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Quantifying the closeness of fractal measures

Holger Kantz*
Department of Theoretical Physics, University of Wuppertal, D $2097 Wuppertal, Germany

(Received 24 November 1993; revised manuscript received 21 March 1994)

Numerically, fractal measures are represented by finite sets of discrete points, e.g. , those generated
by trajectories. We introduce a cross-correlation integral to evaluate the distinctness and overlap of
two such sets, and present a criterion to determine up to what precision the two sets are realizations
of the same measure.
PACS number(s): 05.45.+b

I. OUTLINE OF THE PROBLEM

Modern experiments in nonlinear dynamics can eas-
ily produce time series of 10 points (e.g. , [1]), which

by appropriate embedding procedures yield representa-
tions of the underlying attractors. Correspondingly, by
performing numerical simulations of chaotic dynamical
systems invariant measures on &actal objects can be ap-
proximated by huge numbers of points. Generally, how-

ever, no analytical way exists to derive or describe fractal
measures of realistic systems. Each of the above sets is
a finite sample drawn according to the underlying un-
known distribution. Since such a set of points formally
has dimension zero, two different realizations (e.g., two
trajectories of the same system) are disjoint with proba-
bility one, if the attractor is difFerent &om a periodic or-
bit. In certain situations it is important to know whether
two such sets represent the same &actal measure. If they
do not, how different are they? In the following we will
present a way to give a quantitative answer to both is-
sues.

We generalize the correlation integral of Grassberger
and Procaccia [2], which we call autocorrelation integral
henceforth, to cross correlations between two sets. If the
two sets form similar attractors, then on large scales the
two autocorrelation integrals and the cross correlation
will have comparable values. The difference between the
two attractors will show up on small scales, where the
cross correlations rapidly decay to zero. We base the
definition of a distance between the two attractors on
the length scale at which the transition between the two
different behaviors occurs.

Before we enter the theoretical details in Sec. II and
some numerical examples in Sec. III we want to fur-
ther illustrate the problem and to review two approaches
which are not appropriate for our purpose.

To have a guideline for the following considerations let
us give one example where the closeness of sets is of par-
ticular interest. In nonlinear time series analysis [3] one
deals with (in general univariate) experimental data (st },
representing the state of a chaotic dynaxnical system at
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successive times t, t = 1, . . . , T. By the help of embed-
dings [4], a state space can be reconstructed, in which
the data form a fractal set. However, due to the pres-
ence of noise and the finiteness of the data set the &actal
structure is veiled on small scales. For different purposes
(e.g. , prediction [5], computation of Lyapunov exponents
[6], dynamical noise reduction [7]) it is necessary to con-
struct a dynamical system consistent with the data, i.e.,
to fit a function I' which under iteration reproduces as
accurate as possible a noise-&ee version of the attractor.
For the above-mentioned applications it is essential to
have a quantitative estimate of the deviation between the
original and the synthetic attractor. Another issue in the
same context is whether two different experimental data
sets &om the same experiment under slightly different
conditions form the same attractor or by what amount
their attractors differ. Finally, when performing nonlin-
ear noise reduction in an inappropriate way the resulting
cleaned attractor can be strongly deformed. Therefore
one wants to check whether the outcome is compatible
with the original data.

The well-known numerical recipes [8] suggests using
the y2 test in order to decide whether two samples are
consistent with the same distribution. Adopting this for
our situation we should introduce a binning in the embed-
ding space of the two sets (box counting) and compute
y2 = P,.(p; —q;)2/gp;q; (p; and q; are the probabili-
ties of finding a point of the corresponding set in box i).
y2 varies between zero (maximal agreement) and infin-
ity (disjoint supports of the two sets). Indeed, we could
learn about the scale on which the two sets are indistin-
guishable, if we computed y2 as a function of the box
size e. For very large e we expect y to be close to zero,
and to increase below a length scale where the differ-
ences between the two sets become visible. However, we
do not want to use this method, first since box count-
ing becomes very inefficient for &actal sets embedded in
high-dimensional spaces, and second since y does not
yield any further characterization of the two sets.

A refinement of this approach was suggested by Wright
and Schult [9], but their goal is different from ours. In
particular, they are able to decide up to which degree a
given signal is contained in the signal under investigation.
They consider projections of the invariant measure onto
at most two dimensions. This avoids the inefficiency of
box counting, but it prohibits the development of their
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h(X, Y) = max{ sup-zxd(z, Y); sup„-+yd(g, X)). (2)

The HausdorÃ distance has very nice properties, which
make it valuable for mathematical purposes [10]. Unfor-
tunately, for our purpose it is not appropriate, since it
relies on the points of each set which are farthest away
&om the other set. Consider the situation that the two
sets are realizations of the same Gaussian distribution.
The largest distances d(z, Y) will occur for z in the tails,
where the densities are smallest. Obviously, this is not a
good criterion for our purposes. This is closely related to
the fact that the analog of Eq. (2) for measures (instead
of finite sets) is sensitive only to the supports of the two
measures, not to the measures themselves.

II. THE CROSS-CORRELATION INTEGRAL:
THEORETICAL CONSIDERATIONS

Grassberger and Procaccia [2] introduced the (auto)
correlation sum of a set X

N

Cxx(&) = ).). e(& —Iz, —z, l),
i=i j=i+1

method towards a reasonable de6nition of a distance.
The Hausdorff distance is a mathematical concept used

to characterize the distinctness of two sets [10]. If one
de6nes the distance between a single point x and a set Y
by

d(*, Y) = ming~y(ll* —all),

where ll ll denotes some norm, then the Hausdorff dis-
tance between the sets X and Y is

metric in X and Y. lXl and lYl denotes the number
of elements in each set. The autocorrelation sum, Eq.
(3), thus is a special case of Eq. (4). In the remainder of
this paper we will show how the knowledge of these three
sums characterizes the relationship between the two finite
sets.

To establish some rigorous results we will need two
variants of the sums in Eqs. (3) and (4). On the one
hand, if the number of points in each set goes to in6nity,
and p and v are the underlying measures, then the sums
converge to integrals:

C~-(&):= Cxy (&)
~X~, ~Yj-+oo

px vy Oe —x —y d xd y.

On the other hand, for theoretical considerations some-
times it will be more convenient to deal with the box-
counting equivalents of Eqs. (3) and (4). Consider a
partition 'P, in the (reconstructed) state space. Then p;
(q;) is the probability to find a point of X (Y) in the ith
box of 7 „and

BXY(e) = ) p, q; cc CXY(e).
p.

In particular, Bxx (e) has the saine scaling properties as
Cxx for self-similar sets [2]. Note, however, that we do
not recommend the use of Bxy for numerical evaluations;
it will be employed here only to establish some relations
which are much harder to show for the correlation sums.

First let us show the validity of a more rigid version of
the Schwarzian inequality for the three correlation sums.
From Bxx + Byy = p, (p; —q;) + 2p;q; the inequality

where 8 is the Heaviside step function and x, are ele-
ments of the set representing the invariant measure. For
univariate time series x; usually is a delay vector of suf-
ficient dimension m. It is important [13] to exclude the
pairs i = j. For numerical ease we will use the sup-norm,
as usual.

If a given data set possesses a sufBciently strong self-
siinilarity, there exists a range of e where Cxx (e) exhibits
the scaling behavior Cxx(e) oc e '. The exponent Dz is
called the correlation dimension of the set X. D2 is only
one quantity out of a hierarchy of generalized dimensions
Dv [11,12] which characterize a fractal object. However,
even if all D~ of two sets X and Y coincide, this does not
guarantee that the two &actal measures are identical.
Thus the mere computation of CXX and CYY does not
sufEce, especially not for the case where no clear scaling
behavior is present and D2 is unde6ned.

To compare two sets X and Y, we introduce the cross-
correlation sum

Cxy(&) =
X Y ).) .e(& —lz —~l)

~6X yGY

(4)

together with the autocorrelation sums Cxx(e) and
CYY(e). Note that the cross correlation, Eq. (4), is sym-

1
BXY (&) 5 [BXX(&) + BYY (&)]

2

follows immediately. Correspondingly, for the correlation
integrals we have to evaluate

Cyp+~vv 2', v — 0 6 x y p x p x

x[~(~) —~(R]d zd ~ (8)

Prom that we would like to conclude

The right-hand side of Eq. (8) is positive definite for
suKciently small r. For smooth measures this can be
seen easily, since (in one dimension) it is (apart from the'
normalization) nothing but the integral over the auto-
correlation function of f(z) = v(z) —p(z) from —e to c.
Due to the assumed smoothness there has to be a finite
interval around zero where the autocorrelation function
is positive, hence Eq. (9) is valid for small e.

Unfortunately, for the correlation sums the inequality
is valid only on average, and may be violated in certain
situations. One such example is a set Y which consists
of the N points of X shifted by a very small amount, b,
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which is smaller than the minimal distance E'p between
two points of X. Then the three correlation sums prac-
tically coincide for large (.'. For b ( e ( Ep, Cxy = 1/N
remains constant, whereas |~~ ——Cyy ——0, thus vio-
lating the inequality Eq. (9). Only for e ( b is it valid
again. This could be remedied by adding the "diagonal"
pairs x; = x~ to the autocorrelation sums, Eq. (3); but
this destroys the scaling behavior of C on small scales. If
instead these two sets X and Y represented two slightly
diferent periodic orbits of the same period, then the mea-
sures p, and ic would consist of b functions at each point
of the sets X and Y, respectively. For this situation Eq.
(9) is fulfilled for any e.

The inequalities Eqs. (7) and (9) are of certain impor-
tance, since &om them one immediately derives that the
underlying measures are identical if the three correlations
coincide on all scales:
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p(x) = v(x) almost everywhere (10).

As we said, equal scaling properties of the two autocor-
relation integrals only mean that the two fractal objects
have equal correlation dimensions, while an agreement of
the three integrals in the limit of large scales is trivially
guaranteed by the normalization. The converse of our
proposition is true due to the definition of C„„.

If the box-counting versions of the correlation sums at-
tain the same values for all e, then Bxx+Byy —2B~y ——

0 identically. Together with Eq. (7) it follows immedi-
ately that p, = q,Vi and for all partitions 'P, . Writing
down the corresponding expression for the correlation in-
tegrals, C»(s) + C„„(s)—2C„„(s) = 0 for all e yields

p(x) = v(x), since in the limit of small e Eq. (9) is valid.
Thus in both situations it is important that the correla-
tions agree on small scales, which automatically induces
an agreement on all larger scales. A mere agreement on
large scales does not suffice.

Let us now evaluate C„„for measures which have dif-
ferent support. If the supports are disjoint, the cross-
correlation integral is zero for suKciently small e. If in-
stead the two supports intersect each other transversely,
we claim that C„„(e)(x e, if m 6 N is the minimal di-
xnension needed to embed the union of the two measures.
Due to the assumed independence of p and v, the depen-
dence on e remains unchanged, if one of the two measures
is replaced by the Lebesgue xneasure on a sxnooth man-
ifold, in which the corresponding measure is embedded.
If the other measure is embedded in the saxne manifold,
this yields the exponent m, as we claimed. If the other
measure is not embedded in this manifold, one has to
increase its dimension, otherwise this reasoning does not
yield an answer [14]. As a test, one can easily evalu-
ate Eq. (5) for two intersecting lines, say, the x and y
axes. Choosing the points (x, 0) of X as reference points,
the contribution of the set Y to C(X, Y) for given x is
the part of the y axis falling into a square of length 2~
centered on (x, 0). Thus we find

FIG. 1. The sums Cxx (top curve), Cyv (middle), and
Cxr (bottom curve) as a function of e, where set X consists
of 5000 points representing the bisectrix in the plane and set
Y consists of 5000 points of the Henon attractor (a = 1.4, b =
0.3). The straight lines represent e, where o. = 1, a = 1.2,
and o. = 2, respectively.

C~;, ~;„(e) = fChf dye(e —)(zO) —(Oy)), „~) = 4e

independent of the dimension of the space in which the
lines are embedded. The intersection of two planes yields
exponents 2, 3 or 4, depending on whether the planes
are identical, intersect themselves on a line, or (in a
more than three-dimensional space) intersect in a point.
Furthermore, we computed Cx~(e) numerically for the
intersection of the Henon attractor, which has a cor-
relation dimension of about 1.2, with the diagonal in
two dimensions (2D). The result yields very precisely
CHenon, line (x e (see Fig. 1).

III. NUMERICAL RESULTS

After these theoretical considerations we want to pass
to the nuxnerical computation of the cross correlations
for different finite sets. We begin with difFerent versions
of the Henon attractor. Since it can be embedded in
two dixnensions, we can visualize the attractors, which
facilitates the interpretation of the results. In practice,
however, the considerations presented in this letter be-
come more relevant in higher dimensions, where visual
inspection can be applied only to projections of the sets
and thus is less reliable. In such cases we suggest com-
puting the correlation integrals for one sufBciently large
value of the embedding dimension.

In our first exaxnple, set X is a trajectory of 5000 points
(after discarding transients) of the Henon system, x&+i ——

1 —axe + bxi i with the standard parameters [15]. The
set Y consists of the same points, but disturbed by 3%
additive uniformly distributed noise. The two data sets
are shown in Fig. 2 for a two-dimensional embedding.
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FIG. 2. 5000 points of a clean Henon trajectory (a=1.4,
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In Figs. 3 (a) and 3(b) we present the three correlation
sums and the local scaling exponents, din |/dine.

The correlation sum of the clean data exhibits a scaling
range Cxx(e) oc e ', where D2 --1.2 is the correlation
dimension of the Henon attractor. The noisy data show
the same behavior on large scales, but on smaller scales
the correlation sum decays much faster with decreasing
~, representing the fact that the data points are scattered
in the plane. Consequently, the scaling exponent is 2 in
our two-dimensional embedding. The cross correlation
CxY shows exactly the same behavior as |YY. The in-
terpretation is simple: since the clean data are embedded
in the noisy ones, taking them as reference points for the
correlation sum is essentially the same as taking a corre-
sponding subset of Y as reference points, which leads to
+YY ~

Next we compare two clean Henon at tractors for
slightly different parameter values (Fig. 4). Again, we
show the correlation sums together with the local scaling
exponents (Fig. 5). The two autocorrelation sums show
that the two slightly different attractors have nearly the
same correlation dimension, Dx 1.2 and DY 1.15.
The cross-correlation sum essentially coincides with them
for e ) e, = 2 . Below we will use this coincidence
to de6ne the closeness of the two attractors. Only for
scales below e, does it become evident that the two sets
of points do not represent the saIne measure, and, in
particular, have a different support. Below this scale,
the scaling behavior of C~Y is determined by the inter-
sections of the two sets. Thus the number of pairs with
a distance smaller than ~ decays rapidly with e. As we
claimed before, this decay again is characterized by a
power law, and the slope is close to m = 2 [note that the
fluctuations in Fig. 5(b) are anticorrelated and one should
fit a straight line to the curves in panel (a) rather than
averaging over the fluctuations in panel (b)]. The slight
violation of our prediction m = 2 presumably arises from
the fact that some intersections are close to tangential
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and that due to the small number of pairs contributing
to C~y an overestimation of the scaling exponent is quite
likely [16].

If we enlarge the embedding dimension, generically
there will be no true intersections left, since almost any
intersection in two dimensions will be transformed into a
disjoint passage. This results in a much faster decay of
CXY(e) for e ( 2 with an exponent between 3 and 4,
as shown by the dotted curve in Fig. 5.

Finally, if the two sets already had no intersections
in two dimensions due to some shift, then the cross-
correlation sum would again contain a part above some
value e„where it is almost identical to the two corre-
lation integrals, and below e, it would rapidly decay to
zero.

want to summarize the information contained in plots
like Figs. 3 and 5 in a single number, a characteristic
length scale. Having this in mind, a natural definition of
a distance between two sets would be the value of e, below
which the cross correlations start to differ significantly
&om the autocorrelations. However, we do not like the
word distance for this length scale, since this fits badly
to intuition in the case that one set is embedded in the
support of the other, as in Fig. 2. Therefore we coin the
term C2 similarity. We call two sets C2 similar above
the value of e, when Cxy Cxx Cyy. . For a precise
definition we have to introduce a tolerance p, such that
we can define the C2-similarity scale e, of two sets:

lnC~x —lnC~y ( p AlnCyy —»Czy ( p
if ~&~„

IV. THE DISTANCE BETWEEN FINITE SETS in+xx in+xY & p V»&YY ln~xY + P
(12)
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FIG. 5. The correlation sums (a) and local scaling expo-
nents (b) for the data of Fig. 4.

As we have seen, by the help of the cross-correlation
sum together with the standard correlation sums one can
characterize the relationship between two sets. Now we

lf 6(Eg)
where A and V denote the logical "and" and "or," re-
spectively. This means that for e ) e, the two sets are
indistinguishable (up to the arbitrarily fixed precision p)
when viewed by C~y. For the data shown in Fig. 2
this is e, = 2 4 (the variance of the noise is about one-
sixteenth of the attractor), and for those in Fig. 4 it is

2 with a very weak dependence on p. Note that
in the latter example Cxx and Cyy alone do not suffice
to determine the length scale below which the differences
of the attractors are dominant.

Finally we want to demonstrate that with the help of
C2 similarity two different trajectories of the same system
are clearly identified to represent the same measure. In
this case e, should be of the same order of magnitude as
the lower end of the scaling regions of the autocorrelation
sums (which is about T ~~+', T the trajectory length).
For smaller e all three curves will Buctuate due to a lack
of neighbors. Nevertheless, when interpreting the range
of these fIuctuations as statistical errors, all three corre-
lation sums should agree also on the small scales.

We want to present two examples of our method ap-
plied to experimental data. The first consists of two very
short parts of an experimental data set obtained &om
the Ziirich NMR laser [1]. The first and the last 300 data
points out of a time series of length 40000 are taken as
two different trajectories. The embedding dimension is
m = 4. From a complete data analysis [18] it is known
that the data are subject to noise of about 1.8%%uo. The
correlation dimension of the clean attractor (taking the
whole data set and after noise reduction) is about 1.5
[18]. Due to our criterion developed above from Fig. 6
one would clearly decide that the two trajectories do rep-
resent the same attractor. Of course the agreement be-
comes even better if we take longer trajectories.

The same goes for the data shown in Fig. 7. The first
and last 500 points from 10000 points recorded from a
far-infrared- (FIR) laser experiment [17]are taken as two
sets. They are embedded in four dimensions. The data
contain 0.4% noise [19], including the discretization er-
ror due to an 8 bit analog-to-digital converter (the latter
leading to the steps in Fig. 7). The attractor dimension
is slightly above 2.
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from a FIR-laser experiment in Brannscbweig [17],embedded
in. four dimensions. The arrow indicates e = T

Thus we conclude that two sets represent the same
&actal measure, if the C2-similarity scale is of the order
of its natural minimum and if in addition the three sums
agree on smaller scales within their assumed statistical
errors. The minimum of e, is determined by the onset
of statistical fluctuations in the correlation sums, and in
the presence of a clear scaling behavior it is of the order
of e, T ~ '. As we have shown, even very short ex-
perimental data sets can yield stable results. Comparing
two parts of a data set with a large temporal distance in
this way can also serve as a simple test for stationarity.

To anticipate misunderstandings let us repeat that
the characterization of two sets in terms of the cross-
correlation sum and in particular the definition of ~, by
no means depends on the existence of a scaling range
in any of the three correlation sums. Therefore the C2-

similarity scale e, is a useful characteristic even in cases
where the correlation integrals do not lead to a reliable
estimate of the attractor dimensions.

Finally, the C2-similarity scale can be used to com-
pare more than two sets. We propose that the triangular
inequality holds:

e, (XZ) ( e, (XY) + e, (YZ).

Intuitively this is clear, since C2 similarity means that
an &, tube around the one set covers an essential part
of the other set, such that Eq. (13) leads back to the
corresponding inequality for the norm used in Eq. (4).

V. CONCLUSIONS

We have introduced the cross-correlation sum to char-
acterize the relation between two 6nite sets. Based on
this, we have de6ned the C2-similarity scale, which is the
length scale above which the cross correlations between
the sets are essentially identical to their autocorrelations.
The C2-similarity scale has the properties of a distance
and thus can be used to compare more than two sets.
In numerical examples we have demonstrated the useful-
ness of this concept and shown that in fact di8erent short
parts of a long experimental data set will be recognized
as belonging to the same attractor.

Nevertheless, one problem remains. The cross-
correlation sum (as any other real space method like the

test and the Hausdorff distance) sensitively depends
on any translation or rescaling of one data set with re-
spect to the other. In cases where no intrinsic scale is
given one should define the cross-correlation sum as the
maximum over all possible translations, rotations, and
(possibly nonlinear) rescalings of one of the two sets. The
maximum of C~~ is obtained when the overlap ofI and
Y is largest, such that the C2-similarity scale c, is mini-
mized.

For the applications we have in mind this problem will
be of minor importance. With respect to nonlinear time
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series analysis one task is the comparison of a given data
set and an attractor generated after processing the data
(e.g. , with data from the fitted dynamics or after nonlin-
ear noise reduction). In this case a natural range for the
synthetic data exists and it is exactly the deviation of the
two sets within this reference kame which one wants to
measure. If, instead, two experimental time series are to
be compared, then the problem of a relative scale and oE-
set may be important. Still, if one can assume that the

data are related by linear transformations, normalizing
the two scalar distributions of the data will suffice.
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