t v) = D (t v)b p

(t, v) = 0, m & 2

(17)

j (t, v) = — J (t, v)+ ' n(t, v)
OD (t, v)

Ov~

x[1+Kn(t, v)] —D (t, v)
On(t, v)

19V~

(18)

In Eq. (18) repeated indices are not summed over. Sub-

Equation (17) represents the conditions to be satisfied
only for the nearest neighbor interaction. Let us remark
that the second order momentum is a diagonal matrix.
This fact has the consequence that during the transitions
the various components of the current vector do not mix
with each other; we have
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stituting this expression of the current into Eq. (10), we
obtain

Bn(t, v) t BD (t, v) „

If we expand this expression, up to the first order in dv,
we obtain immediately Eq. (18) and consequently Eq.
(19).

We turn our attention now to the steady states of Eq.
(19). We define

x [1 + zn(t, v)] + D (t, v) nBn(t, v)
BVa

J (v) = lim J (t, v)

D (v) = lim D (t, v)

n(v) = lliii n(t, v)

(26)

(27)

(28)

(dv) p = bp dv (20)

which is exactly Eq. (15). This equation can be obtained
also directly, by means of a local balance of the particles
along the generic direction n. Let us consider an infinites-
imal variation dv of the position of a particle along the
direction n; we have

The stationary solutions n(v) can be obtained directly by
observing that at the limit of t -+ oo the particle current
is equal to zero. It is easy to integrate the first order
difFerential equation j(t, v) = 0, when J (v) and D (v)
are related by means of the expression

Defining the transition rate by the relation

r(t, v, +dv)dv = D (t, v) + 2 J (t, v)dv (21)

the transition probabilities of the two transitions v ~
v+dv and v+ dv ~ v assume the following expressions:

J (v) = h (v )D (v)—
BD (v)

where h (v ) is an arbitrary function. We obtain with
easy calculations

n (t, v -+ v+ dv) = r(t, v, dv)n(t—, v)
x [1 + ~n(t, v + dv)] (22)

n(v) =
D

exp g jh (v )dv —Pp
.a=1

n (t, v+ dv m v) = r(t, v + dv, +dv)n(t, v+ dv)

x[1+~n(t, v)] . (23)

The particle current along the direction a is consequently
given by

j (t, v) = [z(t, v w v+ dv) —n'(t, v+ dv ~ v)]dv,

(24)

and explicitly we have

j (t, v) = fr (t, v, —dv) n(t, v) [1 + ~n(t, v + dv))
—r(t, v + dv, +dv) n(t, v + dv)

x[1+~n(t, v)]jdv (25)

J (v) = J (v )

D-(v) = D-(v-) . (32)

In this case the steady state given by Eq. (30) assumes
the expression

where pp is the integration constant and can be calcu-
lated &om the normalization condition that expresses the
conservation of the particle number.

The condition given by Eq. (29) is satis6ed if the mo-
tion along the various directions of the phase space is
completely decoupled:

n(v) =
D

exp g j ~ &
)[J (v )+ s-„"- ]dv —Pp,

a=1

Equation (33) is the most general expression for the sta-
tionary distribution function n(v) when the motion along
the various directions is decoupled. Depending on the
expressions of J (v ) and D (v ) the integration can be
analytically or numerically accomplished. The parame-
ter x can vary continuously between —1 and +I; all kinds
of statistics can be derived, in the &amework of validity
of the nearest neighbor interaction hypothesis.

IV. BOSONS AND FERMIONS IN A
CONTINUOUS SPACE

In this section we consider the Brownian particle kinet-
ics in a three-dimensional space; for this type of particles,
the drift coefBcient is proportional to the particle velocity
while the di8'usion coefBcient is a constant,
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1 (t, v) = cv, D (t, v) =, P=, (34)
pm

' kT

j = —cvn(t, v)[1+ r(;n(t, v)]— '[7n(t, v)
7n

The kinetics equation assumes the form

where c is an arbitrary constant. The current is given by

Bn(t, v) c B
vn(t, v) [1+~n(t, v)]

Bt v BvE

1 ttn(t, v) ))
Pm Bv )

and, after the introduction of the energy as the variable,
we have

Bn(t, v) = V(cvn(t, v) [1+nn(t, v)]Bt

1
+c Vn(t, v) )'m

(36)

Bn(t, E)
Bt

(45)

Etta In(t, E)[1+nn(t, E)]

1 Bn(t, E)
P BE

E = 2m(v, + v2 + vsse) (37)

We now indicate with N(t, v) the number of particles
having at time t the modulus of velocity & v. Of course
these are the particles lying, in the velocity space, in a
sphere Z„having the center at the origin and the radius
equal to v; we have

Let us remark that Eq. {36) is a continuity equation,
written in the velocity space. Later on we will show that
Eq (36.) can be written as a continuity equation in the
energy variable. The kinetic energy of a particle is given
by

p(t, E)dE = 4sv n(t, E)dv (46)

From Eq. (46) it follows that the function p(t, E) is given
by

We now want to interpret Eq. (45) as a continuity equa-
tion in the one-dimensional energy space. We introduce
the occupation probability p(t, E) at energy E; then the
number of particles that lie in the interval [E,E + dE]
is equal to the number of particles lying in the shell de-
limited by the two spheres Z„+&„and Z„, having the
modulus of the velocity in the interval [v, v + dv]; we
therefore have

N(t, v) = b n(t, v)d v
E,

(36)

N(t, oo) = N (39)

where b = Vms/hs. Let us call N the total number of
particles. This number must be conserved at any time
and therefore we have the condition

(2)3/2
p(t, E) =2~

i

—
i vEn(t, E) .

],m)

We introduce the constant

) s/2
a =4cs

i

—
i(m/

(47)

C(t, v) = j j(t, v) d , nc (40)

and the equation describing the evolution of the particles
inside the sphere Z„ is

BN(t, v)
Bt (41)

We difFerentiate Eq. (41) with respect to v and take into
account Eq. (36); we can write Eq. {41)in the form

Bn(t, v) 1 B4(t, v)+
Bt 4+v 2 Bv

(42)

The values of 4'(t, v) can easily be calculated by Eq. (40)
which assumes the expression

If we indicate with b@(t,v) the Hux of particles leaving
the sphere Z at time t, we have

4[t, E) = —aE' ' In(tE) [1+nn(t, E)],

1 Bn(t, E)
P BE {49)

Equation (45) assunies finally the form of a continuity
equation in the one-dimensional energy space:

Bp(t, E) B4(t, E)
(50)

If we set the particle current 4'(t, E) equal to zero we

obtain that the stationary distribution at the limit t ~ oo
must satisfy the first order difFerential equation

The fiux of particles 4 (t, E) leaving the sphere Z„of ra-

dius v = /2E/m represents, of course, the particle cur-
rent in the energy axis and assumes the following form:

4(t, v) = 4s. v vj (t, v) (43) n(E)[l+ jt;n(E)]+ — = 0
1 Bn(E)

(51)

Then Eq. (42) assumes the following form: After integration we have
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n(E) =
exp p(E —p) —pc

(52)
J;(t) = [r(t, v;, +Av) —r(t, v;, —hv)]hv

2D;(t) = [r(t, v;, +b,v) + r(t, v;, —b,v)]b,v

(60)

(61)

The integration constant p can be determined from the
normalization condition

n(E)dr = N

We consider the definition of the transition probability
of Eq. (2), where the functions &p(n) and @(n) are given
by Eq. (9), and remembering that now the velocity is
a discrete variable, we can write the expression for the
particle current

where dw is the elementary volume in the phase space and
is given by dr = drzdr2drs with dr; = d(mv;)dz;/h. N is
the total number of particles of the system occupying the
volume V and 6 is a constant with the right dimensions
which can be identified with the Planck constant. After
the introduction of the constant JV, defined by

j;(t) = — J,(t) + '
]n;(t) [1+~n;+, (t)

aD;(t)
b.v

Aa;(t) ) (62)

the condition given by Eq. (53) assumes the form

(54)
We are considering Brownian motion by imposing the
condition that the drift and the difFusion coeKcients have
the following expressions:

vz+py,
&„expz —e (55)

Equation (52) gives exactly the FD (e = —1), MB (e =
0), and BE (e = +1) statistics and for all the other values
of e a family of difFerent statistical distributions.

V. BOSONS AND FERMIONS IN A LATTICE

dn;(t) = x(t, v; g -+ v;) + m(t, v;+g -+ v;)
dt

—'ir(t& Vz M V~+y) —1l'(t~ V~ M V~ y) (56)

where vr(t, v; -+ v~) is the transition probability from the
site i to the site j and n, (t) is the occupation probability
of the site i. We define the particle current as

j,(t) = [~(t,v; m v;+g) —m(t, v;+g m v;)]Bv, (57)

and caH the current variation between two adjacent sites

»'(t) = j'(t) - j*- (t) .

In this section we wish to discuss, in a discrete velocity
space, the kinetics of Brownian particles. The results for
this case can be useful when energies are discretized and
the interval between close levels is represented by a quan-
tum of energy. Let us assume that only transitions to the
nearest neighbors are allowed and that the direction of
the particles does not change during the transition. The
Pauli master equation for this process can be written in
the following way:

J;(t) = cv, D*(t) = (63)

Considering the energy as the variable instead of the ve-
locity and taking into account that

~n;(t) b,n;(t)
Av

' AE

the expression for the current assumes the form

(64)

j;(t) = —c * n;(t) [1 + ~n;+, (t)] +-2E; 1 b,n, (t)
m

(65)

To obtain the stationary distribution of the system, it
is enough to set the particle current equal to zero,

(66)

(1 —PAE)n;
1 + Pb.E~n; (67)

In the limit of the continuum we can transform this recur-
rence relation, which holds independently on the space
dimensions, into the differential equation given by Eq.
(51). On the other hand, when we discretize Eq. (51)
we must substitute n(E)[1+ ten(E)] with the quantity
n, (l + ~n;+q). It is straightforward to justify this sub-
stitution if we remember the definition of the transition
probability given by Eq. (2).

To deduce n, , let us write the recurrence relation of
Eq. (66) in the form

dn;(t)»;(t)
dt

+ z,„o (59)

We now introduce the drift J;(t) and the diffusion D; (t)
coefBcients by means of the transition rates

The Pauli master equation given by Eq. (56) assumes
an expression analogous to the continuity equation in a
discrete space,

Introducing the variable q;,

Eq. (67) becomes

n'
q —K

1
+~ 1 —Pb,E

We can easily calculate q; and then finally n;,

(6S)

(69)
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1

exp P(E; —p) —r.
(70)

which is the discretized distribution. In Eq. (70) the
energy E; is given by

E; =if' (71)

and 8 has the expression

1 1

P 1 —Pb, E (72)

Let us remark that the quantum of energy E', which rep-
resents the energy interval between two close states, is
diferent from the lattice interval AE. This is due to
the finite temperature of the system. Let us expand the
energy E' in power series of AE; we have

Z —~E+ —,'P(~E)'+ ,'P'(~E—)'+ (73)

In conclusion, the quantum E' coincides with the lattice
interval b,E only when P ~ 0 (T -+ oo). If we assume
that E' is proportional to ~ through the relation E' = ~,
from Eq. (72) we may derive that the relation between ur

and T is given by u = (kT/h)in[1/(I —b,E/kT)], where
k is the Boltzmann constant.

Once we consider relation (72), Eq (66).can be written
in the following form:

n;(1+ ~n;+g) = exp[ P(E—,+g —E;)]n;+g(1+ Kn, )

(74)

lim iAE = E
EEmo

the stationary distribution given by Eq. (70) becomes the
continuous distribution given by Eq. (59):

1
lim n;=

&E~o '
exp p(E —p) —r.

(76)

which expresses the detailed balance principle and is valid
for any value of r E [—1, +1].

Let us remark that if we calculate the limit to the
continuum and consider that

transition probabilities by means of an inhibition or an
enhancement factor. The factor contains a parameter K

whose value ranges continuously from —1 and 1. We take
fully into account the exclusion principle when ~ = —1
and the inclusion principle when v. = +1, while the case

0 means that the distribution is a classical one
because quantum effects are not considered. In all the
other cases diferent statistical distributions are derived
in which the exclusion or the inclusion principle is only
partially taken into account, i.e. , the particle wave func-
tions are only partially antisymmetrized or symmetrized.

The exact validity of BE and FD statistics was ques-
tioned recently in many papers by Greenberg and col-
laborators [6,7] in view of the possibility of small viola-
tions of the Pauli exclusion principle and of BE statistics.
Statistics which dier in a discrete way from the usual
ones were introduced by Green [5] and by other authors
in the past. Their interest was mainly devoted to the
study of transitions caused by a small violation of the
Pauli principle rather than to the study of distribution
functions of many-particle systems, which is the main in-
terest in this work. When the particles are Brownian we
find exactly the FD (r = —1), the BE (r = 1), and the
classical MB (~ = 0, no quantum effects are considered)
statistics. When K g 0, kl we have a family of different
statistics. We give to K, the meaning of degree of indistin-
guishability or of degree of antisymmetrization or sym-
metrization; therefore these intermediate statistics can
be applied to systems whose wave functions must not be
completely antisymmetrized or to physical processes with
a small violation of the exclusion or inclusion principle.

The results obtained in this work should not come
as a surprise; in fact we know that quantum dynam-
ics is equivalent to classical dynamics with the inclu-
sion of quantum Quctuations. We have limited ourselves
in considering explicitly only systems of Brownian par-
ticles; we must recall that in recent works [10] it has
been shown that the quantum average Huctuations of the
quantum dynamics coincide with the Brownian Quctua-
tions. Therefore we conclude that the nonlinear kinetic
equation we have introduced in this paper can describe a
dynamics very close to the quantum dynamics of a sys-
tem of identical particles.
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