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Metastable lifetimes in a kinetic Ising model: Dependence on field and system size
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The lifetimes of metastable states in kinetic Ising ferromagnets are studied by droplet theory and
Monte Carlo simulation, in order to determine their dependences on applied field and system size.
For a wide range of fields, the dominant field dependence is universal for local dynamics and has the
form of an exponential in the inverse field, modified by universal and nonuniversal multiplicative
power-law prefactors. Quantitative droplet-theory predictions for these dependences are numerically
verified, and small deviations from the predictions are shown to depend nonuniversally on the details
of the dynamics. We identify four distinct field intervals in which the field dependence and statistical
properties of the lifetimes are markedly different. The field marking the crossover between the weak-
field regime, in which the decay is dominated by a single droplet, and the intermediate-Beld regime,
in which it is dominated by a finite density of droplets, vanishes logarithmically with system size.
As a consequence, the slow decay characteristic of the former regime may be observable in systems
that are macroscopic as far as their equilibrium properties are concerned.

PACS number(s): 64.60.My, 64.60.Qb, 05.70.Ln, 05.50.+q

I. INTRODUCTION

Although it is observed in nature in contexts as dis-
similar as supercooled water or water vapor [1—3] and the
electroweak [4] and /CD confinement-deconfinement [5]
phase transitions, metastability is very diKcult to charac-
terize in a microscopically precise fashion [6]. In certain
systems with weak long-range interactions in6nitely long-
lived metastable states can exist in the thermodynamic
limit [7], and metastability in such systems has been stud-
ied with several techniques [8], including field-theoretical,
Monte Carlo (MC), and transfer-matrix methods. How-
ever, in systems with short-range interactions metastable
states eventually decay, even though their lifetimes may
be many orders of magnitude larger than other charac-
teristic time scales of the system and may even become
coinparable to the age of the universe [1]. In order to
gain a deeper understanding of metastability in short-
range systems, it is necessary to consider in detail the
lifetimes of metastable states and how they are deter-
mined by the physical mechanisms involved in the decay
[9]

As a prototype for the metastable dynamics of short-
range systems, the decay of the magnetization in
impurity-free kinetic Ising ferromagnets in unfavorable
applied fields has been studied by MC methods in both
two [10—18] and three [19—21] dimensions. The results of
several of these studies were analyzed in terms of droplet
theory [22—28], establishing general agreement between
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theory and simulations. In the present work we further
investigate the extent of that agreement by analytical
droplet-theory calculations and MC simulations. %e em-
phasize the dependences on applied 6eld and system size
of the metastable lifetimes and their relations to partic-
ular decay mechanisms. Our analysis extends a recent
study by two of us [29,30], and Ref. [29] is henceforth
referred to as I.

The main results in I can be summarized as follows.
In agreement with previous [14,20] and more recent [21]
simulations it was found that the statistical properties
and system-size dependence of the metastable lifetimes
in MC simulations were markedly different in two sep-
arate Beld regions. The point separating these regions
was called "the dynamic spinodal point" (DSP), and the
corresponding 6eld, which depends on temperature and
system size, was denoted HDsp. For iHi ) HDsp, the
mean lifetime was observed to be independent of sys-
tem size and much greater than its standard deviation
[14,20,21]. This field region was therefore called "the
deterministic region. " For weaker fields, the mean life-
time was inversely proportional to the system volume
[14,15,20,21,23—25] and the standard deviation was ap-
proximately equal to the mean [14,20,21]. For these rea-
sons this regime was termed "the stochastic region. " The
position of the DSP, which separates these regions, de-
pends on the temperature and system size. The main
goal of the present work is to understand and quantify
these dependences.

In this paper we present a quantitative analysis of
metastable lifetimes in terms of a droplet model of ho-
mogeneous nucleation in d-dimensional systems [22—28],
obtaining analytic results for the logarithmic derivative
of the lifetime with respect to 1/~H], as well as the
explicit size and temperature dependence of Hosp. Both

1063-651X/94/49(6)/5080(11)/$06. 00 F080 1994 The American Physical Society



49 METASTABLE LIFETIMES IN A KINETIC ISING MODEL: . . . 5Q81

MFSP DSP THSP

the deterministic and the stochastic regions are found to
be divided into two subregions, and expressions for the
corresponding crossover 6elds are derived. These ana-
lytic results are shown to be in excellent agreement with
MC simulations for d=2 at a temperature of 0.8T,.

In order of increasingly strong unfavorable 6eld the
distinct regions that we identify are the "coexistence re-
gion, " characterized by subcritical fluctuations on the
scale of the system volume; the "single-droplet region, "
characterized by decay via a single critical droplet; the
"multidroplet region, " characterized by decay via a 6-
nite density of droplets; and the "strong-6eld region, " in
which the droplet picture is inappropriate. The two for-
mer regions comprise the stochastic region, and the two
latter ones the deterministic region. The DSP thus marks
the crossover between the single-droplet and multidroplet
regions. The crossover between the coexistence region
and the single-droplet region was called "the thermody-
namic spinodal point" (THSP) in I, and the crossover be-
tween the strong-field and multidroplet regions was called
"the mean-field spinodal point" (MFSP). These different
regions and the crossover points that separate them are
summarized in Fig. 1, which shows a schematic sketch of
the field dependence of the average metastable lifetime.

Whereas the dominant field dependence of the life-
time in the single-droplet and multidroplet regions is

exponential in the inverse 6eld, our MC data are su%-
ciently precise to also allow evaluation of multiplicative
power-law prefactors. These are predicted by droplet the-
ory [23—27], but are difficult to detect numerically and,
to our knowledge, have not previously been measured in
MC studies of lifetimes or nucleation rates.

The rest of the paper is organized as follows. In Sec. II
the kinetic Ising model is defined and the numerical
methods used in this work are discussed. In Sec. III the
droplet-theoretical predictions are developed for both in-
finitely large and finite systems. In Sec. IV the numerical
results are presented and compared with the theory, and
Sec. V contains a brief discussion.

II. MODEL AND NUMERICAL METHODS

The model is defined by the reduced Hamiltonian

'R/k~T = —K ) s, s~ —H ) s;,
(' ~)

where 8; = +1 is the spin at site i, T is the tempera-
ture, kg is Boltzmann's constant, and K= J/kgyT ()0),
and H = Ii/k~T are the reduced coupling constant and
field, respectively. The sums g(, )

and g,. run over all

nearest-neighbor (NN) pairs and over all N sites on a
d-dimensional hypercubic lattice, respectively.

The dynamics is given by the Metropolis single-spin-
flip MC algorithm. The transition probability for a Hip
of the spin at site a from s to —s is thus defined as [31]
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with sum over the NN sites surrounding a is the energy
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FIG. 1. Schematic sketch showing the Seld dependence of
the average metastable lifetime for a d-dimensional kinetic
Ising model on a logarithmic scale. The dynamic spinodal
point is indicated by the solid vertical line labeled DSP. To
its left is the deterministic region and to its right is the
stochastic region. The deterministic region is divided into
the strong-field (SF) and niultidroplet (MD) subregions by
the mean-Seld spinodal, indicated by the dashed vertical line
labeled MFSP. The stochastic region is divided into the sin-
gle-droplet (SD) and coexistence (CE) subregions by the ther-
modynamic spinodal, indicated by the dashed vertical line
labeled THSP. This 6gure is based on the analytical and nu-
merical results presented in this paper, but it is not drawn
to scale for a speci6c system size. In particular, the extent
of the single-droplet region is greatly reduced, relative to the
multidroplet region.

starting &om an initial state magnetized opposite to
the applied field. This approach was also used, e.g. ,
in Ref. [21]. The magnetization m(t) is directly ob-
tained as an average over the droplet size distribution
[18,21,22] and it is closely related to the nonequilib-
rium relaxation functions introduced by Binder [11].The
volume fraction of stable phase at time t is P, (t)
[m, —m(t)] / [m, —m, ], where m, and m, are the
bulk equilibrium and metastable magnetizations, respec-
tively.

The simulations were performed on square L x L sys-
tems, with L=64, 128, 256, 400, and 720 and periodic
boundary conditions. The systems were initialized with
m(0) =+1 and allowed to develop in a constant field H&0
at T=0.8T, (K=0.550858...). This temperature is high
enough to obtain reasonable MC acceptance rates, but it
is suFiciently low to avoid complications such as critical
slowing-down and possible finite-size scaling eKects due
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to small droplets [32]. For later reference we note that the
equilibrium magnetization at O.ST, is m, = 0.954410...
[33] and the equilibrium surface tension along a primi-
tive lattice vector is o'p =0.745 915... [34].

Average first-passage times to m=0.9, 0.8, . . . , 0.0 were
recorded, together with their empirical standard devia-
tions, and the mean lifetime of the metastable state was
estimated as the average first-passage time to m=0.7. %'e
used this particular cutofF magnetization for the follow-

ing reasons. In order for the droplet-theoretical consid-
erations developed in Sec. III to remain valid during the
whole time evolution until the cutoff, the cutoff value
of P, should be below the percolation limit. However,
the cutofF magnetization should not be so close to m
that subcritical Buctuations in the metastable phase ("re-
crossing events" [16])might be mistaken for decay events,
thus leading to significant underestimation of the mean
lifetime. The cutofF magnetization m=0. 7, which, as-
suming m, = —m„corresponds to P, =0.13, was chosen
as a reasonable compromise. However, except for very
strong and very weak fields, the dependence of the ob-
served lifetimes on the cutofF is weak, and results almost
identical to those reported here were obtained with cutofF
at m=0. 0, or $, -0.5.

A more accurate, but also more computationally inten-
sive, method to estimate the lifetimes would be to use the
recrossing events by choosing as a Beld-dependent cutofF
a value of m which lies on the side of the maximum of
the recrossing-event distribution [16] opposite from that
of the initial magnetization, and for which the recrossing-
event probability is below a given threshold. We do not
implement this method here, but plan to do so in future
studies.

For fields at which the lifetime is large, the magneti-
zation m(t) was measured after each MC step per site
(MCS), whereas for shorter lifetimes it was measured af-
ter each successful spin flip. The latter method was used
whenever necessary in order to ensure that the uncer-
tainty due to the discreteness of the time variable was at
least one order of magnitude smaller than the standard
deviations in the average first-passage times.

The numerical data were obtained with a special-
purpose m-TIS2 computer [35,36] at Kyoto University
and on heterogeneous clusters of IBM RS/6000, DEC-
station, and DEC 3000 Model 400 Alpha workstations at
Florida State University.

The m-TIS2 architecture only allows the MC updates
to be performed sequentially, and the available memory
limited the maximum system size to 1=720. To assess
the efFects of the former restriction, simulations with up-
dates at randomly chosen sites were performed on the
workstation clusters for I=128 and 720. The total com-
puter time spent was approximately 400 m-TIS2 hours
and 1600 hours of workstation time for the sequential-
update study, and an additional 13000 workstation hours
for the random-update investigation.

III. DROPLET THEORY
In this section we derive the droplet-theoretical rela-

tions necessary to interpret the simulated lifetime data.

The system is characterized by six length scales: the
lattice constant, which we take as unity; the single-phase
correlation lengths in the stable and metastable phases,
(, and ( „respectively; the critical droplet radius R, ;
the size Ro to which one droplet can grow before it is
likely to meet another, which we shall refer to as the
mean droplet separation; and the system size I. Here we
only consider cases in which (, is smaller than the other
length scales, i.e., well below the critical temperature.
Thus we are left to consider the interplay between four
lengths: I, Rp, R„and (

A. In6nite systems

First we obtain Bo and B, for d-dimensional systems in
the limit I m oo. Although the droplets are almost circu-
lar at our simulation temperature, we give a general argu-
ment that remains valid for low temperatures, at which
nonspherical droplets appear because of the anisotropy of
the surface tension [34,37—41]. The free energy of a (reg-
ular, but not necessarily spherical) d-dimensional droplet
of radius R (defined as half the extent of the droplet along
a primitive lattice vector) and volume V(R) =A~R is

s(R) = v~'-'l~"z —v~
—0 B" 2 —O„A"6

where 4 is the difFerence in bulk &ee-energy density be-
tween the metastable and stable states. The quantity Z
is a temperature- and, in principle, field-dependent pro-
portionality factor which relates the surface contribution
to F(R) with the droplet volume [34,42]. Applying stan-
dard droplet-theory arguments [27] to F(R), one finds the
critical radius, the free-energy cost of a critical droplet,
and the nucleation rate per unit time and volume. The
critical radius is

(d-1) Z (d-1)0'p (d l)&p

dfI'/" b, 2m, k~T[H~
'

d

(5)

where op ——Z/(dQ& ) is the surface tension along ai/d

primitive lattice vector [34]. The approximation b,
2m, k~T[H[, where m, (T) is the spontaneous equilibrium
magnetization, is expected to be valid not only at low

temperatures, but even near the critical point [39). The
&ee-energy cost of a critical droplet is

zl+(»H) =
I

i' ' &z)'
q 2m, k~TIH

and the nucleation rate per unit time and volume I(T, H)
is determined by Ii, through [23—26]

I(T, H) = A(T) [H[ +'e "~~ = A(T)~H[ +'e
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with

1—1 (
(7b)(2m. ) ~

dk, jsT
~

where the approximation introduced in the second part
of Eq. (7a) is the same as in Eqs. (5) and (6). The func-
tion A(T) is expected to be nonuniversal, 5 is a universal
exponent related to Goldstone-mode "wobbles" on the
droplet surfaces [23,26], and c gives the H dependence
of the "kinetic prefactor" [24,25], which is the only part
of I(T, H) that may depend explicitly on the specific dy-
namics. A field-theoretical calculation gives [26]

5+c—j. y (T)
Rp(T, H) = vptp ——C(T)[H[ ~+' e "+'

~ ~

' . (10b)

The coeKcients B and C have the same nonuniversal
status as A in Eq. (7a). Although R, [H[ m oo as
[H~~O, R,/Rp-+0 in the same limit.

If one assumes that the positions of the (possibly over-

lapping) growing droplets are uncorrelated, the volume
fraction of stable phase at time t becomes

Og &tb
4"(t) = 1 —exp d+1 ( tp)

(3—d)d/2 for 1(d(5, dg3
—7/3 for d=3. (8) which is known as Avrami s law [49—52]. From this it is

seen that the average time taken to reach a specific P, is

Strictly speaking, a multiplicative correction term of form
[1+O(Hz)] should be included in the exponent in Eq. (7a)
[26,39—41,43,44], but its effect on the metastable lifetimes
is small for the relatively weak fields on which we focus
our attention in this work, and it has therefore been sup-
pressed for simplicity.

For d=2 there is substantial numerical evidence that
b=l, as predicted by Eq. (8). This is obtained from cal-
culations that do not involve the dynamics, such as anal-
yses of series expansions [39,45,46] and transfer-matrix
calculations [40,41]. These studies, as well as MC work

[43,44], also indicate that the free-energy cost of the crit-
ical droplet is given by Eq. (6) with the zero-field equilib-

rium value for Z. We therefore adopt the notations Z(T)
and:-(T) to emphasize the lack of field dependence in
these quantities. They can be obtained with arbitrary nu-

merical precision by combining a Wulff construction with
the exact, anisotropic zero-field surface tension [34]. This
general result, that the surface free energy of compact
critical droplets is determined by the zero-field equilib-
rium surface tension, is also supported by MC studies of
nucleation rates in three dimensions [19—21]. For dynam-
ics that can be described by a Fokker-Planck equation it
is expected that the kinetic prefactor is proportional to
R, [24—26], which by Eq. (5) would yield c=2. However,
we are not aware that independent, numerical verifica-
tions of this result have been performed previously. As
discussed in Sec. IV we find that the measured value of
c depends on the MC update scheme.

Assuming that the growing droplets are not substan-
tially deformed [47], the radial growth velocity is ob-
tained in an Allen-Cahn approximation [27,48,49] as

v =(d-1)r(R -R-')" ";(d-1)rR.-'—= v, , (9)

where I' depends on the details of the kinetics. The mean
droplet separation Ro and its associated time scale to are
obtained &om e~ and the nucleation rate I by requiring
that Rp ——v~tp and R~ztpI = 1 [49]. If Rp && R„so that
v~ —vp, then by using vp oc [H[ from Eqs. (5) and (9),
one obtains

(t(~.)) = to(» H)—
- x/(e+x)

(12)

The "ideal-gas" approximation leading to Avrami's law
is expected to hold when the total volume fraction of
droplets is sufficiently small that droplet-droplet corre-
lations can be ignored. The intermediate-field region, in
which Eq. (12) holds, we call the multidrop/et mgion. It
corresponds to the picture of decay through continuously
nucleating and growing droplets, first introduced by Kol-
mogorov, Johnson and Mehl, and Avrami over fifty years
ago [49—52].

For stronger fields, a picture based on localized
droplets no longer adequately describes the system,
which in that case decays via long-wavelength, unstable
modes reminiscent of spinodal decomposition [27]. The
crossover field separating the multidroplet region from
this strong field agio-n was termed "the mean-field spin-
odal" in I. It is located at a field HMpsp (4K [30,53,54].
We expect that R, (Rp for all H (HMpsp. A recent ar-
gument based on a transfer-matrix calculation indicates
that the single-phase correlation length in the metastable
phase is given by (, T/(4 J—2h) at low T [41]. A rough
estimate for the field at which droplet theory breaks down
can be obtained by requiring that 2R, =(,. This yields
HMpsp ( 2K and specifically HMpsp(0. 8T,) = 0.3 with
the critical-droplet diameter 2R, 1, independent of sys-
tem size. The dynamics in the strong-field region beyond
HMFsp will not be discussed in detail here.

B. Finite-size efFects

L»RO »B. , (13)

Next we study the effects produced by a finite system
size L. For simplicity we consider hypercubic systems of
volume L with periodic boundary conditions. Effects of
heterogeneous nucleation at free boundaries are discussed
in Ref. [55]. In the large-I, liinit,

tp(T H) = (v I) &+~ = B(T)[H~ ~+~ e'+' ~H~" '

(10a)

we use an approximate argument by which the system is
partitioned into (I/Rp) » 1 cells of vob~me Rp. Each
cell decays from the metastable state to the equilibrium
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state in an independent Poisson process of rate R&I =
to . The volume &action is then self-averaging, with
(t(P,)} approximately equal to the infinite-system result
of Eq. {12),and the relative standard deviation is

(14)

the random nucleation of a single critical droplet in a
Poisson process of rate L"I is the rate-determining step.
This is followed by rapid growth, until this droplet oc-
cupies the entire system after an additional time much
shorter than the average waiting time before a second
droplet nucleates. Therefore, in this case the character-
istic lifetime is

(t(P, )) = L,"I(T,H)

= L [A(T)] (16)

with r 1 and only a weak dependence on the threshold
This single-droplet region is part of "the stochastic

region" observed in I.
The crossover between the deterministic and stochas-

tic regimes is determiaed by the condition L oc Ro. We
identify the crossover Geld with the "dynamic spinodal
point" introduced in I, and in the limit H m0 we explic-
itly obtain &om Eq. (10b)

( 1 "(T)l '-'
+

(ln(ln L) l ( 1
x 1+0 +nL r &lnL).

(17)

We emphasize that, although Hosp vanishes as L —+ oo,
the approach to zero is exceedingly slow, especially for
d=s and larger. Therefore, Hosp may well be measur-
ably difFerent &om zero for systems that are definitely
macroscopic as far as their equilibrium properties are
concerned. (As an illustration, increasing L from 100
to 10 for d=3 decreases the leading term in HDsp only
ta approximately one-half of its original value. ) Recent
exact results [53,54] indicate that if the limit T -+ 0 is
taken before L ~ oo, then Hosp should remain nonzero.
An estimate for the mean lifetime at HDsp in the infinite-
I limit is obtained by setting

(t at Hosp) oc to(T, Hosp) = Ro(T, Hosp)
&0 1 OSP

oc L/Hosp ~ L(la L) (18)

where the nonuniversal temperature-dependent propor-
tionality factors have been dropped.

Finally, we consider the limit

where p —1 is the relative standard deviation of a sin-

gle Poisson process. The regime characterized by r && 1
was termed "the deterministic region" in I. It is subdi-
vided into the multidroplet and strong-field subregions
discussed above.

For smaller L, so that

Ro » L » R

Ro && R, » I, .

In this case the volume term can be neglected in Eq. (4},
and the &ee-energy cost of a droplet occupying a volume

fraction P, = V(R)/L" is F(P,) = L P, ( Z(T), so
that the first-passage time to a given P, is independent
of H and diverges exponentially with Ld —1 Since the
dynamics in this region of extremely weak Gelds or ex-
tremely small systems is similar to that on the coexis-
tence line, H=O, we call it the coexiatence region. The
crossover Geld between the coexistence and single-droplet
regions, called "the thermodynamic spinodal point" in I,
is determined for a given P, by Ag(R, /L) = cb„which
yields

1 (d —1)Z(T)
THSP —

iyg 2dk T
8

(20)

IV. NUMERICAL RESULTS

The mean metastable lifetimes are illustrated in Fig. 2,
which shows the average first-passage time to m=0. 7
{P,-0.13) for two-dimensioaal square Ising systems with
L=64, . . . , 720 at 0.8T, . The simulations were performed
using the Metropolis single-spin-fiip MC algorithm with
sequeatial updates, as discussed in Sec. II. The life-
times, in units of MCS, are plotted on a logarithmic
scale vs 1/~H~. Each data point is averaged over n=l00
independent realizations, and the errors are calculated
from the empirical staadard deviatioa 0' in t(m=0. 7) as
cr/~n. For given ~H

~
and sufficiently small L the lifetimes

decrease with increasing L as (t(P, )) oc I 2, ia agree-
ment with Eq. (16) for the single-droplet region and as
shown in Fig. 3 of I. For larger I they converge to an
L-independent value, as expected from Eq. (12) for the
multidroplet region. This L ~ behavior was previously
remarked in Refs. [14,15,20,21], as was the presence of
the L-independent regime in Refs. [14,20,21]. The size-
independent data in the intermediate- and strong-Geld
portions of Fig. 2 belong to the deterministic region,
whereas the size-dependent data in the weak-field, long-
time portion lie in the stochastic region. The droplet-
theory results of Eqs. (10a), (12), aad (16) show that in
both the multidroplet and the single-droplet regions the
field dependeace of the lifetime is determined by the nu-
cleation rate I(T, H), so that the asymptotic slopes of
ln(t(g, )) vs 1/~H~

i in the two regimes are related by
a factor (2+1). Based on the four points for L=64 in
the single-droplet region of Fig. 2 (1/~H~ ) 20) the ef-
fective slope was estimated by a least-squares fit to be
0.36(l). This slope is indicated by the dashed liae abave
the data in Fig. 2, whereas the dashed line below the
data has 1/3 this slope. The agreement with droplet
theory seems excellent. However, the measured efFective
slope is almost 30% larger than the theoretically pre-
dicted asymptotic slope, =(0.8T,) = 0.278840... , which
is obtained by using the numerically exact [34,42] value

E(0.8T,)jJ=2.64881... in Eq. (7b).
The explanation for this apparent discrepancy lies in

the power-law prefactors in Eqs. (10a) and (16), which
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yield the effective slopes

(21)
+

g(ti)& I, (tz)) n H, H—z

with A= (b+c)/(d —1) and A =:-(T) in the single-droplet
region described by Eq. (16) and A = (b+c+d)/(dz —1)
and A =:-(T)/(4+1) in the multidroplet region described
by Eqs. (10a) and (12).

In Fig. 3 we show two-point finite-difference estimates
for A,g, based on the average lifetimes in Fig. 2, for pairs
of fields, lHil ) lHzl. These estimates are plotted vs the
field value that occurs in the finite-difference version of
Eq (21), lHl = lHiH2l ln lH1/Hzl/lHi —H2l ~

bars are calculated as

0 5 10 15 20
s

105 =

104 =

where o; and (t;) are the empirical standard deviation
and mean for the lifetime at lH; l, with i =1 or 2. For clar-
ity only two system sizes, L=128 and 720, were included
in the figure. The other sizes give results sinai&ar to those
shown. The solid straight lines correspond to Eq. (21)
with ts+c=2 and the exact =(0.8T,) =0.278840... . The
data points for both system sizes cluster close to the lower
of these two lines in the whole multidroplet region. How-

ever, in the strong-field part of the region the deviations
of the L=720 data &om the line are considerably larger
than the one-o'~ error bars, leading to unacceptably small

probabilities in a weighted least-squares fit. These de-
viations may possibly indicate the presence of small but
statistically significant corrections to the droplet-theory
result. To obtain an acceptable fit for L=720 we therefore
successively eliminated the data point with the largest
value of lHl until the y probability Q stabilized at a rea-

A
~ 103
C)

II

~ 102
V H

p.p
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101 C)
II p4—

100

s s I s s s s I s s s s I s s s s

0 10 20 30 40
p.2—

FIG. 2. Mean metastable lifetime for a two-dimensional
kinetic Ising model at T=0.ST„estimated as average
Srst-passage times to sn=0. 7 (P, 0.13). The simulation was
performed by the Metropolis MC algorithm with sequential
updates. The lifetimes are given in units of Monte Carlo
steps per spin (MCS) and are shown on a logarithmic scale
vs 1/lHl. The symbols indicate data for system sizes L=64
(+), 128 (Q), 256 (x), 400 (0), and 720 (0), all obtained
with a special-purpose m-TIS2 computer, and L=128 ()
and 720 (Slled diamonds), obtained on heterogeneous work
station clusters. The solid curves are merely guides to the
eye. The vertical arrow indicates the inverse field at which
droplet theory is expected to break down, 1/HMpsp 3. The
L-dependent data in the upper right-hand sector lie in the
single-droplet region, the L-independent data in the central
portion of the figure lie in the multidroplet region, and the
L-independent data in the lower left-hand sector belong to
the strong-Beld region. The dashed line above the data has a
slope of 0.36, estimated &om the four points for L=64 with
1/lHl & 20, and the dashed line below the data has 1/3 this
slope. The standard deviations in the average lifetimes range
from on the order of the symbol size for the weakest fields
shown to two orders of magnitude smaller for the strongest
fields, and error bars are therefore not shown. See details in
Sec. IV.
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FIG. 3. Finite-difference estimates for the effective slope
A,sr from Eq. (21), shown vs lHl. The parameters and sym-
bols are the same as in Fig. 2. For clarity only data for L =128
(Q and ) and 720 (empty and filled diamonds) are in-
cluded, and error bars are shown only where larger than the
symbol size. The solid straight lines correspond to Eq. (21)
with b+c = 2 and intersect the vertical axis at the exact
:-(O.ST,) and:-(O. ST,)/3, respectively. The lower solid line
gives a good fit to the data in the multidroplet region for
both system sizes. Only L=128 penetrates fully into the sin-
gle-droplet region, where the agreement with the theoretical
prediction (upper solid line) is also good. The dotted lines,
which correspond to b+c = 3, do not fit the data as well.
The crossover between the multi- and single-droplet regions
is seen as a jump in A z. The vertical arrows with horizontal
error-bar "feathers" indicate the positions of the estimator

Higgs for the crossover field HDsp, obtained from Fig. 5(a).
The left pair of arrows corresponds to L=720 and the right
pair to L=128. The vertical arrow marked HMFsp xnarks the
L-independent field at which droplet theory is expected to
break down. See details in Sec. IV.



5086 RIKVOI.D, TOMITA, MIYASHITA, AND SIDES

sonable value greater than 0.1. The resulting fit, which
includes 12 points in the 6eld interval 0.03(~H[(0.15,
gives 5+c= 1.95(8) and:-(0. 8T, )=0.282(8) with Q=0.41,
consistent with the parameters used to draw the solid
straight lines.

Only the smaller system penetrates fully into the
single-droplet region in the Geld range for which data
could be obtained with a reasonable amount of computer
time. As seen from the figure, the agreement between
the K=128 MC data and the solid line is also good in
the single-droplet region, even though the error bars are
larger there than in the multidroplet region.

The dotted straight lines in the Ggure correspond to
Eq. (21) with b+c= 3, the value expected from the dis-
cussion following Eq. (8), and the exact =(0.8T,). The
agreement with the data is far inferior to the solid lines.
Since the Geld-theoretical prediction of 6 = 1 has been well
confirmed by several numerical methods [39—41,43—46],
we believe the disagreement between the predicted and
observed values of b+c must be ascribed to c, the expo-
nent giving the Geld dependence of the kinetic prefactor.
(An alternative explanation, that the field dependence of
the droplet growth rate eo ~H~ might be wrong, is prob-
ably ruled out since this only would affect the Gt in the
multidroplet region. ) We therefore conclude that our nu-

merical results agree well with the predictions of droplet
theory, but with c 1 instead of c=2. We believe the un-

expected value of e is an expression of the nonuniversality
of the kinetic prefactor and that it is a consequence of the
sequential MC update scheme. This view is supported by
the simulations with random updates, which we report
at the end of this section.

In the strong-Geld region, droplet theory is not
expected to be applicable. For Gelds beyond
HMpsp(0. 8T, ) =0.3, A,tr indeed exhibits pronounced os-
cillations with H, the Grst of which can be seen in the
right-hand portion of Fig. 3. Further study at these ex-
treme Gelds is left for future work.

The crossover between the multidroplet and single-
droplet regions is clearly seen in Fig. 3 as a jump in A,p.
However, it is difBcult to determine the corresponding dy-
namic spinodal Geld Hosp directly &om this Ggure with
sufficient accuracy to verify Eq. (17). Instead, we con-
sider the relative standard deviation r, which is shown in
Fig. 4 on a logarithmic scale vs 1/~H~. The error bars in
the Ggure are estimated by standard error-propagation
methods as

5 10
K/Ilail

15 20

1 00 ————————

I I I
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I I I
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0.20
II
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which agrees well with the data, represents the crossover
condition L oc Re, where Rs is given by Eq. (10b) with
6+c = 2 in agreement with the fits in Fig. 3, and with
the proportionality constant adjusted to minimize the
weighted sum of squares. For reference a dashed line with
the asymptotic slope 3/:-(0.8T,), expected from Eq. (17),
is also included. It was obtained by using the same pro-
portionality constant as in the solid-curve fit and setting
the power-law prefactor equal to uiiity in Eq. (10b). The
values of Hq/2 for 1=128 and 720 are also indicated by
arrows in Fig. 3. The asymptotic L dependence of the
lifetime at the DSP, given by Eq. (18), is illustrated iri

Fig. 5(b). For each L this lifetime was obtained by inter-
polation between the two closest Geld values bracketing
Hz/2 for which simulations had been performed, and the
uncertainty in the resulting estimate was obtained from
those in Figs. 5(a) and 2 by standard error propagation.
The numerical results are consistent with the analytical
prediction.

The crossover Geld between the single-droplet and co-
existence regions, HTHsp of Eq. (20), is not easily observ-
able in our calculation because of the smallness of the nu-
merical factor (d 1)Z(0.8—T,)/(2dk~Tm, ) =0.382204. .. .
Nevertheless, for L=64 and cutoff at m=0. 9 (P, =0.03)
the resulting prediction is 1/HTHsp 28.5. As shown in
Fig. 6, which corresponds to Fig. 2 except that the cutofI'
is m=0. 9, this estimate agrees well with the numerical
data. A similar crossover was also observed in Ref. [15].
Except for the behavior for I=64 at low Gelds, and larger
uncertainties in general, Fig. 6 is similar to Fig. 2.

One can ask several questions regarding the efkcts of
difI'erent local dynamics on the metastable lifetimes. The

0.02
10 20 30 40

In agreement with our predictions, r crosses over kom
the behavior described by Eq. (14) for large ~H[ to r=l
for smaller ~H~. We take as our estimate for HDsp the
Geld Hzg2 for which v=0.5. This field is determined for
each value of L &om the crossing of a weighted least-
squares fit to lnr in the linear region of Fig. 4 with the
horizontal line r=0.5. The resulting estimates are shown
in Fig. 5(a) as 1/Hi/2 vs I on a logarithmic scale, with
error bars estimated &om those in Fig. 4 by standard
error-propagation methods. The solid curve in Fig. 5(a),

FIG. 4. The relative standard deviation r for t(m=0. 7),
shown on s logarithmic scale vs 1/lHl. The parameters snd
symbols are the same as in Fig. 2. The behavior of r crosses
over from the approximate straight line described by Eq. (14)
in the multidroplet region to r 1 in the single-droplet region.
The inclined solid lines are weighted least-squares Sts to the
dsts in the region 1/lHl&10, v&0.6. Their average efFective
slope is 0.13(1), which is intermediate between "(0.8T,) snd
:"(0.8T,)/3. The estimates Hips for Hosp sre found where
these lines cross the horizontal dashed line at r=0.5. These
estimates are also shown vs I in Fig. 5(s) snd are indicated
by arrows in Fig. 3. See details in Sec. IV.
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FIG. 7. The ratio (ta)/(ts) between the mean lifetimes ob-

tained with random and sequential MC updates for L=128
and 720. The symbols and parameters are the same as in

Figs. 3 and 8. The two pairs of opposing arrows with hor-

izontal error-bar "feathers" mark Hq/z for the two system

sizes. The solid straight line in this log-log plot is a weighted

least-squares fit to Eq. (22) in the weak-field part of the mul-

tidroplet region for L=720. See details in Sec. IV.

FIG. 8. Finite-di8'erence estimates for the e8'ective slope
A ff froin Eq. (21) for random MC updates with X=128
and 720, shown vs ~H~. The figure is analogous to Fig. 3,
and the symbols and parameters are the same as in that 6g-
ure. The behavior is similar to the sequential-update case,
except that the prefactor exponent 6+c 3 and the 6eld in-

terval in which A,g seems to follow a linear approach to the
exact:-/3 is narrower than in Fig. 3. See details in Sec. IV.

A somew&at puzzling feature in Fig. 7 is the falloK
of the ratio for I=128 in the single-droplet region. %e
believe, this may be due to the proximity of the THSP
for this relatively small system size.

In Fig. 8, which corresponds to and should be com-

pared with Fig. 3, we show the effective slope A,g from

Eq. (21) for the random-update case. The estimated

Hi/2 for both L=128 and 720 (indicated by opposing
arrows in the figure) agree to within the statistical er-

ror with the estimates for sequential updates. In the
weak-6eld portion of the multidroplet region the effec-

tive slopes follow the lower dotted line, which has the
same meaning as in Fig. 3. Two major differences from
the sequential-update case are apparent. First, the Geld

interval in which A,g seems to follow a linear approach
to the exact =(0.8T,)/3 is narrower, as one would ex-

pect kom the behavior of the lifetime ratios shown in

Fig. 7. Second, the fact that the effective slopes clus-

ter around the dotted line indicates that the nonuniversal
prefactor exponent c is close to 2, as expected for dynam-
ics that can be described by a Fokker-Planck equation
[24—26]. Following the procedure described above, we

obtained a weighted least-squares fit to the I=720 data,
including ten points in the interval 0.03&]H~&O.II. The
resulting parameter estimates were =(0.8T,)=0.260(11)
and c=2.41(15) with Q=0.22. In view of the short fitting
interval we consider that this estimate is consistent with
the expected exact values. For ~H])0.11 the deviation
of A g from the dotted straight line takes the form of a
smooth, slow oscillation whose amplitude is much larger
than the statistical errors.

In summary, our results indicate that the main dif-

ference in the nonuniversal part of the field dependence

of the metastable lifetimes between the sequential and
random update schemes lies in the kinetic-prefactor ex-

ponent c. For sequential updates we Gnd c=1, whereas
for random updates c 2, in agreement with the theoret-
ical expectation c=2. In addition to the difference in c
for weak fields, the quantitative differences between the
lifetimes in the two update schemes become progressively
larger with increasing ~H].

V. DISCUSSION

We have demonstrated that the metastable lifetimes
for impurity-free kinetic Ising models with nearest-
neighbor interactions and local dynamics, in weak to
moderate unfavorable applied fields, exhibit system-size
and field dependences that can be explained by a field-

theoretical droplet model of homogeneous nucleation

[23—26]. The most significant determining factor for the
lifetime is the free energy of a critical droplet of the stable
phase, which in a wide field interval leads to an exponen-
tial dependence on the inverse applied field. This free

energy is independent of the details of the local dynam-

ics, and it can be accurately calculated by combining a
VlulfF construction with the exact zero-field equilibrium
surface tension.

Our numerical estimates for the lifetimes, based on
Monte Carlo simulations in two dimensions, are in ex-

cellent agreement with the droplet model. This agree-
ment includes both the aforementioned exponential de-

pendence on the inverse field and multiplicative power-
law prefactors. There are two independent contributions
to these prefactors: a universal exponent b, equal to unity
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for d=2, and a nonuniversal exponent c, which depends
on the details of the dynamics. Our results indicate that
with MC updates at randomly chosen sites, c is close to
2, which is the exact result for dynamics described by a
Fokker-Planck equation [24,25]. With sequential updates
we found c 1. It is tempting to conjecture that the exact
value in this case is unity, but at present we have no the-
oretical arguments to substantiate this suggestion. For
stronger fields we found additional, dynamics-dependent
deviations from the droplet-theory predictions for A,g.

We have identified four different field regions, in which
the decay proceeds through different excitations. In or-
der of increasingly strong unfavorable field ]H], these
were the coexistence region, characterized by subcriti-
cal fIuctuations on the scale of the system volume; the
single-droplet region, characterized by decay via a single
critical droplet; the multidroplet region, characterized by
decay via a finite density of droplets; and the strong-field
region, in which the droplet picture is inappropriate. 'The

crossover fields between these regions

1
[HTHsp~L ] ( [HDsp (lnL) & —'] ( [HMFsp ~ L ]

(23)

are accurately predicted by droplet theory. The differ-
ent regions and crossover fields are illustrated in Fig. 1.
We believe the slow, logarithmic vanishing with system
size of the dynamic spinodal field HDsp, which separates
the single-droplet and multidroplet regions, is of partic-
ular significance. This convergence is so slow, especially
in three and higher dimensions, that systems that are
rightfully considered macroscopic in terms of their equi-

librium properties may nevertheless possess a measurable
single-droplet region in which the metastable state is ex-
ceedingly long lived on the average.

Noted added in proof A. fter this paper was accepted
for publication we became aware of two recent theoretical
studies which consider finite-size effects and the interplay
between nucleation and growth in metastable decay, as
applied to the switching behavior of ferroelectric films [H.
M. Duiker and P. D. Beale, Phys. Rev. B 41, 490 (1990);
H. Orihara and Y. Ishibashi, J.Phys. Soc. Jpn. 61, 1919
(1992)]. The paper by Duiker and Beale also contains
Monte Carlo results for a two-dimensional kinetic Ising
model.
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