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Semiclassical theory of activated diffusion
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A semiclassical theory for the diffusion of a particle moving on a periodic potential, coupled to
a dissipative heat bath, is presented. The resulting expressions for the difFusion coefBcient, mean
squared path length, and hopping length distribution are valid for memory friction and provide a
theory which goes uniformly from the underdamped to the strongly damped limit. In the under-
damped limit, quantum tunneling and reQection cause the quantum difFusion coeKcient to be lower
than the classical, leading to an inverse isotope efFect; the difFusion of D atoms should be faster than
the difFusion of H atoms.
PACS number(s): 05.40.+j, 68.35,Fx, 82.20.—w, 66.30.—h

I. INTRODUCTION

The theory of activated rate processes has been devel-
oped extensively during the past decade [1]. The stan-
dard model is that of a classical particle trapped in a
potential well, separated by a barrier from a different
well or a continuum. The particle is coupled to a bath
which exerts upon it a (time dependent) fictional and
random force. The equation of motion is the generalized
Langevin equation (GLE). In the weak damping limit,
the escape rate is limited by energy diffusion from the
bath to the particle. When the damping is strong, it is
limited by the spatial diffusion across the barrier. A uni-
Ged theory which is valid for all values of the damping
and arbitrary memory friction has been developed [2, 3].
Quantum effects may also be treated [1, 4]. Quantum
tunneling will cause the quantum rate to be larger than
the classical.

Experimental measurement of the diffusion of hydro-
gen and deuterium on tungsten [5] and nickel [6] surfaces
has revealed an inverse isotope effect. The difFusion of
hydrogen atoms was found to be slower than deuterium
or tritium atoms. Recent scanning tunneling microscopy
(STM) experiments [7] have provided direct observation
of diffusion of an activated particle on a surface. Pb
atoms, chemically bound to a Ge surface, have been ob-
served to undergo large correlated hops as they move
from one site to the other. Correlated hops were ob-
served in a variety of numerical simulations [8—13]. These
observations have revived interest in the classical theory
of activated rate processes [12, 15—18] and the escape dy-
namics of a particle moving on an infinite periodic poten-
tial. Such a model may be applied to diverse phenomena,
ranging from atomic and molecular difFusion in solids to
rotational relaxation and reorientation in the condensed
phase [14].

In the spatial difFusion limit, the particle might escape
&om a well, get trapped in an adjacent well, and after
a long time escape with equal probability in either di-
rection. The diffusion coeKcient D is proportional to
the product of the (spatial diffusion) rate l,g and the
distance squared (lo2) between wells [19]. Since the quan-

turn escape rate is greater than the classical, the quantum
difFusion coeKcient will also be greater than the classical.

In the underdamped limit, the average energy of a par-
ticle that escapes above a barrier is proportional to the
square root of the damping (~p) [20]. As the particle
moves from one barrier to the next, it will, on the aver-
age, lose energy to the bath. The energy loss is propor-
tional to p [2,3]. Therefore the particle will undergo large
correlated hops before becoming retrapped. Kozhushner
et at. [21] have used a phonon model to demonstrate that
the underdamped limit is applicable to surface diffusion
of metal atoms on metal surfaces.

It has recently been shown [22] that the classical cor-
related hopping probability, which gives the probability
that an escaping particle will not be immediately re-
Bected by the next barrier, is of the order of unity in the
classical underdamped limit. The quantum correlated
hopping probability was found to be smaller than the
classical. The reason, paradoxically, has to do with quan-
tum tunneling which causes a lowering of the average
energy of quantum particles crossing the barrier. This
reduces the number of particles whose energy is greater
than the barrier height and prevents correlated hoppi. ng.
These observations suggested that the quantum diffusion
coefEcient could be smaller than the classical in the un-
derdamped limit. This is a central result of the present
paper. It implies an inverse isotope effect which should
be considered in theoretical interpretations of diffusion
in solids and on surfaces.

The second, equally important, result of the present
work is the derivation of relatively simple expressions for
experimentally measurable quantities, such as the diffu-
sion coefBcient, the mean squared path length, and the
hopping length distribution. We will provide a solution
for the quantum dynamics (above crossover) of the GLE
in which the particle is moving on a periodic potential.
Explicit solutions for the rate of escape (I'), the probabil-
ity P~ of being retrapped after moving a distance jlo the
mean squared path length (l2), and the diffusion coeK-
cient D will be presented. The solutions are valid for all
values of the damping and for arbitrary memory friction.
The resulting expressions go uniformly from the energy
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difFusion to the spatial diffusion limited regimes. They
extend previous results derived by Mel'nikov [23, 24] for
motion on a tilted potential in the presence of Ohmic
friction.

gives the fundamental integral equation which must be
solved, is

II. SEMICLASSICAL THEORY OF DIFFUSION

The GLE describing the time evolution of the particle The boundary conditions for the fIuxes are
1s

(2.5)

q+ + d7-p(t —7-)q(7-) = ((t),
du)(q)

dg
(2.1)

(2.2)

where p(t) is the time dependent &iction; below we will
use the notation p(s) to denote its Laplace transform.
The potential u)(q) is periodic, characterized by the &e-

quencies up, u~ at the wells and barriers respectively,
with a barrier height V~ and distance lp between adja-
cent wells. The particle is assumed to be initially in one
of the wells, labeled 0. The boundary conditions are such
that the energy of the particle deep down in the zeroth
well is thermal ( e ', where e =

& & is the reduced
Icy' T

energy and is 0 at the barrier top) and no particles will
be found at the bottom of any of the other wells.

In the spatial diff'usion limit, the quantum rate for hop-
ping out of the well at temperatures above the crossover
temperature is well known [25]:

f,+. (e) h, p e ',' 2mh
(2.6)

dCT 6 ~ E' + 6 — ~ 6 — ~ 6'

The rate of escape from the zeroth well I' is

(2.7)

(2.8)

The probability of being trapped at the jth well is P~ =
~&' such that the mean squared path length is

w here bzp is the Kronecker delta function and C is
the equilibrium ratio of partition functions around
the barrier and the bottom of the well: [C

2(urp/or~) sin( —):-e ) v ].
The number of particles per unit time that are trapped

in the jth well (I'~) is given by the difference between the
incoming and outgoing fiuxes of the jth well:

The reactive &equency [26] A~ is the solution of the equa-
2

tion A~ + A~p(A~) = u~ . The ratio (:-) of the quantum
partition functions at the barrier and well is expressed in
terms of the Matsubara frequencies u„= 2nn/hP as

j=—oo

(2.9)

The difFusion coeKcient for the one dimensional problem
is just the rate of escape multiplied by half the mean
squared path length [12, 28]:

(2.3) D= —I'(l) = 1) j I'.— (2.10)

The starting point for the evaluation of the quantum
mechanical escape rate is an equation for the stationary
Bux of particles exiting each well at either barrier. We
will denote the number of particles per unit energy and
per unit time hitting the right (left) barrier of the jth well
with positive (negative) velocity by f (f ); cf. Fig. 1.
The transmission probability through the barrier T(e) is
taken as the parabolic barrier result: f. ,(s) f+ (s)g-1 f. (s) f.'(s) f.„(s) f.'„(s)

The periodicity of the potential implies that one can
solve the integral equations by Fourier transforms. The
notation

2'
hPA~

(2.4)

where R is the reHection coefBcient. The reBection sym-
metry of the potential and the boundary conditions about
the zeroth well implies that f+(e) = f+.(e).

As the particle traverses from one barrier to the next
it changes its energy. The conditional probability ker-
nel P(e]e') that the particle changes its energy &om e'

to e is determined by the energy loss parameter b and
the quantum parameter a defined in Eq. (2.4). Explicit
expressions for the quantum kernel were derived in Refs.
[23, 27]. The steady state equation for the fiuxes, which

FIG. 1. Schematic diagram of stationary Suxes leaving
each well.
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N(e, k)—:B(e) ) e'('+~)"f+(e)

—:N„(e, k) +iN; (e, k) (2.11)

is used for the Fourier transformed distribution, weighted
by the reflection coeKcient. The two-sided Laplace trans-
form of a function will be denoted

g(~'s) = f doe" g(a). (2.12)

The system of integral equations [Eq. (2.5)] is Fourier
and Laplace transformed and rearranged:

N; [i(s —a), k] = G(is, k—)N; (is, k),

where G is

1 —P2(is)
1+P2(is) —2P(is) cos(k)

(2.1S)

(2.14)

I', = —I',q — dk sin — cos(jk)
7C p I 2)

sin( —) ln[G(7. —2, k)]
cosh( ) —cos( —)

and P(is) is the two-sided Laplace transform of the kernel
P(e~e') Only . the imaginary part of the function N(e, k)
is needed to determine the rates.

The solution of the integral equation [Eq. (2.13)],with
the appropriate boundary conditions, is obtained by us-

ing the method described in the Appendix of Ref. [27].
The result for the partial rates is

lower than the classical. This implies that the diffusion
of D atoms on a surface may be faster than the diffusion
of H atoms. It is appropriate here to note that there are
other mechanisms which may lead to inverse isotope ef-

fects in surface diffusion. Auerbach et aL [29] suggested
that the lower D atom frequency leads to a more eKcient
exchange of energy with the bath, thus leading to a larger
escape rate. Rick et aL [30] have suggested that the lower

zero point energy associated with a D atom may lead to a
lowering of the effective barrier so that the escape rate of
a D atom will be larger than that of an H atom. The ma-

jor difference between these approaches and the present
work is that in our mechanism, the escape rate of the D
atom is 8lomer than that of an H atom. One may still
be able to observe an inverse isotope effect for the diffu-

sion coeKcient however, because the mean squared path
length of a D atom will be substantially longer than that
of an H atom in the underdamped limit.

Analysis of Eq. (2.16) leads to the conclusion that

&, where the numerical constant N is of the or-D N
D, d T'

10

lo'-

10-

10

10

The expression for the diffusion coefBcient simplifies con-
siderably because of the infinite summation:

D = T exp
sd

sin( —) in[1+ P(~ —2)]
a cosh( ) —cos( —)

(2.16)

where D,g = zloF, g is the diffusion coefBcient in the
spatial diffusion limit and is independent of the energy
loss b. The "depopulation factor" T is [27]

O

A
CV

V
)p

N
10 '-

V

10

10

T =exp
sin( —

) in[1 —P(~ —-*)
d~ 2- 2

a cosh( ) —cos( —)
(2.i7)

lo'
C5

C3 10 '.

Equations (2.15)—(2.17) are the central result of this pa-
per. They provide a uniform expression for the partial
rates, the decay rate, and the diffusion coeKcient in terms
of the energy loss b, the quantum parameter a, and the
rate expression in the spatial diffusion limit. The mean
squared traversal distance may be obtained directly &om
the rate and the difFusion coefficient via Eq. (2.10).

III. AN INVERSE ISOTOPE EFFECT

In this section we will demonstrate that in the under-

damped limit, the quant»m diffusion coeKcient may be

10
10 10 10 10

FIG. 2. (a) The rate, (b) mean squared path length, and

(c) diffusion coefFicient as a function of the energy loss (b) for

a few values of the quantum parameter a = 2z /hPA~. Results
are presented for the periodic cosine potential [cf. Eq. (16)].
The rate is normalized by the standard one dimensional TST

rate (I'TsT = ~e ); the difFusion coefficient is normal-
ized by the TST value (DT sT = zFTsT lp). The numbers on
each line denote the respective values of the quantum param-
eter a.
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der of »»sty for any value of the energy loss b in both the
quantuxn and classical cases. The dependence of the dif-
fusion coefficient on the daxnping is thus easily obtained
by studying the dependence of the depopulation factor
on the damping. In the underdamped limit (b (( 1) the

1
quantuxn depopulation factor is small Tq ~ b ~, but
larger than the classical (T,~ 8) [31]. Since the diffu-
sion coefficient is inversely proportional to the depopula-
tion factor one finds that in the underdamped limit the
quantum diffusion coefficient is smaller than the classi-

cal, D' &' bo. When the energy loss is largeDci e

(8 )) 1), the depopulation factor becomes unity. In this
spatial difFusion limit, the quantum difFusion coefficient
is lawyer than the classical because of quantum tunneling
through the barrier. The ratio D

' will be less than unity
cl

for weak damping, but will be greater than»~sty in the
spatial difFusion limit.

To dexnonstrate this behavior we have studied the de-
pendence of the escape rate, the mean squared path
length, and the difFusion coefficient for the periodic co-
sine potential

V~ &2~q&
m(q) == — cos

2 ( l )
(3 1)

in the presence of Ohmic friction p(t) = 2ph(t). Explicit
expressions for the Laplace transformed quantum kernel
[P(7 2)] have b—een derived in Ref. [22]. The energy loss

is linearly proportional to the damping (h = 4PV~p ju~).
The quantum rate, mean squared path length, and dif-
fusion coefficient are obtained by numerical integration
of the relevant integrals [cf. Eqs. (2.15)—(2.17)] and are
presented in Fig. 2. The quantuxn escape rate is always
larger than the classical; this is due to quantum tunnel-
ing. However, the quantum mean squared path length
is much smaller than the classical in the underdamped
limit, hence the lower quantum diffusion coefficient.

Both quantum tunneling and quantum above barrier
reffection are responsible for the suppression of the quan-
tum diffusion coefficient. Long j»mps are obtained if the
energy is greater than the barrier height. Quantum tun-
neling lowers the average energy of escaping particles,
reducing the probability for a long hop. If the energy
of the particle is greater than the barrier, quantum re-
ffection will reduce the difFusion coefficient by reducing
the length of the correlated hop relative to the classi-
cal. That the two efFects are equally important may be
shown by replacing the harmonic tunneling probability
[Eq. (2.4)] with either the simple semiclassical estimate
T(c) = e ', e ( 0; T(e) = 1, e & 0, thus eliminat-
ing quantum refiection, or one may allow for only above
barrier reBection by a similar replacement in which the
transmission probability is zero below the barrier. Such
an exercise confirxns that both quant»m below barrier
transmission as well as above barrier refiection suppress
the quantum difFusion coefficient.

The suppression of the quantum difFusion coefficient in

the underdamped limit implies an inverse isotope effect.
For a given potential and damping, the energy loss is
inversely proportional to ~m, where m is the mass of

1
the difFusing atom. The barrier &equency goes as m
Ass»ming»nit mass for the hydrogen atom, denoting b

as the energy loss for the H atom and a = 2'/APE~ as
the quantum parameter for the H atoxn, one finds that
for an atom with mass m relative to H, the ratio of the
difFusion coefficients in the underdamped limit goes as

1( 1
b '~ 1, verifying the inverse isotope effect.

Ttus implies that any consideration of difFusion of light
atoms in which tunneling is observed should include the
possibility that inverse isotope efFects are caused by weak
daxnping of the difFusing particle.

IV. DISCUSSION

%'e have presented a theory for quantum and classical
difFusion on a periodic potential, valid for mexnory &ic-
tion and all values of the damping. The results for the
mean squared path length are of practical interest. STM
measurement of the mean squared path length, the es-
cape rate, as well as the difFusion coefficient are possible
as evidenced by the results of Ref. [7]. Elsewhere [32]
we will show how the model employed by Kozhushner
et al. [21] may be used to determine the friction coeffi-
cient p &om experimental parameters. A combination of
such a model with the present theory and experimental
determination of the activation energy allows to predict
w'hether the difFusion process occurs via single hops or
correlated hops.

The quantum theory presented in this paper is lim-
ited to temperatures above the crossover temperature
(a & 1). This limitation may be removed by allowing for
a quadratic energy dependence of the tunneling action
around crossover as shown by Hanggi and Hontscha [33].
A somewhat difFerent approach, using an anharmonic
one dimensional tunneling coefficient in Eq. (2.4) and
numerical integration of the integral equations (2.5), is
presented in Ref. [34].

The present paper has dealt with one dimensional dif-
fusion. In xnany cases, difFusion must be treated with
at least two and sometimes three dimensions. Else-
where [35] we are developing a multidimensional gener-
alization of the Kramers turnover theory, which could be
combined with the approach presented here to develop
the multidimensional theory of activated diffusion.
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